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Preface 
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appropriate page in your web browser. 
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Introduction 

Electric circuit theory and electromagnetic theory are the two fundamental 

theories upon which all branches of electrical engineering are built. Many 

branches of electrical engineering, such as power, electric machines, control, 

electronics, communications, and instrumentation, are based on electric circuit 

theory. Circuit theory is also valuable to students specializing in other branches 

of the physical sciences because circuits are a good model for the study of 

energy systems in general, and because of the applied mathematics, physics, 

and topology involved. 

Electronic circuits are used extensively in the modern world – society in its 

present form could not exist without them! They are used in communication 

systems (such as televisions, telephones, and the Internet), digital systems (such 

as personal computers, embedded microcontrollers, smart phones), and 

industrial systems (such as robotic and process control systems). The study of 

electronics is therefore critical to electrical engineering and related professions. 

One goal in this subject is to learn various analytical techniques and computer 

software applications for describing the behaviour of electric circuits. Another 

goal is to study various uses and applications of electronic circuits. 

We will start by revising some basic concepts, such as KVL, KCL and Ohm’s 

Law. We will then introduce the concept of the electronic amplifier, and then 

study a device called an operational amplifier (op-amp for short), which has 

been used as the building block for modern analog electronic circuitry since its 

invention in the 1960’s. 
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1.1 Current 

Charge in motion represents a current. The current present in a discrete path, 

such as a metallic wire, has both a magnitude and a direction associated with it 

– it is a measure of the rate at which charge is moving past a given reference 

point in a specified direction. Current is symbolised by i and thus: 

dt

dq
i 

 
(1.1) 

The unit of current is the ampere (A) and is equivalent to 
-1Cs . In a circuit 

current is represented by an arrow: 

 

i
 

 

Figure 1.1 

The arrow does not indicate the “actual” direction of charge flow, but is simply 

part of a convention that allows us to talk about the current in an unambiguous 

manner. 

The use of terms such as “a current flows through the resistor” is a tautology 

and should not be used, since this is saying a “a charge flow flows through the 

resistor”. The correct way to describe such a situation is “there is a current in 

the resistor”. 

A current which is constant is termed a direct current, or simply DC. Examples 

of direct currents are those that exist in circuits with a chemical battery as the 

source. A sinusoidal current is often referred to as alternating current, or AC1. 

Alternating current is found in the normal household electricity supply. 

                                                 

1 Later we shall also see that a periodic current (e.g. a square wave), with no DC term, can also 

be referred to as an alternating current. 

Current defined as 
the rate of change of 
charge moving past 
a reference 

Representation of 
current in a circuit 

Correct usage of the 
term “current” 

DC and AC defined 
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1.2 Voltage 

A voltage exists between two points in a circuit when energy is required to 

move a charge between the two points. The unit of voltage is the volt (V) and 

is equivalent to 
-1JC . In a circuit, voltage is represented by a pair of +/- signs: 

 

v

A

B  

 

Figure 1.2 

Once again, the plus-minus pair does not indicate the “actual” voltage polarity. 

EXAMPLE 1.1 Voltage Polarity 

Note the voltages across the circuit elements below: 

A

B

v = -5 V

(a)

A

B

v = 5 V

(b)   

In both (a) and (b), terminal B is 5 V positive with respect to terminal A. 

A

B

v = 5 V

(c)

A

B

v = -5 V

(d)   

In both (c) and (d), terminal A is 5 V positive with respect to terminal B. 

Representation of 
voltage in a circuit 
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1.3 Circuit Elements and Types of Circuits 

A circuit element is an idealised mathematical model of a two-terminal 

electrical device that is completely characterised by its voltage-current 

relationship. Although ideal circuit elements are not “off-the-shelf” circuit 

components, their importance lies in the fact that they can be interconnected 

(on paper or on a computer) to approximate actual circuits that are composed 

of nonideal elements and assorted electrical components – thus allowing for the 

analysis of such circuits. 

Circuit elements can be categorised as either active or passive. 

1.3.1 Active Circuit Elements 

Active circuit elements can deliver a non-zero average power indefinitely. 

There are four types of active circuit element, and all of them are termed an 

ideal source. They are: 

 the independent voltage source 

 the independent current source 

 the dependent voltage source 

 the dependent current source 

1.3.2 Passive Circuit Elements 

Passive circuit elements cannot deliver a non-zero average power indefinitely. 

Some passive elements are capable of storing energy, and therefore delivering 

power back into a circuit at some later time, but they cannot do so indefinitely. 

There are three types of passive circuit element. They are: 

 the resistor 

 the inductor 

 the capacitor 

1.3.3 Types of Circuits 

The interconnection of two or more circuit elements forms an electrical 

network. If the network contains at least one closed path, it is also an electrical 

circuit. A network that contains at least one active element, i.e. an independent 

or dependent source, is an active network. A network that does not contain any 

active elements is a passive network. 

Ideal circuit 
elements are used 
to model real circuit 
elements 

Active circuit 
element defined 

Passive circuit 
element defined 

Network and circuit 
defined 

Active and passive 
circuits defined 
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1.4 Independent Sources 

Independent sources are ideal circuit elements that possess a voltage or current 

value that is independent of the behaviour of the circuits to which they belong. 

1.4.1 The Independent Voltage Source 

An independent voltage source is characterised by a terminal voltage which is 

completely independent of the current through it. The representation of an 

independent voltage source is shown below: 

 

vs

 

 

Figure 1.3 

If the value of the voltage source is constant, that is, does not change with time, 

then we can also represent it as an ideal battery: 

 

VsVs

 

 

Figure 1.4 

Although a “real” battery is not ideal, there are many circumstances under 

which an ideal battery is a very good approximation. 

Independent voltage 
source defined 

An ideal battery is 
equivalent to an 
independent voltage 
source that has a 
constant value 
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In general, however, the voltage produced by an ideal voltage source will be a 

function of time. In this case we represent the voltage symbolically as  tv . 

A few typical voltage waveforms are shown below. The waveforms in (a) and 

(b) are typical-looking amplitude modulation (AM) and frequency modulation 

(FM) signals, respectively. Both types of signals are used in consumer radio 

communications. The sinusoid shown in (c) has a wide variety of uses; for 

example, this is the shape of ordinary household voltage. A “pulse train”, such 

as that in (d), can be used to drive DC motors at a variable speed. 

 

t

v

(c)

t

v

(a)

t

v

(d)

t

v

(b)

 

 

Figure 1.5 

Since the voltage produced by a source is in general a function of time, then the 

most general representation of an ideal voltage source is as shown below: 

 

AS 1102

IEC 60617

"intuitive"

v   t(  )s v   t(  )s

 

 

Figure 1.6 

The most general 
representation of an 
ideal independent 
voltage source 
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1.4.2 The Independent Current Source 

An independent current source establishes a current which is independent of 

the voltage across it. The representation of an independent current source is 

shown below: 

 

is

Terminal 1

Terminal 2
 

 

Figure 1.7 

In other words, an ideal current source is a device that, when connected to 

anything, will always push si  out of terminal 1 and pull si  into terminal 2. 

Since the current produced by a source is in general a function of time, then the 

most general representation of an ideal current source is as shown below: 

 

i   t(  )s i   t(  )s

AS 1102

IEC 60617

"intuitive"

 

 

Figure 1.8 

Independent current 
source defined 

The most general 
representation of an 
ideal independent 
current source 
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1.5 The Resistor and Ohm’s Law 

In 1827 the German physicist George Ohm published a pamphlet entitled “The 

Galvanic Circuit Investigated Mathematically”. It contained one of the first 

efforts to measure currents and voltages and to describe and relate them 

mathematically. One result was a statement of the fundamental relationship we 

now call Ohm’s Law. 

Consider a uniform cylinder of conducting material, to which a voltage has 

been connected. The voltage will cause charge to flow, i.e. a current: 

 

A



v
conductor lv

i

 

 

Figure 1.9 

Ohm found that in many conducting materials, such as metal, the current is 

always proportional to the voltage. Since voltage and current are directly 

proportional, there exists a proportionality constant R, called resistance, such 

that: 

Riv   (1.2) 

This is Ohm’s Law. The unit of resistance (volts per ampere) is referred to as 

the ohm, and is denoted by the capital Greek letter omega, Ω. 

We refer to a construction in which Ohm’s Law is obeyed as a resistor. 

A simple resistor 

Ohm’s Law 
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The ideal resistor relationship is a straight line through the origin: 

 

i

v

1

R

 

 

Figure 1.10 

Even though resistance is defined as ivR  , it should be noted that R is a 

purely geometric property, and depends only on the conductor shape and the 

material used in the construction. For example, it can be shown for a uniform 

resistor that the resistance is given by: 

A

l
R




 
(1.3) 

where l is the length of the resistor, and A is the cross-sectional area. The 

resistivity,  , is a constant of the conducting material used to make the 

resistor. 

The circuit symbol for the resistor is shown below, together with the direction 

of current and polarity of voltage that make Ohm’s Law algebraically correct: 

 

v R

i

AS 1102

IEC 60617

"intuitive"

v R

i

 

 

Figure 1.11 

The resistor is a 
linear circuit element 

The resistance of a 
uniform resistor 

The circuit symbol 
for the resistor 
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EXAMPLE 1.2 Ohm’s Law with a Voltage Source 

Consider the circuit shown below. 

1 k10 V v

i1

i2
 

The voltage across the 1 kΩ resistor is, by definition of an ideal voltage source, 

  V 10tv . Thus, by Ohm’s Law, we get: 

mA 10A 01.0
1000

10
1 

R

v
i  

and: 

mA 10A 01.0
1000

10
2 







R

v
i  

Note that 12 ii  , as expected. 

 

EXAMPLE 1.3 Ohm’s Law with a Current Source 

Consider the circuit shown below. 

50 3cos(    ) A v  t(  )

i  t(  )

 t

 

Ohm’s Law yields: 

   
 

 V cos150

cos350

t

t

tRitv
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1.5.1 The Short-Circuit 

Consider a resistor whose value is zero ohms. An equivalent representation of 

such a resistance, called a short-circuit, is shown below: 

 

arbitrary

circuit
= 0v  t(  )

i  t(  )

R v  t(  )

i  t(  )

arbitrary

circuit

 

 

Figure 1.12 

By Ohm’s Law: 

V 0

0







i

Riv

 

(1.4) 

Thus, no matter what finite value  ti  has,  tv  will be zero. Hence, we see that 

a zero-ohm resistor is equivalent to an ideal voltage source whose value is zero 

volts, provided that the current through it is finite. 

The short-circuit 
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1.5.2 The Open-Circuit 

Consider a resistor having infinite resistance. An equivalent representation of 

such a resistance, called an open-circuit, is shown below: 

 

arbitrary

circuit

arbitrary

circuit
= v

i

R v

i



 

 

Figure 1.13 

By Ohm’s Law: 

A 0






v

R

v
i

 

(1.5) 

Thus, no matter what finite value  tv  has,  ti  will be zero. Thus, we may 

conclude that an infinite resistance is equivalent to an ideal current source 

whose value is zero amperes, provided that the voltage across it is finite. 

1.5.3 Conductance 

The reciprocal of resistance is called the conductance, G: 

R
G

1


 
(1.6) 

The unit of conductance is the siemen, and is abbreviated S. The same circuit 

symbol is used to represent both resistance and conductance. 

The open-circuit 

Conductance 
defined 
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1.6 Practical Resistors 

There are many different types of resistor construction. Some are shown below: 

 

carbon composition 

 

carbon film  

 

metal film 

 

wire wound 

 

wire wound 

with heat sink 

 

array 

 

chip - thick film 

 

chip - thin film 

 

chip array 

Figure 1.14 – Some types of resistors 

The “through-hole” resistors are used by hobbyists and for prototyping real 

designs. Their material and construction dictate several of their properties, such 

as accuracy, stability and pulse handling capability. 

The wire wound resistors are made for accuracy, stability and high power 

applications. The array is used where space is a premium and is normally used 

in digital logic designs where the use of “pull-up” resistors is required. 

Modern electronics utilises “surface-mount” components. There are two 

varieties of surface-mount chip resistor – thick film and thin film. 

Some types of 
resistors 
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1.6.1 Preferred Values and the Decade Progression 

Fundamental standardization practices require the selection of preferred values 

within the ranges available. Standard values may at first sight seem to be 

strangely numbered. There is, however, a beautiful logic behind them, dictated 

by the tolerance ranges available. 

The decade progression of preferred values is based on preferred numbers 

generated by a geometric progression, repeated in succeeding decades. In 1963, 

the International Electrotechnical Commission (IEC) standardized the preferred 

number series for resistors and capacitors (standard IEC 60063). It is based on 

the fact that we can linearly space values along a logarithmic scale so a 

percentage change of a value results in a linear change on the logarithmic scale. 

For example, if 6 values per decade are desired, the common ratio is 

468.1106  . The six rounded-off values become 100, 150, 220, 330, 470, 680. 

1.6.2 The ‘E’ Series Values 

The IEC set the number of values for resistors (and capacitors) per decade 

based on their tolerance. These tolerances are 0.5%, 1%, 2%, 5%, 10%, 20% 

and 40% and are respectively known as the E192, E96, E48, E24, E12, E6 and 

E3 series, the number indicating the quantity of values per decade in that 

series. For example, if resistors have a tolerance of 5%, a series of 24 values 

can be assigned to a single decade multiple (e.g. 100 to 999)  knowing that the 

possible extreme values of each resistor overlap the extreme values of adjacent 

resistors in the same series. 

Any of the numbers in a series can be applied to any decade multiple set. Thus, 

for instance, multiplying 220 by each decade multiple (0.1, 1, 10 100, 1000 

etc.) produces values of 22, 220, 2 200, 22 000, 220 000 etc. 

The ‘E’ series of preferred resistor and capacitor values according to 

IEC 60063 are reproduced in Table 1.1. 

 

 

Component values 
have been 
standardized by the 
IEC 

Component values 
are spaced 
equidistantly on a 
logarithmic scale 

The ‘E’ series 
values explained 
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0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 0.5% 1% 2% 

E192 E96 E48 E192 E96 E48 E192 E96 E48 E192 E96 E48 E192 E96 E48 

100 100 100 169 169 169 287 287 287 487 487 487 825 825 825 

101   172   291   493   835   

102 102  174 174  294 294  499 499  845 845  

104   176   298   505   856   

105 105 105 178 178 178 301 301 301 511 511 511 866 866 866 

106   180   305   517   876   

107 107  182 182  309 309  523 523  887 887  

109   184   312   530   898   

110 110 110 187 187 187 316 316 316 536 536 536 909 909 909 

111   189   320   542   920   

113 113  191 191  324 324  549 549  931 931  

114   196   328   556   942   

115 115 115 196 196 196 332 332 332 562 562 562 953 953 953 

117   198   336   569   965   

118 118  200 200  340 340  576 576  976 976  

120   203   344   583   988   

121 121 121 205 205 205 348 348 348 590 590 590    

123   208   352   597   5% 10% 20% 40% 

124 124  210 210  357 357  604 604  E24 E12 E6 E3 

126   213   361   612       

127 127 127 215 215 215 365 365 365 619 619 619 100 100 100 100 

129   218   370   626   110    

130 130  221 221  374 374  634 634  120 120   

132   223   379   642   130    

133 133 133 226 226 226 383 383 383 649 649 649 150 150 150  

135   229   388   657   160    

137 137  232 232  392 392  665 665  180 180   

138   234   397   673   200    

140 140 140 237 237 237 402 402 402 681 681 681 220 220 220 220 

142   240   407   690   240    

143 143  243 243  412 412  698 698  270 270   

145   246   417   706   300    

147 147 147 249 249 249 422 422 422 715 715 715 330 330 330  

149   252   427   723   360    

150 150  255 255  432 432  732 732  390 390   

152   259   437   741   430    

154 154 154 261 261 261 442 442 442 750 750 750 470 470 470 470 

156   264   448   759   510    

158 158  267 267  453 453  768 768  560 560   

160   271   459   777   620    

162 162 162 274 274 274 464 464 464 787 787 787 680 680 680  

164   277   470   796   750    

165 165  280 280  475 475  806 806  820 820   

167   284   481   816   910    

Table 1.1 – IEC standard ‘E’ series of values in a decade 
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1.6.3 Marking Codes 

The IEC also defines how manufacturers should mark the values of resistors 

and capacitors in the standard called IEC 60062. The colours used on fixed 

leaded resistors are shown below: 

 

7

4 bands

5 bands

6 bands

22    , 5%

2200    , 1%

100 k    , 0.1%, 15 ppm

1 1 1 10 1% 100 ppm

2

0 0 0 1

0.1

0.01 10%

5%

silver

gold

black

brown

0

1

red 2

3orange 3

4yellow 4

5green 5

6blue 6

violet 7

8grey 8

9white 9

2 2 2%100 50 ppm

3 3 1k 15 ppm

200 ppm

4 4 10k 25 ppm

5 5 100k 0.5%

6 6 1M 0.25%

7 7 10M 0.1%

8 8 1 ppm

5 ppm

10 ppm

9 9

Significant Figures

Multiplier

Tolerance

Temperature
Coefficient  

 

Figure 1.15 – Colour code marking of leaded resistors 

The resistance colour code consists of three or four colour bands and is 

followed by a band representing the tolerance. The temperature coefficient 

band, if provided, is to the right of the tolerance band and is usually a wide 

band positioned on the end cap. 

IEC labelling for 
leaded resistors 
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The resistance colour code includes the first two or three significant figures of 

the resistance value (in ohms), followed by a multiplier. This is a factor by 

which the significant-figure value must be multiplied to find the actual 

resistance value. (i.e. the number of zeros to be added after the significant 

figures). 

Whether two or three significant figures are represented depends on the 

tolerance: ±5% and wider require two band; ±2% and tighter requires three 

bands. The significant figures refer to the first two or three digits of the 

resistance value of the standard series of values in a decade, in accordance with 

IEC 60063 as indicated in the relevant data sheets and shown in Table 1.1. 

The colours used and their basic numerical meanings are recognized 

internationally for any colour coding used in electronics, not just resistors, but 

some capacitors, diodes, cabling and other items. 

The colours are easy to remember: Black is the absence of any colour, and 

therefore represents the absence of any quantity, 0. White (light) is made up of 

all colours, and so represents the largest number, 9. In between, we have the 

colours of the rainbow: red, orange, yellow, green, blue and violet. These take 

up the numbers from 2 to 7. A colour in between black and red would be 

brown, which has the number 1. A colour intermediate to violet and white is 

grey, which represents the number 8. 

The resistor colour 
code explained 
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When resistors are labelled in diagrams, such as schematics, IEC 60062 calls 

for the significant figures to be printed as such, but the decimal point is 

replaced with the SI prefix of the multiplier. Examples of such labelling are 

shown below: 

Resistor Value IEC Labelling 

0.1  0R1 

1  1R0 

22  22R 

3.3 k 3K3 

100 k 100K 

4.5 M 4M5 

Note how the decimal point is expressed, that the ohm symbol is shown as an 

R, and that 1000 is shown as a capital K. The use of a letter instead of a 

decimal point solves a printing problem – the decimal point in a number may 

not always be printed clearly, and the alternative display method is intended to 

help misinterpretation of component values in circuit diagrams and parts lists. 

In circuit diagrams and constructional charts, a resistor’s numerical identity, or 

designator, is usually prefixed by ‘R’. For example, R15 simply means resistor 

number 15. 

A portion of a schematic diagram showing designators and IEC labelling is 

shown below: 

 

 

 

Figure 1.16 – Schematic portion showing IEC labelling 

Note that resistor R4 has the value 4.7 Ω and resistor R12 has the value 330 Ω. 

IEC labelling for 
diagrams 

We use a letter in 
place of a decimal 
point for labelling 
component values 
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1.7 Kirchhoff’s Current Law 

A connection of two or more elements is called a node. An example of a node 

is depicted in the partial circuit shown below:   

 

R1
R2

R4

v R3

i  

 

Figure 1.17 

Even if the figure is redrawn to make it appear that there may be more than one 

node, as in the figure below, the connection of the six elements actually 

constitutes only one node. 

 

R3

R2

R1

R4

node

v

i  

 

Figure 1.18 
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Kirchhoff’s Current Law (KCL) is essentially the law of conservation of 

electric charge. If currents directed out of a node are positive in sense, and 

currents directed into a node are negative in sense (or vice versa), then KCL 

can be stated as follows: 

KCL: At any node of a circuit, the 

currents algebraically sum to zero.  
(1.7) 

If there are n elements attached to a node then, in symbols, KCL is: 

0
1




n

k

ki  (1.8) 

KCL can also be stated as: The sum of the currents entering a node is equal to 

the sum of the currents leaving a node. 

EXAMPLE 1.4 Kirchhoff’s Current Law for a Node 

As an example of KCL, consider a portion of some circuit, shown below: 

R3

i4

i5

i6

i3

i2

i1

 

Choosing the positive sense to be leaving, we apply KCL at the node and 

obtain the equation: 

0654321  iiiiii  

Note that even if one of the elements – the one which carries 3i  – is a short-

circuit, KCL holds. In other words, KCL applies regardless of the nature of the 

elements in the circuit. 

KCL defined 
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EXAMPLE 1.5 Kirchhoff’s Current Law for a Two-Node Circuit 

We want to find the voltage v, in the two-node circuit shown below: 

i1

1 3

i2

2 2 A

i3

13 A v

 

The directions of 
1i , 

2i , 3i  and the polarity of v were chosen arbitrarily (the 

directions of the 13 A and 2 A sources are given). By KCL (at either of the two 

nodes), we have: 

0213 321  iii  

From this we can write: 

11321  iii  

By Ohm’s Law: 

1
1

v
i    

2
2

v
i


   

3
3

v
i   

Substituting these into the previous equation yields: 

V 6

11
6

11

11
6

236

11
32

11
321


























 










v

v

vvv

vv
v

vvv

 

Having solved for v, we can now find that: 

A 6
1

6

1
1 

v
i   A 3

2

6

2
i2 

v
  A 2

3

6

3
i3 

v
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Just as KCL applies to any node of a circuit, so must KCL hold for any closed 

region, i.e. to satisfy the physical law of conservation of charge, the total 

current leaving (or entering) a region must be zero. 

EXAMPLE 1.6 Kirchhoff’s Current Law for a Closed Region 

In the circuit shown below, three regions have been identified: 

i1 i2

i3

ia b

i4

i5

Region 1 Region 2

Region 3

 

Applying KCL to Region 1, we get: 

0i  

For Region 2: 

2431 iiii   

For Region 3: 

452 iii   

You may now ask, “Since there is no current from point a to point b (or vice 

versa) why is the connection (a short-circuit) between the points there?” If the 

connection between the two points is removed, two separate circuits result. The 

voltages and currents within each individual circuit remain the same as before. 

Having the connection present constrains points a and b to be the same node, 

and hence be at the same voltage. It also indicates that the two separate 

portions are physically connected (even though there is no current between 

them). 
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1.8 Kirchhoff’s Voltage Law 

Starting at any node in a circuit, we form a loop by traversing through elements 

(open-circuits included!) and returning to the starting node, never encountering 

any other node more than once. 

For example, the paths fabef and fdcef are loops: 

 

v8

3 V

2 A

1 

v1 v2

v5

v4

v6

v3

v7

2 

3 

4 

5 

6 

a b c

def

 

 

Figure 1.19 

whereas the paths becba and fde are not: 

 

v8

3 V

2 A

1 

v1 v2

v5

v4

v6

v3

v7

2 

3 

4 

5 

6 

a b c

def

 

 

Figure 1.20 

Loop defined 
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Kirchhoff’s Voltage Law (KVL) is essentially the law of conservation of 

energy. If voltages across elements traversed from – to + are positive in sense, 

and voltages across elements that are traversed from + to – are negative in 

sense (or vice versa), then KVL can be stated as follows: 

KVL: Around any loop in a circuit, the 

voltages algebraically sum to zero.  
(1.9) 

If there are n elements in the loop then, in symbols, KVL is: 

0
1




n

k

kv  (1.10) 

KVL can also be stated as: In traversing a loop, the sum of the voltage rises 

equals the sum of the voltage drops. 

EXAMPLE 1.7 Kirchhoff’s Voltage Law Around a Loop 

In the circuit shown in Figure 1.19, we select a traversal from – to + to be 

positive in sense. Then KVL around the loop abcefa gives: 

068321  vvvvv  

and around loop bcdeb, we have: 

03 742  vvv  

In this last loop, one of the elements traversed (the element between nodes b 

and e) is an open-circuit; however, KVL holds regardless of the nature of the 

elements in the circuit. 

KVL defined 
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EXAMPLE 1.8 Kirchhoff’s Voltage Law Around a Circuit 

We want to find the current i, in the one-loop circuit shown below: 

34 Vv1

v2

2

10 V 4

v3

6

i

 

The polarities of 
1v , 

2v , 3v  and the direction of i were chosen arbitrarily (the 

polarities of the 10 V and 34 V sources are given). Applying KVL we get: 

03410 321  vvv  

Thus: 

24321  vvv  

From Ohm’s Law: 

iv 21    iv 42    iv 63   

Substituting these into the previous equation yields: 

     

A 2

2412

24642

24642









i

i

iii

iii

 

Having solved for i, we now find that: 

 

 

   V 12266

V 8244

V 4222

3

2

1







iv

iv

iv
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1.9 Combining Resistors 

Relatively complicated resistor combinations can be replaced by a single 

equivalent resistor whenever we are not specifically interested in the current, 

voltage or power associated with any of the individual resistors. 

1.9.1 Series Resistors 

Consider the series combination of N resistors shown in (a) below: 

 

v1arbitrary

circuit

R1

v

i
R2 RN

v2 vN arbitrary

circuit Reqv

i

(a) (b)  

 

Figure 1.21 

We apply KVL: 

Nvvvv  21  (1.11) 

and Ohm’s Law: 

 iRRR

iRiRiRv

N

N









21

21

 
(1.12) 

and then compare this result with the simple equation applying to the 

equivalent circuit shown in Figure 1.21b: 

iRv eq  (1.13) 

Thus, the value of the equivalent resistance for N series resistances is: 

Neq RRRR  21   (series) (1.14) 

Combining series 
resistors 
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1.9.2 Parallel Resistors 

A similar simplification can be applied to parallel resistors. Consider the 

parallel combination of N conductances shown in (a) below: 

 

i1 i2 iN

i

arbitrary

circuit G1
v G2 GN

arbitrary

circuit Geqv

i

(a) (b)  

 

Figure 1.22 

We apply KCL: 

Niiii  21  (1.15) 

and Ohm’s Law: 

 vGGG

vGvGvGi

N

N









21

21

 
(1.16) 

whereas the equivalent circuit shown in Figure 1.22b gives: 

vGi eq  (1.17) 

and thus the value of the equivalent conductance for N parallel conductances is: 

Neq GGGG  21  (parallel) (1.18) 

 

Combining parallel 
conductances 
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In terms of resistance instead of conductance: 

Neq RRRR

1111

21

 
 (parallel) (1.19) 

The special case of only two parallel resistors is needed often: 

21

21

RR

RR
Req




 (parallel) (1.20) 

Note that since 21 GGGeq   then we may deduce that: 

1GGeq    and  2GGeq   (1.21) 

Hence: 

1

11

RReq


  and  

2

11

RReq


 (1.22) 

or: 

1RReq    and  2RReq   (1.23) 

Thus the equivalent resistance of two resistors in parallel is less than the value 

of either of the two resistors. 

The special case of N resistors of equal value R in parallel is: 

N

R
Req   (parallel) (1.24) 

 

Combining parallel 
resistors 

Combining two 
resistors in 
parallel… 

…results in an 
equivalent 
resistance smaller 
than either resistor 

Combining the same 
valued resistors in 
parallel 
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EXAMPLE 1.9 Series and Parallel Resistors 

We want to find the current i in the circuit below: 

5

28 V 4

1i

3 v

 

In order to find i, we can replace series and parallel connections of resistors by 

their equivalent resistances. We begin by noting that the  1  and  3  resistors 

are in series. Combining them we obtain: 

5

28 V 4

i

4

 

Note that it is not possible to display the original voltage v in this figure. Since 

the two  4  resistors are connected in parallel, we can further simplify the 

circuit as shown below: 

5

28 V 2

i

 

Here, the  5  and  2  resistors are in series, so we may combine them into 

one  7  resistor. Then, from Ohm’s Law, we have: 

A 4
7

28
i  
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1.10 Combining Independent Sources 

An inspection of the KVL equations for a series circuit shows that the order in 

which elements are placed in a series circuit makes no difference. An 

inspection of the KCL equations for a parallel circuit shows that the order in 

which elements are placed in a parallel circuit makes no difference. We can use 

these facts to simplify voltage sources in series and current sources in parallel. 

1.10.1 Combining Independent Voltage Sources in Series 

It is not possible to combine independent voltage sources in parallel, since this 

would violate KVL. However, consider the series connection of two ideal 

voltage sources shown in (a) below: 

 

arbitrary

circuit

(a)

v1

v2

arbitrary

circuit

(b)

veqv

a

b

v

a

b

 

 

Figure 1.23 

From KVL we know that 21 vvv  , and by the definition of an ideal voltage 

source, this must be the voltage between nodes a and b, regardless of what is 

connected to them. Thus, the series connection of two ideal voltage sources is 

equivalent to a single independent voltage source given by: 

21 vvveq   (series) (1.25) 

Clearly, the obvious generalization to N voltage sources in series holds. 

 

Combining 
independent voltage 
sources in series 
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EXAMPLE 1.10 Combining Independent Voltage Sources in Series 

In a previous example we determined the current i in the one-loop circuit 

shown below: 

34 Vv1

v2

2

10 V 4

v3

6

i

 

By rearranging the order in this one loop circuit (of course this does not 

affect i), we obtain the circuit shown below: 

v2

v1

2

10 V

34 V

4

v3

6

i

 

We can now combine the series independent voltage sources and the series 

resistors into single equivalent elements: 

-24 V 12

i

v

 

By Ohm’s Law: 

A 2
12

24



i  
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1.10.2 Combining Independent Current Sources in Parallel 

It is not possible to combine independent current sources in series, since this 

would violate KCL. However, consider the parallel connection of two ideal 

current sources shown in (a) below: 

 

(a)

i1

(b)

arbitrary

circuit
i2

a

b

i

arbitrary

circuit
ieq

a

b

i

 

 

Figure 1.24 

From KCL we find that 
21 iii  , and by the definition of an ideal current 

source, this must always be the current into the arbitrary circuit. Thus, the 

parallel connection of two ideal current sources is equivalent to a single 

independent current source given by: 

21 iiieq    (parallel) (1.26) 

Clearly, the obvious generalization to N current sources in parallel holds. 

Combining 
independent current 
sources in parallel 
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EXAMPLE 1.11 Combining Independent Current Sources in Parallel 

In a previous example, we determined the voltage v in the two-node circuit 

shown below: 

1 32 2 A13 A v

 

Combining the parallel independent current sources into a single equivalent 

source, we obtain the circuit: 

1 2 311 A v

 

Since the equivalent resistance of the three resistors in parallel is given by:  

6

11

6

236

3

1

2

1

1

11





eqR
 

we obtain: 

  
11

6
eqR  

Then, from Ohm’s Law: 

  V 611
11

6
v  
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1.11 The Voltage Divider Rule 

It can be quite useful to determine how a voltage appearing across two series 

resistors “divides” between them. Consider the circuit shown below: 

 

arbitrary

circuit

R1

v1

v

i

R2 v2

 

 

Figure 1.25 

By Ohm’s Law, the current in the resistors is: 

21 RR

v
i




 
(1.27) 

By application of Ohm’s Law again, the voltage across 1R  is: 

iRv 11  (1.28) 

and therefore: 

v
RR

R
v

21

1
1


  (1.29) 

Similarly, the voltage across 2R  is: 

v
RR

R
v

21

2
2


  (1.30) 

These equations describe how the voltage is divided between the resistors. 

Because of this, a pair of resistors in series is often called a voltage divider. 

Voltage divider rule 
defined 
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EXAMPLE 1.12 Voltage Divider Rule 

We want to find the voltage v in the circuit below: 

5

28 V 4

1i

3 vv1

 

Combining the series connection of the  1  and  3  resistors, we obtain the 

circuit below: 

5

28 V 4

i

4v1

 

Now the pair of  4  resistors in parallel can be combined as shown below: 

5

28 V 2

i

v1

 

By voltage division: 

V 8
7

56
28

52

2
1 


v  

Returning to the original circuit and applying voltage division again yields: 

V 68
4

3

13

3
1 


 vv  



1.38 

Index The Current Divider Rule PMcL   

1 - Basic Laws  2017 

1.12 The Current Divider Rule 

It can be quite useful to determine how a current entering two parallel resistors 

“divides” between them. Consider the circuit shown below: 

 

arbitrary

circuit
v

i

R2

i2

R1

i1

 

 

Figure 1.26 

We replace the parallel connection of 
1R  and 2R  by its equivalent resistance. 

Thus, Ohm’s Law gives: 

i
RR

RR
iRv eq

21

21




 
(1.31) 

By application of Ohm’s Law again, the current in 1R  is 11 Rvi   and thus: 

i
RR

R
i

21

2
1


  (1.32) 

Similarly, the current in 2R  is: 

i
RR

R
i

21

1
2


  (1.33) 

These equations describe how the current is divided between the resistors. 

Because of this, a pair of resistors in parallel is often called a current divider. 

Note that a larger amount of current will exist in the smaller resistor – thus 

current tends to take the path of least resistance! 

Current divider rule 
defined 
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EXAMPLE 1.13 Current Divider Rule 

We want to find the current i in the circuit below: 

4

6 3

i1

sin(          )36 t100 V

i

 

The total current delivered by the source is: 

 
    
 A 100sin6

36364

100sin36
1

t

t
i










 

Therefore the desired current is: 

   A 100sin4100sin6
3

2

36

6
1 ttii  


  

The current divider rule can also be derived using conductances. Referring to 

Figure 1.26, the voltage across the parallel resistors is: 

21 GG

i

G

i
iRv

eq

eq



 

(1.34) 

The current in resistor 
1R  is vGi 11   and thus: 

i
GG

G
i

21

1
1




 
(1.35) 

A similar result obviously holds for current 2i . The advantage of this form of 

the current divider rule is that it is the dual of the voltage divider rule – we 

replace voltages with currents, and resistors with conductances. 
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1.13 Dependent Sources 

An ideal source, either voltage or current, whose value depends upon some 

parameter (usually a voltage or current) in the circuit to which the source 

belongs is known as a dependent or controlled source. 

1.13.1 The Dependent Voltage Source 

A dependent voltage source establishes a voltage across its terminals, 

independent of the current through it, which is determined by the voltage or 

current at some other location in the electrical system. There are two types of 

dependent voltage source – the voltage-controlled voltage source (VCVS) and 

the current-controlled voltage source (CCVS). 

 

iK x

VCVS

v x

CCVS

rm

 

 

Figure 1.27 

Note that the dependent source is represented by a diamond-shaped symbol so 

as not to confuse it with an independent source. 

These sources are mathematical models that are useful in modelling real 

circuits and systems, e.g. they are used in modelling operational amplifiers. 

Dependent voltage 
sources defined 
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EXAMPLE 1.14 Circuit with a Dependent Voltage Source 

Consider the circuit shown below. This circuit contains a dependent source 

whose value in this case depends on the voltage across the 4 Ω resistor – it is a 

VCVS. 

2

4

3v2

v2

i

v1

12 V

 

To analyse the circuit, we apply KVL and obtain: 

123 221  vvv  

or: 

122 21  vv  

By Ohm’s Law: 

iv 21   and iv 42   

Therefore: 

 

A 2

126

1282

12422









i

i

ii

ii

 

Hence: 

V 842  iv  

and the value of the dependent voltage source is: 

V 243 2 v  
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1.13.2 The Dependent Current Source 

A dependent current source establishes a current, which is independent of the 

voltage across it, that is determined by the voltage or current at some other 

location in the electrical system. There are two types of dependent current 

source – the voltage-controlled current source (VCCS) and the current-

controlled current source (CCCS). 

 

vK x

CCCS

i x

VCCS

gm

 

 

Figure 1.28 

These sources are mathematical models that are useful in modelling real 

circuits and systems, e.g. they are used in modelling transistors. 

Dependent current 
sources defined 
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EXAMPLE 1.15 Circuit with a Dependent Current Source 

Consider the circuit shown below. In this circuit the value of the dependent 

current source is specified by a voltage – it is a VCCS. 

2 A 3 54vv

i1 i2

 

To solve for v, we apply KCL and obtain: 

2421  vii  

Thus: 

V 
26

15

52

30

2
15

52

2
15

8
4

24
53













v

v

v
v

v
vv

 

Consequently: 

A 
13

30
4 v  

and this is the value of the dependent current source, in amperes. The other 

variables in the circuit are: 

A 
26

5

3
1 

v
i  and A 

26

3

5
2 

v
i  
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1.14 Power 

Power is the rate at which work is done or energy is expended. Taking the 

product of voltage (energy per unit charge) and current (charge per unit time) 

we get a quantity that measures energy per unit time. It’s for this reason that we 

define p , the instantaneous power absorbed by an electrical circuit element, to 

be the product of voltage and current: 

vip   (1.36) 

The fundamental unit of power is the watt (W) and is equivalent to 
-1Js . In 

using the formula for instantaneous power, we need to be careful in 

establishing the correct voltage polarity and current direction. Consider the 

circuit element: 

 

v

iA

B  

 

Figure 1.29 

If one terminal of the element (A) is v volts positive with respect to the other 

terminal (B), and if a current i is entering the element through terminal A, then 

a power vip   is being absorbed or delivered to the element. When the 

current arrow is directed into the element at the plus-marked terminal, we 

satisfy the passive sign convention. If the numerical value of the power using 

this convention is negative, then we say that the element is generating or 

delivering power. 

Instantaneous 
power defined 

Passive sign 
convention defined 
– it gives power 
absorbed by a 
circuit element 
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EXAMPLE 1.16 Power Absorbed 

Note the power in the circuit elements below: 

2 V

3 A

p = (2)(3) = 6 W absorbed   

-2 V

-3 A

p = (-2)(-3) = 6 W absorbed  

4 V

-5 A

p = (4)(-5) = -20 W

(20 W generated)

absorbed
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EXAMPLE 1.17 Power Absorbed by a Resistor 

Consider the circuit shown below: 

i  t(  )

100325cos(100    ) Vt

 

By Ohm’s Law: 

 
 

  A  100cos
100

325
t

R

tv
ti   

By definition, the power absorbed by the resistor is: 

     

 

   W100cos1056

100cos
100

325

2

2
2

t

t

titvtpR











 

In particular, at time 0t  the power absorbed by the resistor is: 

   

  W1056

0cos10560 2



Rp
 

At time ms 5t , however, since: 

  0
2

cos105100cos 3 







  

  

then the resistor absorbs 0 watts. 
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EXAMPLE 1.18 Power Absorbed by Circuit Elements 

Consider the circuit shown below: 

i1

5 V 1 9 A 3

i2

2

i3

i

 

We shall determine the power absorbed in each of the elements. 

Note that the voltage across each of the elements is 5 V since all the elements 

are in parallel. Therefore, by Ohm’s Law: 

A 5
1

5
1 i   A 

2

5
2 i   A 

3

5
3 i  

and the powers absorbed in the  1 ,  2  and  3  resistors are: 

   W25555 11  ip  

 W
2

25

2

5
55 22 








 ip  

 W
3

25

3

5
55 33 








 ip  

respectively, for a total of: 

 W
6

275

6

5075150

3

25

2

25
25 


  

absorbed by the resistors. 
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By KCL: 

3

5

2

5

1

5
9 321  iiii  

or: 

A 
6

1
9

6

101530



i  

Thus the power delivered by the voltage source is: 

 W
6

5
5  ipv

 

Also, the power delivered by the current source is: 

   W4595 ip  

Hence the total power delivered by the sources is: 

 W
6

275

6

5270

6

5
45 


  

We see that the total power delivered by the sources is equal to the total power 

absorbed by the resistors. Since power delivered by a circuit element is equal to 

the negative of the power absorbed, this is equivalent to saying that the total 

power absorbed by all circuit elements is zero. Thus, the principle of 

conservation of energy (and therefore power) is satisfied in this circuit (as it is 

in any circuit). 
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EXAMPLE 1.19 Power Conservation 

Consider the circuit shown below, which is identical to the previous example 

except for the value of the current source: 

i1

5 V 1 10 A 3

i2

2

i3

i

 

In this case: 

 W251 p    W
2

25
2 p    W

3

25
3 p  

as before. By KCL, however: 

32110 iiii   

and thus: 

A 
6

5
10

6

55
i  

Therefore, the powers delivered by the sources are: 

 W
6

25

6

5
5 








vp      W50105 ip  

Hence the total power absorbed is: 

 W050
6

25

6

275
321  iv ppppp  

and again energy (power) is conserved. However, in this case not only do the 

resistors absorb power, but so does the voltage source. It is the current source 

that supplies all the power absorbed in the rest of the circuit. 
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1.14.1 Power Absorbed in a Resistor 

The power absorbed in every resistor is always a nonnegative number. 

Consider the resistor shown below: 

 

v

Ri

 

 

Figure 1.30 

By definition, the power absorbed in the resistor is vip  . But by Ohm’s Law, 

Riv  . Thus  iRip  , or: 

2Rip   (1.37) 

Also, Rvi  , so that  Rvvp  , or: 

R

v
p

2


 

(1.38) 

Both formulas for calculating power absorbed in a resistor R demonstrate that p 

is always a nonnegative number when R is positive. Therefore a resistor always 

absorbs power. 

In a physical resistor, this power is dissipated as radiation (light and/or heat). In 

some types of resistors (such as an incandescent bulb, a toaster, or an electric 

heater), this property is desirable in that the net result may be light or warmth. 

In other types of resistors, such as those found in electronic circuits, the heat 

dissipated in a resistor may be a problem that cannot be ignored. 

The physical size of a resistor determines the amount of power it can safely 

dissipate. A power dissipation that exceeds the rating of a resistor can 

physically damage the resistor. In many electronic applications, resistors need 

dissipate only small amounts of power, allowing their use in integrated circuits. 

A real resistor 
always absorbs 
power 

Real resistors have 
a power rating that 
must not be 
exceeded 
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1.15 Summary 

 Current is defined as the rate of flow of charge past a certain cross-

sectional area: 

dt

dq
i 

 

 Voltage is defined as the work done per unit charge in moving it from one 

point to another in a circuit. 

 A circuit element is an idealised mathematical model of a two-terminal 

electrical device that is completely characterised by its voltage-current 

relationship. Active circuit elements can deliver a non-zero average power 

indefinitely, whilst passive circuit elements cannot. A connection of circuit 

elements is called a network. If the network contains at least one closed 

path, it is also an electrical circuit. 

 Independent sources are ideal circuit elements that possess a voltage or 

current value that is independent of the behaviour of the circuits to which 

they belong. There are two types, voltage and current: 

v   t(  )s i   t(  )s

voltage
source

current
source  
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 The resistor is a linear passive circuit element that obeys Ohm’s Law: 

Riv   

A resistance of  0  is known as a short-circuit. 

A resistance of   is known as an open-circuit. 

The reciprocal of resistance is called the conductance: 

R
G

1


 

 Practical resistors come in a large variety of shapes, materials and 

construction which dictate several of their properties, such as accuracy, 

stability, pulse handling capability, resistor value, size and cost. 

 Kirchhoff’s Current Law (KCL) states: “At any node of a circuit, the 

currents algebraically sum to zero”: 

0
1




n

k

ki  

 Kirchhoff’s Voltage Law (KVL) states: “Around any loop in a circuit, the 

voltages algebraically sum to zero”: 

0
1




n

k

kv
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 Resistors in series can be combined into one equivalent resistor: 

Neq RRRR  21  

 Resistors in parallel can be combined into one equivalent resistor: 

Neq RRRR

1111

21

 
 

 Independent voltage sources in series can be added. Independent current 

sources in parallel can be added. 

 Two resistors in series form a voltage divider: 

arbitrary

circuit

R1

v1

v

i

R2 v2

 

The voltage divider rule is:  
v

RR

R
v

21

2
2




 

 Two resistors in parallel form a current divider: 

arbitrary

circuit
v

i

R2

i2

R1

i1

 

The current divider rule is:  
i

RR

R
i

21

1
2
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 An ideal source, either voltage or current, whose value depends upon some 

parameter (usually a voltage or current) in the circuit to which the source 

belongs is known as a dependent or controlled source. There are four types: 

iK x

VCVS

v x

CCVS

rm K x

CCCS

i vx

VCCS

gm

 

 The instantaneous power absorbed by an electrical circuit element is the 

product of voltage and current: 

vip   

The power absorbed in a resistor is: 

R

v
Rip

2
2 

 

1.16 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

A large number of electrons are moving through a conductor: 

conductor
electron flow

  

The number varies with time t seconds. 

(a) What is the direction of current? 

(b) If the total charge to pass a certain point on the conductor varies according 

to the equation: 

     mC13 100tetq   

then find the current in amperes as a function of time. 

(c) When will the current be 200 mA? 

(d)  If the conductor has a uniform diameter of 1 mm throughout its length, 

find the current density as a function of time (express as 
2A/mm ). 

(e) Sketch charge and current as functions of time. 

(f) How many electrons are moving through the conductor at time 

t = 50 ms? 
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2. 

The total charge that has entered the upper terminal of the element below is 

given by μC  1000sin5 t . 

v

i

 

(a) How much charge enters that terminal between ms 5.0t  and 

ms 5.0t ? 

(b) How much charge leaves the lower terminal in the same time interval? 

(c) Find i at ms 2.0t . 

3. 

For the current waveform shown below: 

-200

-100

1

200

0
t (s)

2 3

ti(  ) (A)

4 5

100

300

6 7 8

-300

-400
 

determine the total charge transferred between 0t  and t : 

(a) 4 s (b) 7 s 
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4. 

The charging current supplied to a 12 V automotive battery enters its positive 

terminal. It is given as a function of time by: 

 

s 150000

s150000A 4

00
10000















 

t

 te

t

i t  

(a) What is the total charge delivered to the battery in the 15000 s charging 

interval? 

(b) What is the maximum power absorbed by the battery? 

(c) What is the total energy supplied? 

(d) What is the average power delivered in the 15000 s interval? 

5. 

The voltage v has its positive reference at terminal A of a certain circuit 

element. The power absorbed by the circuit element is    W14
2

t  for 0t . 

If  V 22  tv  for 0t , how much charge enters terminal A between 0t  

and s 2t ? 

6. 

The resistance of 10 mm2 copper wire is 1.725 Ω/km, and, with a certain type 

of insulation, it can safely carry 70 A without overheating. With a one 

kilometre length of wire operating at maximum current: 

(a) What voltage exists between the ends of the wire? 

(b) How much power is dissipated in the conductor? 

(c) What is the power dissipation per square mm of surface area? 
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7. 

For the circuit shown below: 

60 V

10

3 A

i
20 V

22 A

Loadv

 

find: 

(a) v   (b)  i  (c)  the power absorbed by the load. 

8. 

With reference to the network shown below: 

8 V

5 V

ix

A

B

6 A

3 A vx

 

find: 

(a) xi  (b) xv  (c)  the power absorbed by the battery. 
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9. 

Find the power supplied by the 3 V source in the circuit below: 

3 V

5

13 V

10

6 i1

20i1

 

10. 

Find the power absorbed by each element in the circuit below: 

-50 V

10

i

0.2vx= -6vx i
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11. 

Consider the circuit shown below: 

30 mA 1 k

ix

v30

iy

2ix10 mA

 

(a) Find 30v , xi , and yi . 

(b) Change the control on the dependent source from xi2  to yi2  and then find 

30v , xi , and yi . 

12. 

Consider the circuit shown below: 

2

i

v 10 A
2
v

2

 

(a) Find v , i , and the power delivered by the independent source. 

(b) Repeat if the arrow of the dependent source is reversed. 
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13. 

Find eqR  for each of the networks shown below: 

(a)  

10 6

4

1

2

20

3
5

Req

 

(b)  

8

3

2 7
Req
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14. 

By combining independent sources and resistances as appropriate, find: 

(a) The current i in the circuit below. 

20 V

8
30 V

10

2 i
 

(b) The voltage v  in the circuit below. 

30 mA 1 kv 10 mA 250

 

15. 

Use the concepts of current division, voltage division, and resistance 

combination to write expressions (by inspection) for 3v  and 1i  in the circuit 

shown below: 

v3

i1

R2

R3R1
is
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16. 

Determine the necessary values of v and i in the circuit shown below: 

1 A1

i

3 v

2

45

 

17. 

The circuit shown below exhibits several examples of independent current and 

voltage sources in series and in parallel. 

-5 V2 A

3 V

4 V

4 A

12 V -3 A

 

(a) Find the power supplied by the -5 V source. 

(b) To what value should the 4 A source be changed to reduce the power 

supplied by the -5 V source to zero? 
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2 Amplifiers 
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Introduction 

Amplifiers play a fundamental role in analog electronic circuits. For example, 

an electronic amplifier can play a salient role in amplifying an ultrasound wave 

from deep within a human body, or measure and help reduce the error of a 

feedback system, or help translate signals rapidly and accurately between the 

world of tangible physics and the world of abstract digits. 

We will look at some basic amplifier characteristics (such as “gain”) and see 

how they are used at a “block diagram” level. We will also look at some real 

limitations of amplifiers, such as the fact they need a power supply to operate. 

A device called an operational amplifier (op-amp for short), which has been 

used as the building block for modern analog electronic circuitry since its 

invention and widespread adoption in the 1960’s, is the principal piece of 

technology underlying analog electronic circuits. 

We will examine the characteristics of the op-amp, how it works, and how it is 

used within a circuit. In most cases, we will use an ideal model of the op-amp 

which is suitable for hand-analysis and design work. We will see that the op-

amp is the versatile building block of a whole range of anlaog circuits. 
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2.1 Amplifiers 

A linear amplifier is a device that increases the amplitude of a signal (a voltage 

or a current) whilst preserving waveform shape. The circuit symbol for an 

amplifier is a triangle which clearly shows the direction of signal travel. 

An example of a voltage amplifier is shown below: 

 

voKvi

input output

(a) circuit symbol

vo

vi

1

K

(b) transfer characteristic  

Figure 2.1 

Note the use of subscript notation: i for input, and o for output. The 

relationship between the input and output for the voltage amplifier is:  

io Kvv   (2.1) 

The quantity K is referred to as the gain. If the gain is a positive number, then 

the amplifier is said to be non-inverting. If the gain is a negative number, then 

the amplifier is said to be inverting. Note that a negative number does not 

imply a decrease in the signal – it implies an inversion. 

Since the purpose of an amplifier is to increase signal amplitude, we normally 

have 1K .  Circuits with 1K  are said to attenuate, but as we shall see, 

they may still be implemented with an “amplifier”. 

Amplifiers are used in numerous places and form one of the basic building-

blocks of electronic circuits. For example, signals in telecommunications that 

come from antennas are particularly “weak” and could be in the microvolt or 

millivolt range. Reliable processing of these small signals is made easier if the 

signal magnitude is much larger. 

The amplifier’s 
circuit symbol and 
its transfer 
characteristic 

The input-output 
relationship for an 
ideal linear voltage 
amplifier 
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2.1.1 Units of Gain 

The gain K of a voltage amplifier can be expressed in two ways. The first way 

is as a straight voltage ratio, with units “volts per volt”: 

V/V  
i

o

v

v
K 

 

 

(2.2) 

Note that K must be a dimensionless quantity. 

The second way comes from the historical development of amplifiers which 

were first used extensively throughout telecommunication systems. In these 

applications, since signals were audio in nature, it became common to compare 

signal amplitudes in terms of the audio power they could deliver. Thus, we can 

express the voltage gain with units of decibels:1 

dB  log20 10

i

o

v

v
K 

 
(2.3) 

The dB unit of voltage gain is useful when circuits are cascaded – a cascade 

occurs when the output of one circuit is fed into the input of another (and it has 

been ensured, through careful design, that one circuit does not “load” the next, 

i.e. each individual circuit’s behaviour is independent of the load placed on it). 

For cascaded circuits you can add the voltage gains in dB instead of 

multiplying the standard voltage gains. 

                                                 

1 Historically the Bel (named after Alexander Graham Bell – the inventor of the first 

commercially viable and practical telephone) was used to define ratios of audio loudness i.e. 

ratios of power. In the metric system, a convenient unit to use is the decibel (dB): 

 io PP10log10decibel 1  . If electrical power is assumed to be dissipated across equal 

resistors, then since RVP 2 , the power ratio is 
io VV10log20 . This power ratio became a 

way to express the voltage gain of amplifiers. Note that the decibel is dimensionless, so it can 

be applied to any dimensionless ratio, if one wished. 

Amplifier gain 
expressed in volts 
per volt 

Amplifier gain 
expressed in 
decibels 
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EXAMPLE 2.1 Cascaded Amplifiers and Circuits 

A cascade of amplifiers and circuits is shown below, with the gain (or 

attenuation) expressed in V/V and dB. 

v1vi

input output

vov2

circuitamplifier amplifier

A1 A2

vo

v2
= = 20 V/VA2

 R

R

v1

vi
= = -10 V/VA1

A1|    | = 20 dB |    |A2 = 26 dB

v2

v1
=

1

2
K = V/V

|    |K = -6 dB  

The overall gain can be expressed as: 

V/V 1002010
2
1

21

21

21  KAA
v

v

v

v

v

v

v

v o

ii

o  

Note that when the gain in V/V is negative, then the signal is inverted. 

The gain expressed in decibels is: 

dB 40

26620

log20log20log20

log20

21010110

2110









AKA

KAA
v

v

i

o

 

As a check, we can perform the dB calculation directly on the overall V/V 

gain: 

dB 40220100log20 10 
i

o

v

v
 

When the gain is expressed in dB, it refers to the magnitude of the gain only – 

it conveys no phase information. When the gain in dB is a negative number, 

then we have attenuation. 
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2.1.2 Amplifier Power Supplies 

Amplifiers require a separate and independent power supply to operate. Some 

amplifiers are bipolar, meaning that they are designed to amplify both positive 

and negative signals. These amplifiers require a bipolar DC power supply. For 

example, it is common to power bipolar amplifiers with +15 V and -15 V. A lot 

of amplifier power supply labelling is used to reflect the technology it is 

implemented with, or is based on historical precedent. For example, it is 

common to see bipolar power supplies represented on amplifiers as: 

 

voKvi

input output

VCC (positive supply)

VEE (negative supply)  

 

Figure 2.2 

where V 15CCV  and V 15EEV , with respect to a circuit “common”. The 

“CC” subscript in this case refers to the voltage at a “collector” of a transistor 

inside the amplifier package, and the “EE”  to an “emitter” of a transistor. 

Some amplifiers are unipolar, which means they are designed to amplify 

signals that are of one polarity only. These amplifiers only require a single DC 

power supply, such as +5V. 

 

voKvi

input output

VCC (positive supply)

 

 

Figure 2.3 

A bipolar amplifier 
showing the power 
supply connections 

A unipolar amplifier 
showing the power 
supply connections 
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2.1.3 Saturation 

Real amplifiers can only output a voltage signal that is within the capabilities 

of the internal circuitry and the external DC power supplies. When amplifier 

outputs approach their output limitation, they are said to saturate – they cannot 

provide the output that is required by a linear characteristic. The resulting 

transfer characteristic, with the positive and negative saturation levels denoted 

L  and 
L  respectively, is shown below: 

 

vo

vi

L+

L
 

 

Figure 2.4 

Each of the two saturation levels is usually within a volt or so of the voltage of 

the corresponding power supply. Obviously, in order to avoid distorting the 

output signal waveform, the input signal swing must be kept within the linear 

range of operation. If we don’t, then the output waveform becomes distorted 

and eventually gets clipped at the output saturation levels. 

 

 

 

Figure 2.5 

The transfer 
characteristic of a 
real amplifier, 
showing that it 
saturates eventually 

The input signal and 
the output signal of 
a saturated amplifier 
showing clipping 
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2.1.4 Circuit Model 

For an ideal voltage amplifier, the output voltage is independent of both the 

source resistance and the load resistance. Thus, to model an ideal voltage 

amplifier, we would use a voltage-controlled voltage source: 

 

Kv ivi vo

 

 

Figure 2.6 

Real voltage amplifiers have a finite input resistance as well as a finite output 

resistance. Thus, a model of a real amplifier is: 

 

Kv i

Rout

vi voRin

 

 

Figure 2.7 

This model is only valid in its linear region of operation. Also note that the 

amplifier is unilateral – there is no “path” for a voltage at the output to appear 

in some way at the input of the amplifier. Thus, the use of the voltage-

controlled voltage source creates a “one way path” for the voltage from the 

input to the output. 

The model of an 
ideal voltage 
amplifier 

A linear model of a 
real voltage 
amplifier 
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2.2 The Operational Amplifier 

An operational amplifier (op-amp) is an integrated circuit amplifier consisting 

of dozens of transistors. An op-amp amplifies the voltage difference between 

its two input terminals, and produces a single-ended output voltage, i.e. the 

output voltage is with respect to the power supply “common”. The circuit 

symbol for the op-amp is shown below: 

 

v

v
vo

VCC

VEE

negative
supply

positive
supply

inputs output

 

 

Figure 2.8 

In many circuit diagrams it is customary to omit the power supply and common 

connections (the output being understood to be taken with respect to the circuit 

common), and so we normally draw: 

 

v

v
vo

 

 

Figure 2.9 

The input labelled v  is termed the noninverting terminal, and the input 

labelled v  is termed the inverting terminal. This naming is a result of the op-

amps ability to amplify the difference between these two voltages. 

Op-amps defined 

An op-amp circuit 
symbol showing all 
connections 

A simplified op-amp 
circuit symbol 
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2.2.1 Feedback 

The op-amp is an amplifier intended for use with external feedback elements, 

where these elements determine the resultant function, or operation2. As we 

shall see, op-amp circuits can perform a variety of mathematical operations, 

such as addition, subtraction, integration and differentiation of voltage signals. 

The feedback elements are connected between the op-amp’s output and its 

inverting terminal, thus providing what is known as negative feedback. 

 

vo

output

Feedback

Network

input

v i

 

 

Figure 2.10 

In the figure, the input is applied between the op-amp (+) input and a common, 

or reference point, as denoted by the “ground” symbol. This reference point is 

also common to the output, the feedback network and the power supply. 

The feedback network can be resistive or reactive, linear or nonlinear, or any 

combination of these. More detailed analysis, shown later, shows that the 

circuit’s overall gain characteristic is predominantly determined by the 

feedback network. It is critically important to note that op-amps are never 

intended for use without a feedback network. 

                                                 

2 The naming of the operational amplifier occurred in the classic paper by John R. Ragazzini, 

Robert H. Randall and Frederick A. Russell, “Analysis of Problems in Dynamics by Electronic 

Circuits,” Proceedings of the IRE, Vol. 35, May 1947, pp. 444-452. This paper references the 

op-amp circuits (feedback amplifiers) used by Bell Labs in the development of the “M9 gun 

director”, a weapon system which was instrumental in winning WWII. 
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2.2.2 Circuit Model 

Op-amps are voltage amplifiers. They are designed to have an extremely large 

input resistance, a very low output resistance, and a very large gain. Even 

though they are comprised of dozens of transistors, a simple linear macro-

model of a real op-amp – valid over a certain range of operating conditions – is 

shown below: 

 

(   -    )

Rout
vo

Rin AOL

v

v

v v

 

 

Figure 2.11 

Note that, under open-circuit conditions on the output (i.e. no load is attached 

to the op-amp output terminal), the op-amp’s output voltage is given by: 

   vvAv OLo  (2.4) 

The gain of the amplifier under these conditions, OLA ,  is termed the open-loop 

gain, hence the “OL” subscript. The reason for this name will become apparent 

shortly. 

The model parameters for a general purpose op-amp, such as the TL071, are 

tabulated below: 

Parameter Symbol Typical Value 

Open-loop voltage gain 
OLA  200 000 V/V 

Input resistance 
inR  1 TΩ 

Output resistance 
outR  200 Ω 

A simple linear 
model of a real 
op-amp 

The open-loop 
output voltage of an 
op-amp, under no-
load conditions 
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2.2.3 The Ideal Op-Amp 

The “ideal op-amp” is a theoretical device that pushes the typical op-amp 

parameters to their ideal values: 

Parameter Symbol Ideal Value 

Open-loop voltage gain 
OLA  ∞ V/V 

Input resistance 
inR  ∞ Ω 

Output resistance 
outR  0 Ω 

Thus, the ideal op-amp has the circuit model: 

 

(   -    )

vo

AOL

v

v

v v

AOL=  

 

Figure 2.12 

There are several interesting characteristics of this model that will be useful 

when analysing (and designing) circuits with ideal op-amps. 

Model of an ideal 
op-amp 
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The first characteristic is due to the infinite input resistance: 

An ideal op-amp draws no input current (2.5) 

The second characteristic of the model is that the output voltage is constrained 

by a dependent voltage source (there is no output resistance), and thus: 

An ideal op-amp has an output voltage 

that is independent of its load 
(2.6) 

The last and most important characteristic is due to the infinite open-loop gain. 

At first glance the idealisation that OLA  appears problematic from a circuit 

analysis viewpoint, since for a finite input voltage difference the output will be 

infinite. However, the ideal op-amp can produce a finite output voltage, but 

only so long as the input voltage is zero. Thus, for an ideal op-amp to produce a 

finite output voltage ov , the input voltage difference must be: 

0
finite




 

OL

o

A

v
vv

 
(2.7) 

and therefore: 

 vv  (2.8) 

Thus: 

An ideal op-amp has equal input voltages (2.9) 

Since the ideal op-amp has equal input voltages (like a short-circuit), but draws 

no input current (like an open-circuit), we say there is a virtual short-circuit 

across its input terminals. We will use the concept of the virtual short-circuit as 

the fundamental basis for the analysis and design of circuits containing ideal 

op-amps. 

An ideal op-amp 
draws no input 
current 

An ideal op-amp has 
an output voltage 
that is independent 
of the load placed 
on it 

An ideal op-amp has 
equal input voltages 
if it has a finite 
output voltage 

The virtual short-
circuit defined 
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2.2.4 Op-Amp Fabrication and Packaging 

There are many designs for the internal circuit of an op-amp, with each design 

optimising a particular parameter (or parameters) of interest to the designer. 

Such parameters may be the open-loop gain (how much the input voltage 

difference is amplified), the bandwidth (the highest frequency it can amplify), 

or the bias current (how much DC current it draws from the input terminals). 

You will become familiar with these terms later when we look more closely at 

real op-amp limitations (as opposed to the ideal op-amp). 

There are several device fabrication technologies that are used to construct an 

op-amp. For general-purpose op-amps, bipolar junction transistors (BJTs) are 

mostly used at the input because they are easy to match and are capable of 

carrying large currents. However, some operational amplifiers have a field 

effect transistor (FET) input, with the rest of the circuit being made from BJTs. 

Complementary metal-oxide-semiconductor (CMOS) transistors are used in 

op-amps that find application in the design of analog and mixed-signal very 

large scale integrated (VLSI) circuits. 

It is important to be able to recognise the standard pin-outs of an op-amp IC. 

All ICs conform to a standard pin numbering scheme. There is usually a notch 

or mark on one end of the chip. With the notch oriented to the left, pin 1 is the 

first pin on the bottom of the package. The pins are then numbered in a 

counter-clockwise direction. An example is shown below for the TL071 op-

amp, which is a single op-amp housed in an 8-pin package: 

 

 

TL071 package details 

 

Figure 2.13 

Single op-amp IC 
package details 
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2.3 Negative Feedback 

The concept of negative feedback is fundamental to life. A simple experiment 

will illustrate this point: close your eyes and then bring your index fingers 

together so that they touch at the tips. You will probably miss. By closing your 

eyes you have broken a feedback loop which is vital to most human actions; in 

order to perform an operation accurately we must be able to see what we are 

doing and thus apply any small corrections as and when necessary. In effect, 

we are taking the output (the action) and feeding it back to the input (the 

mental ‘instruction’ or intention) in such a way that the output is made equal to 

the input. In other words, the action is forced to correspond exactly with the 

intention. 

Examples of negative feedback can also be found in the field of mechanical 

engineering. One of the clearest examples is the governor which is used to 

control the speed of rotating machinery. The most historically significant form 

of governor was that developed by James Watt in 1788, following the 

suggestion of his business partner, Matthew Boulton. The conical pendulum 

governor was one of the final series of innovations that Watt made to the steam 

engine that ushered in the industrial revolution and became the prime source of 

motive power in the 19th century. 

The conical pendulum governor is shown in basic form below: 

 

 

 

Figure 2.14 

An everyday 
example of negative 
feedback 

Watt’s conical 
pendulum governor 
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As the speed of the engine, and hence of the governor shaft, increases, the 

centrifugal force causes the weights to fly outwards on their linkage. The 

linkage is connected via a system of levers to the main steam valve so that, if 

the speed increases, the movement of the governor weights throttles back the 

main steam supply to the engine. Conversely, a tendency to slow down, 

perhaps due to increased load, will allow more steam in to boost the speed back 

to normal. The speed will thus settle down to a happy medium and be largely 

independent of variations in the load on the engine. 

In this example, as in the physiological illustration discussed first, the system is 

kept under control by feeding a measure of its output back to the input. 

Mechanical control systems such as the governor are often known as servo-

systems (literally, slave systems) and are fundamental to industrial automation. 

2.3.1 Negative Feedback in Electronics 

The gain of an amplifier, such as an op-amp, will vary from device to device 

due to the many manufacturing variations in the transistors and resistors that 

comprise it. Such component variations result in considerable uncertainty in 

the overall voltage gain. For example, an op-amp datasheet may specify the 

typical value for the open-loop gain as 200 000, but some specimens may 

achieve a gain as low as 25 000. The open-loop gain also changes with 

temperature, power supply voltage, signal frequency and signal amplitude. 

Just as the steam engine needs the controlling influence of the governor, so 

most electronic amplifiers require electrical negative feedback if their gain is to 

be accurately predictable and remain constant with varying environmental 

conditions. 

Negative feedback 
is used to precisely 
set the gain of an 
amplifier 
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2.3.2 An Amplifier with Negative Feedback 

The figure below shows a block diagram of an amplifier with negative 

feedback: 

 



vovi

feedback
network

amplifier

ve
AOL

vf vo=

 

 

Figure 2.15 

The amplifier has a voltage gain OLA  and the feedback network is an attenuator 

which feeds a fixed fraction,  , of the output back to the input. The feedback 

signal, of vv  , is subtracted from the input signal (we thus have negative 

feedback – if the signal were added, we would have positive feedback). 

We can now determine the effective voltage gain, CLA , of the amplifier with 

feedback. This is given simply by the ratio of the output voltage to input 

voltage: 

i

o
CL

v

v
A 

 
(2.10) 

The signal at the input to the basic amplifier is: 

oifie vvvvv   (2.11) 

Block diagram of an 
amplifier with 
negative feedback 
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Also, the signal at the output of the basic amplifier is given by: 

eOLo vAv   (2.12) 

Therefore: 

 oiOLo vvAv   (2.13) 

Rearranging: 

 





OL

OL

i

o

iOLOLo

A

A

v

v

vAAv






1

1

 
(2.14) 

Hence: 

OL

OL
CL

A

A
A




1  
(2.15) 

This is the general equation for an amplifier with negative feedback. The basic 

gain of the amplifier, OLA , is known as the open-loop gain and the gain with 

feedback, CLA , as the closed-loop gain. 

The closed-loop 
gain of an amplifier 
with negative 
feedback 
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Engineers design the circuit by starting with a basic amplifier with a very large 

open-loop gain (e.g., the open-loop gain of an op-amp is 000,100OLA ) and 

then ensure by design that the feedback network provides an attenuation   so 

that: 

1OLA  (2.16) 

When this is the case, we can neglect the ‘1’ in the denominator of Eq. (2.15) 

so that: 



1
CLA

 
(2.17) 

This is a very significant equation because we have ‘designed’ an amplifier 

with a precisely determined voltage gain. As long as the open-loop gain is 

much larger than the closed-loop gain (e.g. a hundred times greater) then the 

closed-loop gain is independent of the amplifier characteristics and dependent 

only on the feedback network  . The feedback network usually depends upon 

just a handful of passive elements, such as resistors and capacitors. These 

elements are the most stable components in electronics; their values can be 

precisely specified to very high levels of accuracy (better than 0.1% for 

resistors, and 1% for capacitors), and their value does not vary greatly with 

environmental changes such as temperature and aging. Negative feedback 

extends these attributes of accuracy and stability to the gain of the entire 

amplifier. 

Later, we will also see that negative feedback increases the frequency of 

signals that we can apply to the amplifier, reduces nonlinear distortion, 

increases input resistance and decreases output resistance. The price for these 

benefits is a reduction in the amplifier gain – a trade-off that is well worth 

making. 

The closed-loop 
gain of an amplifier 
with negative 
feedback, if the 
open-loop gain is 
very large  
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2.4 The Noninverting Amplifier 

We seek a circuit implementation of the amplifier with negative feedback 

presented in Figure 2.15. We have already seen that an op-amp amplifies the 

difference between its two input voltages. Thus, an op-amp implements the 

subtracter and the amplifier in one device: 

 

vo

amplifier

AOL

v f

v i vo
v i

v f

 

 

Figure 2.16 

The feedback network can consist of any combination of passive or active 

elements. The simplest feedback network provides attenuation, using a 

resistive voltage divider: 

 

vov f R2

R1

feedback
network


vo

v f

 

 

Figure 2.17 

Note that for this circuit the input is on the right and the output is on the left, as 

we are providing a feedback path from the output of the op-amp, and back to its 

inverting input terminal. 

An op-amp 
implements the 
subtracter and the 
amplifier in one 
device 

A simple feedback 
network that 
provides a fixed 
attenuation 
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The fixed fraction,  , of the output which is fed back to the input is given by 

the voltage divider rule: 

21

1

RR

R

v

v

o

f




 
(2.18) 

Thus, a circuit that implements the amplifier with negative feedback is: 

 

vo

R2

R1

v i

 

 

Figure 2.18 

To reiterate, the closed-loop gain of this amplifier is: 

OL

OL
CL

i

o

A

A
A

v

v




1  
(2.19) 

and if we have 1OLA , then the closed-loop gain is approximately: 

1

21
1

R

R
ACL 

  
(2.20) 

 

The noninverting 
amplifier 
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EXAMPLE 2.2 A Real Noninverting Amplifier 

An op-amp with an open-loop gain of 100 000 is connected in a noninverting 

amplifier configuration to give a nominal gain of 10, as shown below: 

vo

v i

9 k

1 k

AOL

AOL = 100 000

R1

R2

 

The feedback factor is: 

10

1

k9k1

k1

21

1 






RR

R
  

Therefore the closed-loop gain is: 

109990.9
10001

10

10101

10

1

5

15

5








OL

OL

CL
A

A
A  

If the op-amp open-loop gain is changed to 200 000 (e.g. a different op-amp is 

used) then the closed-loop gain changes to: 

109995.9
20001

102

101021

102

1

5

15

5













OL

OL

CL
A

A
A  

Thus, the closed-loop gain changes by only 0.005%, even though the open-loop 

gain changed by 100%. This is because 1OLA , and therefore, by 

Eq. (2.19), 101  CLA . Thus, so long as 1OLA  is satisfied, the closed-

loop amplifier maintains a nominal gain of 10 to a very high accuracy. 
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2.4.1 The Noninverting Amplifier with an Ideal Op-Amp 

Assuming an ideal op-amp with infinite open-loop gain ( OLA ), then the 

overall closed-loop gain of the amplifier is given by Eq. (2.19): 









1

1

1

1

1

1












OL

OL

OL
CL

A

A

A
A

 

(2.21) 

Thus, the overall closed-loop gain is: 

1

21
R

R
ACL 

 (noninverting) (2.22) 

Thus, the approximation for the closed-loop gain that we used for a real op-

amp, 1CLA , now turns into an exact equation, 1CLA . Thus, we will 

find it expedient to analyse op-amp circuits by assuming that ideal op-amps are 

used, with an understanding that the real circuits will differ in performance by 

only a tiny amount.  

A key point to note in this formula is that the ratio of the resistors determines 

the gain. In practice this means that a range of actual 1R  and 2R  values can be 

used, so long as they provide the same ratio. 

The amplifier in this configuration provides a gain which is always greater than 

or equal to 1. The output is also “in phase” with the input, since the gain is 

positive. Hence, this configuration is referred to as a noninverting amplifier. 

The gain of an ideal  
noninverting 
amplifier 
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The closed-loop gain of the amplifier can also be derived using circuit analysis 

and the concept of the virtual short-circuit. For such a simple circuit, the results 

of the analysis can be written directly on the circuit diagram: 

 

vo

R1

v i

v i

0 V

v i

R1

0 A

v i

R2

R1

(1+       )=1

2

3

4

v i

R1

5

v i

R1

R2

R2

6

7

 

 

Figure 2.19 

The analysis steps are: 

1. We assume an ideal op-amp, and also assume that since there is a negative 

feedback path around the op-amp, then it is producing a finite output 

voltage (i.e., the overall amplifier is “working”). Thus, the ideal op-amp 

must have a virtual short-circuit (VSC) at its input terminals. We label the 

voltage across the input terminals as 0 V. 

2. Since there is no difference in the voltages across the VSC, the voltage at 

the inverting terminal is ivv  . 

3. The current through resistor 1R  is given by Ohm’s Law, 11 Rvi i . 

4. Due to the infinite input resistance of the ideal op-amp, the current entering 

the inverting terminal is 0 A. 

Analysis steps for 
the ideal 
noninverting 
amplifier 



2.25 

PMcL The Noninverting Amplifier Index    

2017  2 - Amplifiers 

5. KCL at the inverting terminal now gives 112 Rvii i . 

6. The voltage drop across the resistor 
2R  is given by Ohm’s Law, 

1

2222 R

v
RiRv i

R  , with the polarity shown. 

7. KVL, from the common, across 
1R , across 

2R  and to the output terminal 

gives i
i

io v
R

R

R

v
Rvv 










1

2

1

2 1 . 

Once again, we see that the overall closed-loop gain is given by 
121 RR . 

2.4.2 Input Resistance of the Noninverting Amplifier 

The input voltage in a noninverting amplifier is connected directly to the 

noninverting terminal of the op-amp, which is effectively an open-circuit as far 

as current is concerned. Thus, the “input resistance” of the circuit is ideally 

infinite. This is an important property of the noninverting amplifier that is used 

in a variety of situations. 

2.4.3 Equivalent Circuit of the Noninverting Amplifier 

The equivalent circuit of the noninverting amplifier is: 

 

vi vo

Kv i

R2

R1

1+=K

 

 

Figure 2.20 

In our analysis of op-amp circuits from now on, we will assume ideal op-amps 

and make frequent use of the virtual short-circuit concept. 

The input resistance  
of the ideal 
noninverting 
amplifier is infinite 

Equivalent circuit of 
the ideal 
noninverting 
amplifier 
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EXAMPLE 2.3 Design of a Noninverting Amplifier 

It is required to design an amplifier with a gain of 5 V/V that presents an 

almost infinite input resistance to any attached voltage source. 

In this case, we decide to choose feedback resistors in the kΩ range:  

vo

v i

4 k

1 k

 

Notice that we have decided to draw the inverting terminal of the op-amp at the 

top, and the feedback resistors pass over the top of the op-amp. The circuit is 

still the same as before. Either representation can be used, and will depend on 

such factors as space or clarity in the circuit schematic. 

When we attach any type of source to the input of this circuit, no current will 

be drawn. For example: 

vo

4 k

1 k

0 V

vs = 2 V

50

vi = 2 V

i = 0 A = 10 V

Source  

We have therefore met the design specifications. 
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EXAMPLE 2.4 The Buffer 

An ideal op-amp is connected in a noninverting amplifier configuration as 

shown below: 

v i

vo

 

We identify 1R  and 02 R . Thus, the overall closed-loop gain is: 

1
0

11
1

2 



R

R
ACL  

Thus, the circuit provides a “gain” of 1, and is called a buffer or a follower. 

You can also see that a buffer can be created by: 

vo

R1

v i

 

or by: 

vo

v i

R2

 

Both of these circuits will operate as buffers, but the circuit presented first uses 

one less component. 
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2.4.4 The Buffer 

You may wonder “What is the point of a buffer if it only provides a gain of 1?” 

The answer lies in the other properties of the circuit – its infinite input 

resistance and zero output resistance. 

EXAMPLE 2.5 Buffering a Source 

A certain function generator has an “output resistance” of  50  and so its 

output will experience a significant internal Ri voltage drop when the attached 

load draws a “large” current, resulting in a drop in the output terminal voltage: 

200

Load

1 V

vs = 5 V

50

vo= 4 V

i = 20 mA

Function Generator  

Therefore, we need to “buffer” the function generator with an amplifier which 

presents a high input resistance to the source and which also provides a low 

output resistance to the load: 

voAvi

Ro

v i RLRi

Rs

vs

AmplifierSource Load  

An ideal buffer amplifier with a gain of 1, when placed in between the function 

generator and the load, delivers the full source voltage to the load: 

200

i = 050

vs = 5 V vo= 5 V

i = 25 mA

vi = 5 V

 

The buffer is used to 
“couple” one circuit 
to another 
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2.5 The Inverting Amplifier 

An inverting amplifier is created by swapping the input and common 

connections of the noninverting amplifier. The result is: 

 

vo

v i

R2

R1

 

 

Figure 2.21 

We will analyse this circuit using the concept of the virtual short-circuit. This 

can be done on the circuit schematic: 

 

vo

v i

R2

R1

0 V1

v i

R1

v i

R1

0 A

2

3

4

0 V

5
v i

R1

R2

6

R2

R1

=

7

v i-

 

 

Figure 2.22 

The inverting 
amplifier 

Analysis steps for 
the ideal inverting 
amplifier 
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The analysis steps are: 

1. We assume an ideal op-amp, and also assume that since there is a negative 

feedback path around the op-amp, then it is producing a finite output 

voltage (i.e., the overall amplifier is “working”). Thus, the ideal op-amp 

must have a virtual short-circuit (VSC) at its input terminals. We label the 

voltage across the input terminals as 0 V. 

2. Since there is no difference in the voltages across the VSC, the voltage at 

the inverting terminal is 0v . 

3. The current through resistor 
1R  is given by Ohm’s Law, 11 Rvi i . 

4. Due to the infinite input resistance of the ideal op-amp, the current entering 

the inverting terminal is 0 A. 

5. KCL at the inverting terminal now gives 112 Rvii i . 

6. The voltage drop across the resistor 
2R  is given by Ohm’s Law, 

1

2222 R

v
RiRv i

R  , with the polarity shown. 

7. KVL, from the common, across the VSC, across 2R  and to the output 

terminal gives i
i

o v
R

R

R

v
Rv

1

2

1

20  . 

Thus, the overall closed-loop gain is: 

1

2

R

R
ACL 

  (inverting) (2.23) 

The negative sign indicates that there is an inversion of the signal (i.e. a 180 

phase change), so that a waveform will appear amplified, but “upside down”. 

The gain of an ideal  
inverting amplifier 
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2.5.1 Input Resistance of the Inverting Amplifier 

The input resistance of the inverting amplifier (i.e. the resistance “seen” by the 

input voltage source), is, by the definition of input resistance: 

1

1

1in R
Rv

v
ivivR

i

i
iii 

 
(2.24) 

Thus, the “input resistance” of the circuit is equal to 
1R . This is a disadvantage 

compared to the noninverting amplifier, and careful use of the inverting 

amplifier is required. 

2.5.2 Equivalent Circuit of the Inverting Amplifier 

An equivalent circuit of the inverting amplifier is: 

 

vi vo

R1 Kv i

=
R2

R1

-K
 

 

Figure 2.23 

One advantage of the inverting amplifier over the noninverting amplifier is that 

you can achieve gain magnitudes less than one, i.e. build circuits that can 

attenuate, as well as amplify. 

The inverting amplifier is also the basis for many other useful circuits that we 

will encounter later, such as the summer, integrator and differentiator. 

 

The input resistance  
of the ideal inverting 
amplifier is finite 

Equivalent circuit of 
the ideal inverting 
amplifier 
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EXAMPLE 2.6 Design of an Inverting Amplifier 

It is required to design an amplifier with a gain of -5 V/V. In this case, we 

decide to choose feedback resistors in the kΩ range:  

vo

v i

5 k

1 k

 

Suppose we now attach a source, which has an internal resistance of 1 kΩ, to 

this amplifier: 

1 V

vs = 2 V

i

Source

vo

5 k

1 k

vi = 1 V

= 1 mA

= -5 V

1 k

0 V

 

We see that the 1 kΩ input resistance of the inverting amplifier has caused the 

source to deliver current, and therefore there is a significant voltage drop 

across its internal resistance. A better design to suit this particular source 

would use resistors in the 100’s of kΩ: 

vs = 2 V

Source

vo

500 k

100 k

-9.901 V

1 k

0 V

i 20   A 

20 mV
vi 1.980 V



 

Now there is less than 1% error in the gain that it provides to the source. 
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2.6 Summary 

 A linear amplifier is a device that increases the amplitude of a signal (a 

voltage or a current) whilst preserving waveform shape. The most common 

is a voltage amplifier: 

voKvi

input output

=Kvi

 

The gain of a voltage amplifier is expressed in either V/V or in dB: 

V/V  
i

o

v

v
K 

 or  
dB  log20 10

i

o

v

v
K 

 

 The operational amplifier (op-amp) is an integrated circuit amplifier 

consisting of dozens of transistors. An op-amp amplifies the voltage 

difference between its two input terminals, and produces a single-ended 

output voltage. It is the “building block” for a vast array of useful 

electronic circuits. 

v

v
vo

inverting input

noninverting input

output

 

The op-amp is always operated with a negative feedback network. 
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The characteristics of the ideal op-amp are: 

Parameter Symbol Ideal Value 

Open-loop voltage gain 
OLA  ∞ V/V 

Input resistance 
inR  ∞ Ω 

Output resistance 
outR  0 Ω 

If an ideal op-amp has negative feedback, then a virtual short-circuit 

appears across its input terminals. This is the key to analysing and 

designing op-amp circuits. 

 Negative feedback is a universal concept that arises in fields as diverse as 

biology, mechanics and electronics. If a proportion of the output of a device 

is fed back to the input and subtracted (so-called negative feedback), then 

the device will exhibit certain desirable overall qualities, such as accuracy 

and stability. In particular, the gain of an electronic amplifier with an open-

loop gain of OLA  and a feedback factor of   will have a closed-loop gain 

given by: 

OL

OL
CL

A

A
A




1  
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 The noninverting amplifier is one of the most fundamental op-amp 

arrangements: 

vo

v i

R2

R1

 

The gain of the noninverting amplifier is: 

1

21
R

R
ACL 

 

An important special case of the noninverting amplifier is the buffer, for 

which   1R ,   02R  and therefore 1CLA . 

  The inverting amplifier is one of the most fundamental op-amp 

arrangements: 

vo

v i

R2

R1

 

The gain of the inverting amplifier is: 

1

2

R

R
ACL 

 

2.7 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 



2.36 

Index Exercises PMcL   

2 - Amplifiers  2017 

Exercises 

1. 

For the ideal op-amp circuit below: 

v i vo

10 k

v1

i2

i1

io

iL

1 k

1 k

1 V

 

Determine the values of: 

(a) 
1v , 

1i , 
2i , ov , 

Li  and oi   (b)  the voltage gain io vv  

(a) the current gain iL ii   (d)  the power gain iL PP  

2. 

Given the ideal op-amp circuit below: 

vo

R3

R2

R1

v i

 

(a) Find the voltage gain io vv . 

(b) Find the resistance “seen” by the voltage source iv . 

(c) How do the results of (a) and (b) differ from the case when   3R ? 

Why? 
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3. 

Consider the ideal op-amp circuit below: 

R2v i

R2

R1

R1

100 

 

Choose values for resistors 
1R  and 

2R  such that the  100  resistor absorbs 

10 mW when V 4iv . 

4. 

Consider the ideal op-amp circuit below: 

vo

R

i i

 

(a) Find the ratio io iv . 

(b) Find the resistance “seen” by the current source ii . 
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5. 

Consider the ideal op-amp circuit below: 

vo

i i

R1

R2

R3

i3

 

(a) Find the ratio io iv . 

(b) Find the resistance “seen” by the current source ii . 

(c) Find the current gain iii3 . 

6. 

Given the ideal op-amp circuit below: 

vo

R2

R1

R i i2

i i

 

(a) Find the ratio io iv . 

(b) Find the resistance “seen” by the current source ii . 

(c) Find the current gain iii2 . 
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3 Nodal and Mesh Analysis 
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Introduction 

After becoming familiar with Ohm’s Law and Kirchhoff’s Laws and their 

application in the analysis of simple series and parallel resistive circuits, we 

must begin to analyse more complicated and practical circuits. 

Physical systems that we want to analyse and design include electronic control 

circuits, communication systems, energy converters such as motors and 

generators, power distribution systems, mobile devices and embedded systems. 

We will also be confronted with allied problems involving heat flow, fluid 

flow, and the behaviour of various mechanical systems. 

To cope with large and complex circuits, we need powerful and general 

methods of circuit analysis. Nodal analysis is a method which can be applied to 

any circuit, and mesh analysis is a method that can be applied to any planar 

circuit (i.e. to circuits that are able to be laid out on a 2D surface without 

crossing elements). Both of these methods are widely used in hand design and 

computer simulation. A third technique, known as loop analysis, generalises 

mesh analysis and can be applied to any circuit – it is effectively the “dual” of 

nodal analysis. 

We will find that the judicious selection of an analysis technique can lead to a 

drastic reduction in the number of equations to solve, and we should therefore 

try to develop an ability to select the most convenient analysis method for a 

particular circuit. 
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3.1 Nodal Analysis 

In general terms, nodal analysis for a circuit with N nodes proceeds as follows: 

1. Select one node as the reference node, or common (all nodal voltages 

are defined with respect to this node in a positive sense). 

2. Assign a voltage to each of the remaining  1N  nodes. 

3. Write KCL at each node, in terms of the nodal voltages. 

4. Solve the resulting set of simultaneous equations. 

As will be seen, the method outlined above becomes a little complicated if the 

circuit contains voltage sources and / or controlled sources, but the principle 

remains the same. 

EXAMPLE 3.1 Nodal Analysis with Independent Sources 

We apply nodal analysis to the following 3-node circuit: 

23 A -2 A

5

1

 

Following the steps above, we assign a reference node and then assign nodal 

voltages: 

23 A -2 A

5

1

1v v2

 

The general 
principle of nodal 
analysis 
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We chose the bottom node as the reference node, but either of the other two 

nodes could have been selected. A little simplification in the resultant 

equations is obtained if the node to which the greatest number of branches is 

connected is identified as the reference node. 

In many practical circuits the reference node is one end of a power supply 

which is generally connected to a metallic case or chassis in which the circuit 

resides; the chassis is often connected through a good conductor to the Earth. 

Thus, the metallic case may be called “ground”, or “earth”, and this node 

becomes the most convenient reference node. 

To avoid confusion, the reference node will be called the “common” unless it 

has been specifically connected to the Earth (such as the outside conductor on a 

digital storage oscilloscope, function generator, etc). 

Note that the voltage across any branch in a circuit may be expressed in terms 

of nodal voltages. For example, in our circuit the voltage across the  5  

resistor is  21 vv   with the positive polarity reference on the left: 

(       )

51v v2

- v21v
 

We must now apply KCL to nodes 1 and 2. We do this be equating the total 

current leaving a node to zero. Thus: 

  02
15

03
52

112

211









vvv

vvv

 

 Simplifying, the equations can be written: 

22.12.0

32.07.0

21

21





vv

vv
 

The distinction 
between “common” 
and “earth” 
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Rewriting in matrix notation, we have: 































2

3

2.12.0

2.07.0

2

1

v

v
 

These equations may be solved by a simple process of elimination of variables, 

or by Cramer’s rule and determinants. Using the latter method we have: 

V 5.2
8.0

2

8.0

6.04.1

8.0

22.0

37.0

V 5
8.0

4

04.084.0

4.06.3

2.12.0

2.07.0

2.12

2.03

2

1























v

v

 

Everything is now known about the circuit – any voltage, current or power in 

the circuit may be found in one step. For example, the voltage at node 1 with 

respect to node 2 is   V 5.221  vv , and the current directed downward 

through the  2  resistor is A 5.221 v . 
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3.1.1 Circuits with Resistors and Independent Current Sources Only 

A further example will reveal some interesting mathematical features of nodal 

analysis, at least for the case of circuits containing only resistors and 

independent current sources. We will find it is much easier to consider 

conductance, G, rather than resistance, R, in the formulation of the equations. 

EXAMPLE 3.2 Nodal Analysis with Independent Sources Only 

A circuit is shown below with a convenient reference node and nodal voltages 

specified. 

-8 A 25 A

1/3 

1

1v v2

-3 A

1/2 

1/5 

v3

1/4 

 

We sum the currents leaving node 1: 

       

11437

03843

321

3121





vvv

vvvv
 

At node 2: 

   

3263

03213

321

32212





vvv

vvvvv
 

At node 3: 

   

251124

025524

321

32313





vvv

vvvvv
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Rewriting in matrix notation, we have: 

























































25

3

11

1124

263

437

3

2

1

v

v

v

 

For circuits that contain only resistors and independent current sources, we 

define the conductance matrix of the circuit as: 

























1124

263

437

G  

It should be noted that the nine elements of the matrix are the ordered array of 

the coefficients of the KCL equations, each of which is a conductance value. 

Thr first row is composed of the coefficients of the Kirchhoff current law 

equation at the first node, the coefficients being given in the order of 1v , 
2v  

and 3v . The second row applies to the second node, and so on. 

The major diagonal (upper left to lower right) has elements that are positive. 

The conductance matrix is symmetrical about the major diagonal, and all 

elements not on this diagonal are negative. This is a general consequence of the 

systematic way in which we ordered the equations, and in circuits consisting of 

only resistors and independent current sources it provides a check against 

errors committed in writing the circuit equations. 

We also define the voltage and current source vectors as: 





































25

3

11

            

3

2

1

iv

v

v

v

 

The conductance 
matrix defined 
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Our KCL equations can therefore be written succinctly in matrix notation as: 

iGv   

The solution of the matrix equation is just: 

iGv
1  

Computer programs that do nodal analysis use sophisticated numerical 

methods to efficiently invert the G  matrix and solve for v . When solving the 

equations by hand we resort to matrix reduction techniques, or use Cramer’s 

rule (up to 3 x 3). Thus: 

1124

263

437

11225

263

4311

1













v  

To reduce work, we expand the numerator and denominator determinants by 

minors along their first columns to get: 

   

     
     

V  1
191

191

120123434

750123682

304413627

30254136211

26

43
4

112

43
3

112

26
7

26

43
25

112

43
3

112

26
11

1










































v

 

Similarly: 

V  2
191

11254

233

4117

2 






v        V  3
191

2524

363

1137

3 






v  

Nodal analysis 
expressed in matrix 
notation 
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3.1.2 Nodal Analysis Using Branch Element Stamps 

The previous example shows that nodal analysis leads to the equation iGv  . 

We will now develop a method whereby the equation iGv   can be built up 

on an element-by-element basis by inspection of each branch in the circuit. 

Consider a resistive element connected between nodes i and j: 

 

vv

vv

(       )

Gi j

- ji

(a)

vv

vv

(       )

Gi j

- ij

(b)  

 

Figure 3.1 

Suppose that we are writing the ith  KCL equation because we are considering 

the current leaving node i (see Figure 3.1a). The term that we would write in 

this equation to take into account the branch connecting nodes i and j is: 

  0  ji vvG  (3.1) 

This term appears in the ith  row when writing out the matrix equation. 

If we are dealing with the jth  KCL equation because we are considering the 

current leaving node j (see Figure 3.1b) then the term that we would write in 

this equation to take into account the branch connecting nodes j and i is:  

  0  ij vvG  (3.2) 

This term appears in the jth  row when writing out the matrix equation. 
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Thus, the branch between nodes i and j contributes the following element 

stamp to the conductance matrix, G : 














GG

GG

j

i

ji 

 
(3.3) 

If node i or node j is the reference node, then the corresponding row and 

column are eliminated from the element stamp shown above. 

For any circuit containing only resistors and independent current sources, the 

conductance matrix can now be built up by inspection. The result will be a G  

matrix where each diagonal element iig  is the sum of conductances connected 

to node i, and each off-diagonal element ijg  is the total conductance between 

nodes i and j but with a negative sign. 

Now consider a current source connected between nodes i and j: 

 

vv
I

i j

 

 

Figure 3.2 

In writing out the ith  KCL equation we would introduce the term: 

0  I  (3.4) 

In writing out the jth  KCL equation we would introduce the term: 

0  I  (3.5) 

 

The element stamp 
for a conductance 
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Thus, a current source contributes to the right-hand side (rhs) of the matrix 

equation the terms: 










I

I

j

i

 
(3.6) 

Thus, the i  vector can also be built up by inspection – each row is the addition 

of all current sources entering a particular node. This makes sense since 

iGv   is the mathematical expression for KCL in the form of “current leaving 

a node  = current entering a node”. 

EXAMPLE 3.3 Nodal Analysis Using the “Formal” Approach 

We will analyse the previous circuit but use the “formal” approach to nodal 

analysis. 

-8 A 25 A

1/3 

1

1v v2

-3 A

1/2 

1/5 

v3

1/4 

 

By inspection of each branch, we build the matrix equation: 

   
 





























































25

3

38

24524

22313

4343

3

2

1

3

2

1

321

v

v

v
 

This is the same equation as derived previously. 

The element stamp 
for an independent 
current source 
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3.1.3 Circuits with Voltage Sources 

Voltage sources present a problem in undertaking nodal analysis, since by 

definition the voltage across a voltage source is independent of the current 

through it. Thus, when we consider a branch with a voltage source when 

writing a nodal equation, there is no way by which we can express the current 

through the branch as a function of the nodal voltages across the branch. 

There are two ways around this problem. The more difficult is to assign an 

unknown current to each branch with a voltage source, proceed to apply KCL 

at each node, and then apply KVL across each branch with a voltage source. 

The result is a set of equations with an increased number of unknown variables. 

The easier method is to introduce the concept of a supernode. A supernode 

encapsulates the voltage source, and we apply KCL to both end nodes at the 

same time. The result is that the number of nodes at which we must apply KCL 

is reduced by the number of voltage sources in the circuit. 

EXAMPLE 3.4 Nodal Analysis with Voltage Sources 

Consider the circuit shown below, which is the same as the previous circuit 

except the  21  resistor between nodes 2 and 3 has been replaced by a 22 V 

voltage source: 

-8 A 25 A

1/3 

1

1v v2

-3 A

22 V

1/5 

v3

1/4 

supernode

 

The concept of a 
supernode 
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KCL at node 1 remains unchanged: 

       

11437

03843

321

3121





vvv

vvvv
 

We find six branches connected to the supernode around the 22 V source 

(suggested by a broken line in the figure). Beginning with the  31  resistor 

branch and working clockwise, we sum the six currents leaving this supernode: 

       
28947
01525433

321

231312




vvv
vvvvvv

 

We need one additional equation since we have three unknowns, and this is 

provided by KVL between nodes 2 and 3 inside the supernode: 

2223  vv  

Rewriting these last three equations in matrix form, we have: 

























































22

28

11

110

947

437

3

2

1

v

v

v

 

The solution turns out to be V 5.41 v , V 5.152 v  and V 5.63 v . 

Note the lack of symmetry about the major diagonal in the G  matrix as well as 

the fact that not all of the off-diagonal elements are negative. This is the result 

of the presence of the voltage source. Note also that it does not make sense to 

call the G  matrix the conductance matrix, for the bottom row comes from the 

equation 2232  vv , and this equation does not have any terms that are 

related to a conductance. 

A supernode can contain any number of independent or dependent voltage 

sources. In general, the analysis procedure is the same as the example above – 

one KCL equation is written for currents leaving the supernode, and then a 

KVL equation is written for each voltage source inside the supernode. 

The presence of a 
dependent source 
destroys the 
symmetry in the G 
matrix 
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3.1.4 Circuits with Dependent Sources 

Dependent current sources are fairly easy to include into nodal analysis – we 

just need to express the dependent current in terms of nodal voltages. 

Dependent voltages sources are dealt with using the concept of the supernode. 

Of the two types of dependent voltage source, the current controlled voltage 

source (CCVS) requires the most effort to incorporate into nodal analysis. We 

will analyse this case before summarizing the method of nodal analysis for any 

resistive circuit. 

EXAMPLE 3.5 Nodal Analysis with Dependent Voltage Sources 

Consider the circuit shown below, which is the same as the previous circuit 

except now the 22 V voltage source has been replaced by a current controlled 

voltage source: 

-8 A 25 A

1/3 

1

1v v2

-3 A

1/5 

v3

1/4 

supernode

/ 8ix

ix

 

KCL at node 1 remains unchanged: 

       

11437

03843

321

3121





vvv

vvvv
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KCL at the supernode, formed by considering nodes 2 and 3 together, remains 

unchanged: 

       
28947
01525433

321

231312




vvv
vvvvvv

 

Finally, we turn our attention to the dependent source. We rewrite the 

dependent current in terms of nodal voltages: 

 314 vvix   

and then we write KVL for the dependent source as: 

 

032
8

4

8
321

31
23






vvv

vvi
vv x

 

In matrix form we now have: 

























































0

28

11

321

947

437

3

2

1

v

v

v

 

The nodal voltages turn out to be V 431.11 v , V 373.32 v  and 

V 726.23 v . 

In the previous example, the source dependency ( xi ) was easily expressed 

using Ohm’s Law across the  41  resistor. In other cases, the dependency 

may need to be found using KCL. 
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EXAMPLE 3.6 Nodal Analysis with a Dependent Voltage Source 

Consider the circuit shown below: 

18 A1/3 

1
1v v2

supernode
2ix

ix

1/2 

 

KCL at the supernode, formed by considering nodes 1 and 2 together, gives: 

   

1832

0183112

21

212211





vv

vvvvvv
 

Note how the  1  resistor contributes nothing to the KCL equation. Next, we 

turn our attention to the dependent source inside the supernode. We rewrite the 

dependent current in terms of nodal voltages using KCL at node 2: 

21

2
12

4

03
1

vvi

iv
vv

x

x






 

and then we write KVL for the dependent source as: 

 

093

422

21

2112





vv

vvivv x
 

In matrix form we now have: 



























 0

18

93

32

2

1

v

v
 

The nodal voltages turn out to be V 61 v , V 22 v . 
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3.1.5 Summary of Nodal Analysis 

We perform nodal analysis for any resistive circuit with N nodes by the 

following method: 

1. Make a neat, simple, circuit diagram. Indicate all element and source 

values. Each source should have its reference symbol. 

2. Select one node as the reference node, or common. Then write the node 

voltages 
1v , 

2v , …, 1Nv  at their respective nodes, remembering that 

each node voltage is understood to be measured with respect to the 

chosen reference. 

3. If the circuit contains dependent sources, express those sources in terms 

of the variables 
1v , 

2v , …, 1Nv , if they are not already in that form. 

4. If the circuit contains voltage sources, temporarily modify the given 

circuit by replacing each voltage source by a short-circuit to form 

supernodes, thus reducing the number of nodes by one for each voltage 

source that is present. The assigned nodal voltages should not be 

changed. Relate each supernode’s source voltage to the nodal voltages. 

5. Apply KCL at each of the nodes or supernodes. If the circuit has only 

resistors and independent current sources, then the equations may be 

built using the “element stamp” approach. 

6. Solve the resulting set of simultaneous equations. 

The general 
procedure to follow 
when undertaking 
nodal analysis 
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EXAMPLE 3.7 Nodal Analysis with all Four Types of Sources 

Consider the circuit shown below, which contains all four types of sources and 

has five nodes. 

6 A

3 V

1/2 

1 

1 
1/2 

v3v1

v2

v4

vy
vy4

2vx

vx

 

We select the bottom node as the reference and assign 1v  to 4v  in a clockwise 

direction starting from the left node. 

We next relate the controlled sources to the nodal voltages: 

 
1

12

44
22

vv
vvv

y

x




 

We form supernodes around the two voltage sources, and write relations for 

them in terms of the nodal voltages: 

13

14

44
3

vvv
vv

y 


 

Thanks to the supernodes, we see that we only need to write KCL equations at 

node 2 and the supernode containing both nodes 1 and 4. At node 2: 

   
632
0162

321

3212




vvv
vvvv
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while at the supernode: 

   

62

012

2

262

41

141221





vv

vv

v

vvvv

x


 

Thus, we obtain four equations in the four node voltages: 































































6

6

0

3

2001

0132

0104

1001

4

3

2

1

v

v

v

v

 

The solution is: 

V  1

V  16

V  314

V  4

4

3

2

1









v

v

v

v

 

The technique of nodal analysis described here is completely general and can 

always be applied to any electrical circuit. 
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3.2 Mesh Analysis 

Before we embark on mesh analysis, we need to define the concept of: a planar 

circuit, a path through a circuit, a loop and a mesh. We can then outline the 

analysis strategy using these terms. 

3.2.1 Planar Circuits 

A planar circuit is one where it is possible to draw the circuit on a plane 

surface in such a way that no branch passes over or under any other branch. 

 

(a) (b) (c)  

 

Figure 3.3 

In the figure above, circuit (a) is planar, circuit (b) is nonplanar and circuit (c) 

is planar, but drawn so that it appears nonplanar. 

Planar circuits 
defined 
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3.2.2 Paths, Loops and Meshes 

A path is made through a circuit when we start on one node and traverse 

elements and nodes without encountering any nodes previously visited. A loop 

is any closed path – i.e. the last node visited is the same as the starting node. A 

mesh is a loop which does not contain any other loops within it. A mesh is a 

property of a planar circuit and is not defined for a nonplanar circuit. 

 

(a) (b) (c)

(d) (e) (f)  

 

Figure 3.4 

In the figure above, the set of branches in (a) identified by the heavy lines is 

neither a path nor a loop. In (b) the set of branches is not a path since it can be 

traversed only by passing through the central node twice. In (c) the closed path 

is a loop but not a mesh. In (d) the closed path is also a loop but not a mesh. In 

(e) and (f) each of the closed paths is both a loop and a mesh. This circuit 

contains four meshes. 

 

Examples of loops 
and meshes 
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3.2.3 Mesh Current 

We define a mesh current1 as a “mathematical” (or imaginary) current in which 

charge flows only around the perimeter of a mesh. A mesh current is indicated 

by a curved arrow that almost closes on itself and is drawn inside the 

appropriate mesh. 

 

i1 i2

 

 

Figure 3.5 

Although the direction of mesh currents is arbitrary, we draw the mesh currents 

in a clockwise direction so that a symmetry in the equations results when 

performing mesh analysis. One of the great advantages of mesh currents is that 

KCL is automatically satisfied, and no branch can appear in more than two 

meshes. 

We no longer have a current or current arrow shown on each branch in the 

circuit. The current through any branch may be determined by superimposing 

each mesh current that exists in it. For example, the branch current heading 

down in the middle resistor in the circuit above is given by  21 ii  . 

                                                 

1 It was the famous Scottish mathematical physicist James Clark Maxwell who invented the 

concept of a mesh current, and the associated methodology of formulating the “mesh 

equations”. The analysis of planar circuits using mesh currents was thus reduced to solving a 

set of linear equations, in the same manner as nodal analysis. 

Mesh currents 
defined 

Branch currents can 
be expressed in 
terms of mesh 
currents 
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3.2.4 Mesh Analysis Methodology 

In general terms, mesh analysis for a planar circuit with M meshes proceeds as 

follows: 

1. Assign a clockwise mesh current in each of the M meshes. 

2. Write KVL around each mesh, in terms of the mesh currents. 

3. Solve the resulting set of simultaneous equations. 

As will be seen, the method outlined above becomes a little complicated if the 

circuit contains current sources and / or controlled sources, but the principle 

remains the same. 

EXAMPLE 3.8 Mesh Analysis with Independent Sources 

A two-mesh circuit is shown below. 

i1 i242 V 3 10 V

6 4

 

We apply KVL to each mesh. For the left-hand mesh: 

 
4239
03642

21

211




ii
iii

 

For the right-hand mesh: 

 
1073
01043

21

212




ii
iii

 

The solution is obtained by solving simultaneously: A 61 i  and A 42 i . 

 

The general 
principle of mesh 
analysis 
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3.2.5 Circuits with Resistors and Independent Voltage Sources Only 

When the circuit contains only resistors and voltages sources, the KVL 

equations have a certain symmetrical form and we can define a resistance 

matrix with the circuit. We will find again that the matrix equation can be 

formulated by inspection of the circuit. 

EXAMPLE 3.9 Mesh Analysis with Independent Sources Only 

Consider the five-node,  three-mesh circuit shown below. 

i1

i2

7 V

1

6 V

3

2

1

2

i3

 

The three required mesh currents are assigned as indicated, and we 

methodically apply KVL about each mesh: 

   

   

    01362

0321

02617

32313

32212

3121







iiiii

iiiii

iiii

 

Simplifying and writing as a matrix equation: 

























































6

0

1

632

361

213

3

2

1

i

i

i
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For circuits that contain only resistors and independent voltage sources, we 

define the resistance matrix of the circuit as: 

























632

361

213

R  

Once again we note the symmetry about the major diagonal. This occurs only 

for circuits with resistors and independent voltage sources when we order the 

equations correctly (rows correspond to meshes). 

We also define the current and voltage source vectors as: 





































6

0

1

            

3

2

1

vi

i

i

i

 

Our KVL equations can therefore be written succinctly in matrix notation as: 

vRi   

Applying Cramer’s rule to the formulation for 
1i  gives: 

A 3
39

117

301281

90027

632

361

213

636

360

211

1 

















i  

The other mesh currents are: A 22 i  and A 33 i . 

The resistance 
matrix defined 

Mesh analysis 
expressed in matrix 
notation 
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3.2.6 Circuits with Current Sources 

When a mesh has a current source in it, we must modify the procedure for 

forming the circuit equations. There are two possible methods. In the first 

method, we can relate the source current to the assigned mesh currents, assign 

an arbitrary voltage across it (thereby increasing the number of variables by 

one) and write KVL equations using this voltage. Alternately, a better method 

is to take a lead from nodal analysis and formulate the dual of a supernode - a 

supermesh. 

To create a supermesh, we open-circuit or remove current sources, thereby 

reducing the total number of meshes. We apply KVL only to those meshes in 

the modified circuit. 

EXAMPLE 3.10 Mesh Analysis with Current Sources 

Consider the circuit shown below in which a 7 A independent current source is 

in the common boundary of two meshes. 

i1

i2

7 V

1

7 A

3

2

1

2

i3

 

For the independent current source, we relate the source current to the mesh 

currents: 

731  ii  

The concept of a 
supermesh 
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We then mentally open-circuit the current source, and form a supermesh whose 

interior is that of meshes 1 and 3: 

i1

i2

7 V

1

3

2

1

2

i3

supermesh

 

Applying KVL about the supermesh: 

    01317 32321  iiiii  

Around mesh 2 we have: 

    0321 32212  iiiii  

Rewriting these last three equations in matrix form, we have: 

























































0

7

7

361

441

101

3

2

1

i

i

i

 

Notice that we have lost all symmetry in the matrix equation vRi  , and we 

can no longer call R  the resistance matrix. Applying Cramer’s rule for 1i : 

A 9
14

126

212

4284

361

441

101

360

447

107

1 






















i  

The other mesh currents are: A 5.22 i  and A 23 i . 
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3.2.7 Circuits with Dependent Sources 

Dependent voltage sources are fairly easy to include into mesh analysis – we 

just need to express the dependent voltage in terms of mesh currents. 

Dependent current sources are dealt with using the concept of the supermesh. 

Of the two types of dependent current source, the voltage controlled current 

source (VCCS) requires the most effort to incorporate into mesh analysis. We 

will analyse this case before summarizing the method of mesh analysis for any 

resistive circuit. 

EXAMPLE 3.11 Mesh Analysis with Dependent Current Sources 

In the circuit shown below we have both a dependent and an independent 

current source: 

i1

i2

15 A

1

3

2

1

2

i3

vx

vx
1

9

 

For the independent current source, we relate the source current to the mesh 

currents: 

151 i  

Turning our attention to the dependent source, we describe the dependency in 

terms of the mesh currents: 

 

023

9

3

9

321

23
13






iii

iiv
ii x
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Since the current sources appear in meshes 1 and 3, when they are open-

circuited, only mesh 2 remains. Around mesh 2 we have: 

    0321 32212  iiiii  

In matrix form we now have: 























































0

0

15

361

213

001

3

2

1

i

i

i

 

The mesh currents turn out to be A 151 i , A 112 i  and A 173 i . We note 

that we wasted a little time in assigning a mesh current 
1i  to the left mesh – we 

should simply have indicated a mesh current and labelled it 15 A. 
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3.2.8 Summary of Mesh Analysis 

We perform mesh analysis for any resistive circuit with M meshes by the 

following method: 

1. Make certain that the circuit is a planar circuit. If it is nonplanar, then 

mesh analysis is not applicable. 

2. Make a neat, simple, circuit diagram. Indicate all element and source 

values. Each source should have its reference symbol. 

3. Assuming that the circuit has M meshes, assign a clockwise mesh 

current in each mesh, 
1i , 

2i , …, 
Mi . 

4. If the circuit contains dependent sources, express those sources in terms 

of the variables 
1i , 

2i , …, 
Mi , if they are not already in that form. 

5. If the circuit contains current sources, temporarily modify the given 

circuit by replacing each current source by an open-circuit to form 

supermeshes, thus reducing the number of meshes by one for each 

current source that is present. The assigned mesh currents should not be 

changed. Relate each source current to the mesh currents. 

6. Apply KVL around each of the meshes or supermeshes. If the circuit 

has only resistors and independent voltage sources, then the equations 

may be formed by inspection. 

7. Solve the resulting set of simultaneous equations. 

The general 
procedure to follow 
when undertaking 
mesh analysis 
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3.3  Summary 

 Nodal analysis can be applied to any circuit. Apart from relating source 

voltages to nodal voltages, the equations of nodal analysis are formed from 

application of Kirchhoff’s Current Law. 

 In nodal analysis, a supernode is formed by short-circuiting a voltage 

source and treating the two ends as a single node. 

 Mesh analysis can only be applied to planar circuits. Apart from relating 

source currents to mesh currents, the equations of mesh analysis are formed 

from application of Kirchhoff’s Voltage Law. 

 In mesh analysis, a supermesh is formed by open-circuiting a current 

source and treating the perimeter of the original two meshes as a single 

mesh. 

3.4 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

(a) Find the value of the determinant: 

1003

2304

1011

3012









  

(b) Use Cramer’s rule to find 
1v , 

2v  and 3v  if: 

0283

56432

03352

312

123

321







vvv

vvv

vvv

 

2. 

Use nodal techniques to determine ki  in the circuit shown below: 

4 A -3 A10 5

20

3ik

ik
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3. 

Set up nodal equations for the circuit shown below and then find the power 

furnished by the 5 V source. 

5 A 1/3 1

1/2 

4vx

vx

5 V
1/4

 

4. 

Write mesh equations and then determine xi  in each of the circuits shown 

below: 

(a) 

10 V 4 2 A

10

5

60 V
ix

 

(b) 

6 V

2

10

4

4 V

ix

ix8
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5. 

Assign mesh currents in the circuit below, write a set of mesh equations, and 

determine i. 

10 V

1 k

2 k

1 kvx

2 k

5 V

i
vx

 

6. 

With reference to the circuit shown below, use mesh equations to find Ai  and 

the power supplied by the dependent source. 

14 V

2 V

200

100

iA

100

300

iA2
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Gustav Robert Kirchhoff (1824-1887) 

Kirchhoff was born in Russia, and showed an early interest in mathematics. He 

studied at the University of Königsberg, and in 1845, while still a student, he 

pronounced Kirchhoff’s Laws, which allow the calculation of current and 

voltage for any circuit. They are the Laws electrical engineers apply on a 

routine basis – they even apply to non-linear circuits such as those containing 

semiconductors, or distributed parameter circuits such as microwave striplines. 

He graduated from university in 1847 and received a scholarship to study in 

Paris, but the revolutions of 1848 intervened. Instead, he moved to Berlin 

where he met and formed a close friendship with Robert Bunsen, the inorganic 

chemist and physicist who popularized use of the “Bunsen burner”. 

In 1857 Kirchhoff extended the work done by the German physicist Georg 

Simon Ohm, by describing charge flow in three dimensions. He also analysed 

circuits using topology. In further studies, he offered a general theory of how 

electricity is conducted. He based his calculations on experimental results 

which determine a constant for the speed of the propagation of electric charge. 

Kirchhoff noted that this constant is approximately the speed of light – but the 

greater implications of this fact escaped him. It remained for James Clerk 

Maxwell to propose that light belongs to the electromagnetic spectrum. 

Kirchhoff’s most significant work, from 1859 to 1862, involved his close 

collaboration with Bunsen. Bunsen was in his laboratory, analysing various 

salts that impart specific colours to a flame when burned. Bunsen was using 

coloured glasses to view the flame. When Kirchhoff visited the laboratory, he 

suggested that a better analysis might be achieved by passing the light from the 

flame through a prism. The value of spectroscopy became immediately clear. 

Each element and compound showed a spectrum as unique as any fingerprint, 

which could be viewed, measured, recorded and compared. 

Spectral analysis, Kirchhoff and Bunsen wrote not long afterward, promises 

“the chemical exploration of a domain which up till now has been completely 

closed.” They not only analysed the known elements, they discovered new 
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ones. Analyzing salts from evaporated mineral water, Kirchhoff and Bunsen 

detected a blue spectral line – it belonged to an element they christened 

caesium (from the Latin caesius, sky blue). Studying lepidolite (a lithium-

based mica) in 1861, Bunsen found an alkali metal he called rubidium (from 

the Latin rubidius, deepest red). Both of these elements are used today in 

atomic clocks. Using spectroscopy, ten more new elements were discovered 

before the end of the century, and the field had expanded enormously – 

between 1900 and 1912 a “handbook” of spectroscopy was published by 

Kayser in six volumes comprising five thousand pages! 

Kirchhoff’s work on spectrum analysis led on to a study of the composition of 

light from the Sun. He was the first to explain the dark lines (Fraunhofer lines) 

in the Sun's spectrum as caused by absorption of particular wavelengths as the 

light passes through a gas. Kirchhoff wrote “It is plausible that spectroscopy is 

also applicable to the solar atmosphere and the brighter fixed stars.” We can 

now analyse the collective light of a hundred billion stars in a remote galaxy 

billions of light-years away – we can tell its composition, its age, and even how 

fast the galaxy is receding from us – simply by looking at its spectrum! 

As a consequence of his work with Fraunhofer’s lines, Kirchhoff developed a 

general theory of emission and radiation in terms of thermodynamics. It stated 

that a substance’s capacity to emit light is equivalent to its ability to absorb it at 

the same temperature. One of the problems that this new theory created was the 

“blackbody” problem, which was to plague physics for forty years. This 

fundamental quandary arose because heating a black body – such as a metal 

bar – causes it to give off heat and light. The spectral radiation, which depends 

only on the temperature and not on the material, could not be predicted by 

classical physics. In 1900 Max Planck solved the problem by discovering 

quanta, which had enormous implications for twentieth-century science. 

In 1875 he was appointed to the chair of mathematical physics at Berlin and he 

ceased his experimental work. An accident-related disability meant he had to 

spend much of his life on crutches or in a wheelchair. He remained at the 

University of Berlin until he retired in 1886, shortly before his death in 1887. 

“[Kirchhoff is] a 
perfect example of 
the true German 
investigator. To 
search after truth in 
its purest shape and 
to give utterance 
with almost an 
abstract self-
forgetfulness, was 
the religion and 
purpose of his life.” 
– Robert von 
Helmholtz, 1890. 
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Introduction 

Many of the circuits that we analyse and design are linear circuits. Linear 

circuits possess the property that “outputs are proportional to inputs”, and that 

“a sum of inputs leads to a sum of corresponding outputs”. This is the principle 

of superposition and is a very important consequence of linearity. As will be 

seen later, this principle will enable us to analyse circuits with multiple sources 

in an easy way. 

Nonlinear circuits can be analysed and designed with graphical methods or 

numerical methods (with a computer) – the mathematics that describe them can 

only be performed by hand in the simplest of cases. Examples of nonlinear 

circuits are those that contain diodes, transistors, and ferromagnetic material. 

In reality all circuits are nonlinear, since there must be physical limits to the 

linear operation of devices, e.g. voltages will eventually break down across 

insulation, resistors will burn because they can’t dissipate heat to their 

surroundings, etc. Therefore, when we draw, analyse and design a linear 

circuit, we keep in mind that it is a model of the real physical circuit, and it is 

only valid under a defined range of operating conditions. 

In modelling real physical circuit elements, we need to consider practical 

sources as opposed to ideal sources. A practical source gives a more realistic 

representation of a physical device. We will study methods whereby practical 

current and voltage sources may be interchanged without affecting the 

remainder of the circuit. Such sources will be called equivalent sources. 

Finally, through the use of Thévenin’s theorem and Norton’s theorem, we will 

see that we can replace a large portion of a complex circuit (often a 

complicated and uninteresting part) with a very simple equivalent circuit, thus 

enabling analysis and focus on one particular element of the circuit. 
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4.1 Linearity 

A linear circuit is one that contains linear elements, independent sources, and 

linear dependent sources. 

A linear element is one that possesses a linear relationship between a cause and 

an effect. For example, when a voltage is impressed across a resistor, a current 

results, and the amount of current (the effect) is proportional to the voltage (the 

cause). This is expressed by Ohm’s Law, Riv  . Notice that a linear element 

means simply that if the cause is increased by some multiplicative constant K, 

then the effect is also increased by the same constant K. 

If a linear element’s relationship is graphed as “cause” vs. “effect”, the result is 

a straight line through the origin. For example, the resistor relationship is: 

 

i

v

1

R

 

 

Figure 4.1 

A linear dependent source is one whose output voltage or current is 

proportional only to the first power of some current or voltage variable in the 

circuit (or a sum of such quantities). For example, a dependent voltage source 

given by 21 146.0 vivs   is linear, but 
2

16.0 ivs   and 216.0 vivs   are not. 

From the definition of a linear circuit, it is possible to show that “the response 

is proportional to the source”, or that multiplication of all independent sources 

by a constant K increases all the current and voltage responses by the same 

factor K (including the dependent source outputs). 

A linear circuit 
defined 

A linear element 
defined 

A linear relationship 
is defined by a 
straight line through 
the origin 

A linear dependent 
source defined 

Output is 
proportional to input 
for a linear circuit 
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4.2 Superposition 

The linearity property of a circuit leads directly to the principle of 

superposition. To develop the idea, consider the following example: 

EXAMPLE 4.1 Superposition 

We have a 3-node circuit: 

2

5

1

1v v2

ia ib

 

There are two independent current sources which force the currents ai  and bi  

into the circuit. Sources are often called forcing functions for this reason, and 

the voltages they produce at each node in this circuit may be termed response 

functions, or simply responses. 

The two nodal equations for this circuit are: 

b

a

ivv

ivv





21

21

2.12.0

2.07.0
 

Now we perform experiment x. We change the two current sources to axi  and 

bxi ; the two unknown node voltages will now be different, and we let them be 

xv1  and xv2 . Thus: 

bxxx

axxx

ivv

ivv





21

21

2.12.0

2.07.0
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If we now perform experiment y by changing the current sources again, we get: 

byyy

ayyy

ivv

ivv





21

21

2.12.0

2.07.0
 

We now add or superpose the two results of the experiments: 

     
     bybxyxyx

ayaxyxyx

iivvvv

iivvvv





2211

2211

2.12.0

2.07.0
 

Compare this with the original set of equations: 

b

a

ivv

ivv





21

21

2.12.0

2.07.0
 

We can draw an interesting conclusion. If we let aayax iii  , bbybx iii  , 

then the desired responses are given by yx vvv 111   and yx vvv 222  . That 

is, we may perform experiment x and note the responses, perform experiment y 

and note the responses, and finally add the corresponding responses. These are 

the responses of the original circuit to independent sources which are the sums 

of the independent sources used in experiments x and y. 

This is the fundamental concept involved in the superposition principle. It is 

evident that we may break an independent source into as many pieces as we 

wish, so long as the algebraic sum of the pieces is equal to the original source. 

In practical applications of the superposition principle, we usually set each 

independent source to zero, so that we can analyse the circuit one source at a 

time. 

Superposition allows 
us to treat inputs 
separately, then 
combine individual 
responses to obtain 
the total response 
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4.2.1 Superposition Theorem 

We can now state the superposition theorem as it is mostly applied to circuits: 

In any linear network containing several sources, we can 

calculate any response by adding algebraically all the 

individual responses caused by each independent source 

acting alone, with all other independent sources set to zero. 

(4.1) 

When we set the value of an independent voltage source to zero, we create a 

short-circuit by definition. When we set the value of an independent current 

source to zero, we create an open-circuit by definition. 

 

0 V 0 AS.C. O.C.

 

 

Figure 4.2 

Note that dependent sources cannot be arbitrarily set to zero, and are generally 

active when considering every individual independent source. 

The theorem as stated above can be made much stronger – a group of 

independent sources may be made active and inactive collectively. For 

example, sometimes it is handy to consider all voltage sources together, so that 

mesh analysis can be applied easily, and then all current sources together so 

that nodal analysis may be applied easily. 

There is also no reason that an independent source must assume only its given 

value or zero – it is only necessary that the sum of the several values be equal 

to the original value. However, an inactive source almost always leads to the 

simplest circuit. 

 

The superposition 
theorem 

Setting a voltage 
source to zero 
creates a short-
circuit. Setting a 
current source to 
zero creates an 
open-circuit. 
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EXAMPLE 4.2 Superposition with Independent Sources 

We use superposition in the following circuit to write an expression for the 

unknown branch current xi . 

= 2 A

6

9 is= 3 Vvs

ix

 

We first set the current source equal to zero (an open-circuit) and obtain the 

portion of xi  due to the voltage source as 0.2 A. Then if we let the voltage 

source be zero (a short-circuit) and apply the current divider rule, the 

remaining portion of xi  is seen to be 0.8 A. 

We may write the answer in detail as: 

A 18.02.02
96

6

96

3
00








 ss vxixx iii  
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EXAMPLE 4.3 Superposition with Dependent Sources 

The circuit below contains a dependent source. 

10 V 3 A

1

v

ix
2

2ix

 

We seek xi , and we first open-circuit the 3 A source. The single mesh equation 

is: 

021210  xxx iii  

so that: 

2xi  

Next, we short-circuit the 10 V source and write the single node equation: 

03
1

2

2






xivv
 

and relate the dependent-source-controlling quantity to v  : 

xiv  2  

We find: 

6.0xi  

and thus: 

A 4.16.02  xxx iii  

It usually turns out that little, if any, time is saved in analysing a circuit 

containing dependent sources by use of the superposition principle, because 

there are at least two sources in operation: one independent source and all the 

dependent sources. 
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We must be aware of the limitations of superposition. It is applicable only to 

linear responses, and thus the most common nonlinear response – power – is 

not subject to superposition. 

EXAMPLE 4.4 Superposition Cannot be Applied to Power 

The circuit below contains two 1 V batteries in series. 

1 V

1

1 V

 

If we apply superposition, then each voltage source alone delivers 1 A and 

furnishes 1 W. We might then mistakenly calculate the total power delivered to 

the resistor as 2 W. This is incorrect. 

Each source provides 1 A, making the total current in the resistor 2 A. The 

power delivered to the resistor is therefore 4 W. 

 

Superposition is 
often misapplied to 
power in a circuit 
element 
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4.3 Source Transformations 

4.3.1 Practical Voltage Sources 

The ideal voltage source is defined as a device whose terminal voltage is 

independent of the current through it. Graphically, it’s characteristic is: 

 

i

v

vvs

i

ideal source terminal characteristic

vs

 

 

Figure 4.3 

The ideal voltage source can provide any amount of current, and an unlimited 

amount of power. No such device exists practically. All practical voltage 

sources suffer from a voltage drop when they deliver current – the larger the 

current, the larger the voltage drop. Such behaviour can be modelled by the 

inclusion of a resistor in series with an ideal voltage source: 

 

vvs

i

practical source

Rsv

i

v

terminal characteristic

vs

R sv

1

vs

Rsv

 

 

Figure 4.4 

An ideal voltage 
source, and its 
terminal 
characteristic 

A practical voltage 
source, and its 
terminal 
characteristic 
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The terminal characteristic of the practical voltage source is given by KVL: 

iRvv svs   (4.2) 

The resistance svR  is known as the internal resistance or output resistance. 

This resistor (in most cases) is not a real physical resistor that is connected in 

series with a voltage source – it merely serves to account for a terminal voltage 

which decreases as the load current increases. 

The applicability of this model to a practical source depends on the device and 

the operating conditions. For example, a DC power supply such as found in a 

laboratory will maintain a linear relationship in its terminal characteristic over 

a larger range of currents than a chemical battery. 

When we attach a load to a practical voltage source: 

 

iL

vLvs

Rsv

RL

 

 

Figure 4.5 

we get a load voltage which is always less than the open-circuit voltage, and 

given by the voltage divider rule: 

ss

Lsv

L
L vv

RR

R
v 




 
(4.3) 

The load current will also be less than we expect from an ideal source: 

L

s

Lsv

s
L

R

v

RR

v
i 




 
(4.4) 

The terminal 
characteristic of a 
practical voltage 
source… 

…shows the effect 
of the internal 
resistance 

A load attached to a 
practical voltage 
source will always 
exhibit less voltage 
and current than the 
ideal case 
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4.3.2 Practical Current Sources 

The ideal current source is defined as a device whose current is independent of 

the voltage across it. Graphically, it’s characteristic is: 

 

i

v

terminal characteristic

vis

i

ideal source

is

 

 

Figure 4.6 

The ideal current source can support any terminal voltage regardless of the load 

resistance to which it is connected, and an unlimited amount of power. An 

ideal current source is nonexistent in the real world. For example, transistor 

circuits and op-amp circuits can deliver a constant current to a wide range of 

load resistances, but the load resistance can always be made sufficiently large 

so that the current through it becomes very small. Such behaviour can be 

modelled by the inclusion of a resistor in parallel with an ideal current source: 

 

vis

i

practical source

Rsi

i

v

terminal characteristic

R si

1 is

isRsi

 

 

Figure 4.7 

An ideal current 
source, and its 
terminal 
characteristic 

A practical current 
source, and its 
terminal 
characteristic 
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The terminal characteristic of the practical current source is given by KCL: 

si

s
R

v
ii 

 

or  iRiRv sissi   

(4.5) 

When we attach a load to a practical current source: 

 

vL

iL

RL
is Rsi

 

 

Figure 4.8 

we get a load current which is always less than the short-circuit current, and 

given by the current divider rule: 

ss

Lsi

si
L ii

RR

R
i 




 
(4.6) 

The load voltage will also be less than we expect from an ideal source: 

sL

Lsi

sLsi
L iR

RR

iRR
v 




 
(4.7) 

 

The terminal 
characteristic of a 
practical current 
source 

A load attached to a 
practical current 
source will always 
exhibit less voltage 
and current than the 
ideal case 
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4.3.3 Practical Source Equivalence 

We define two sources as being equivalent if each produces identical current 

and identical voltage for any load which is placed across it terminals. With 

reference to the practical voltage and current source terminal characteristics: 

 

i

v

practical current source

R si

1 is

isRsi

i

v

practical voltage source

vs

R sv

1

vs

Rsv

 

 

Figure 4.9 

we can easily establish the conditions for equivalence. We must have: 

ssisv RRR   (4.8) 

so that the slopes of the two terminal characteristics are equal. We now let sR  

represent the internal resistance of either practical source. To achieve the same 

voltage and current axes intercepts, we must have, respectively: 

ssis iRv   and  s

sv

s i
R

v


 (4.9) 

But since ssisv RRR  , these two relations turn into just one requirement: 

sss iRv   (4.10) 

If practical sources 
are equivalent then 
they have the same 
internal resistance 

The relationship 
between a practical 
voltage source and 
a practical current 
source 
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We can now transform between practical voltage and current sources: 

 

vis

i

practical current source

Rsvvs

i

practical voltage source

Rs

isRs= =
Rs

vs

 

 

Figure 4.10 

EXAMPLE 4.5 Equivalent Practical Sources 

Consider the practical current source shown below: 

3 A 2

 

Since its internal resistance is  2 , the internal resistance of the equivalent 

practical voltage source is also  2 . The voltage of the ideal voltage source 

contained within the practical voltage source is V 632  sss iRv . The 

equivalent practical voltage source is shown below: 

2

6 V

 

 

The equivalence of 
practical sources 
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4.3.4 Maximum Power Transfer Theorem 

Consider a practical DC voltage source: 

 

IL

VLVs

Rs

RL

 

 

Figure 4.11 

The power delivered to the load LR  is: 

 2
2

2

Ls

sL
LLL

RR

VR
IRP




 
(4.11) 

Assume that SV  and SR  are known and fixed, and that LR  is allowed to vary. 

A graph of the load power LP  versus load resistance LR  is shown below: 

 

R L

PL

R L max

PLmax

 

 

Figure 4.12 

 

A graph of the 
power delivered to a 
load versus the load 
resistance shows 
clearly that a peak 
occurs at a certain 
resistance 
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To find the value of 
LR  that absorbs maximum power from the practical 

source, we differentiate with respect to 
LR  (using the quotient rule): 

    
 4

222
2

Ls

LsLssLs

L

L

RR

RRRVVRR

R

P









 

(4.12) 

and equate the derivative to zero to obtain the relative maximum: 

    02
2

 LsLLs RRRRR  (4.13) 

or: 

sL RR   (4.14) 

Since the values 0LR  and LR  both give a minimum ( 0LP ), then this 

value is the absolute maximum (and not just a relative maximum). 

Since we have already proved the equivalence between practical voltage and 

current sources, we have proved the following maximum power transfer 

theorem: 

An independent voltage source in series with a resistance sR , 

or an independent current source in parallel with a resistance sR , 

delivers a maximum power to that load resistance LR  when 

sL RR  . 

(4.15) 

We can only apply the maximum power transfer theorem when we have 

control over the load resistance, i.e. if we know the source resistance, then we 

can choose sL RR   to maximize power transfer. On the other hand, if we are 

given a load resistance and we are free to design or choose a source resistance, 

we do not choose Ls RR   to maximize power transfer – by examining 

Eq. (4.11), we see that for a voltage source we should choose 0sR  (and for a 

current source we should choose sR ). 

The load resistance 
which maximizes 
power delivered 
from a practical 
source 

The maximum 
power transfer 
theorem… 

…only applies to a 
choice of load 
resistor 
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If we choose sL RR   to obtain maximum power transfer to a load, then by 

Eq. (4.11) that maximum power is: 

s

s

L

s
L

R

V

R

V
P

44

22

max 
 

(4.16) 

There is a distinct difference between drawing maximum power from a source 

and delivering maximum power to a load. If the load is sized such that 

sL RR  , it will receive maximum power from that source. However, 

considering just the practical source itself, we draw maximum possible power 

from the ideal voltage source by drawing the maximum possible current – 

which is achieved by shorting the source’s terminals. However, in this extreme 

case, we deliver zero power to the “load” (a 0 Ω resistor). 

Power matching is used in three situations: 

 where the signal levels are very small, so any power lost gives a worse 

signal to noise ratio. e.g. in antenna to receiver connections in television, 

radio and radar. 

 high frequency electronics 

 where the signal levels are very large, where the maximum efficiency is 

desirable on economic grounds. e.g. a broadcast antenna, audio amplifier. 

The maximum 
power delivered 
from a practical 
source 
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EXAMPLE 4.6 Power Transfer 

Consider the circuit shown below: 

IL

VL18 V RL

2

 

We want to determine the values of the load resistor that draw half the 

maximum power deliverable by the practical source. The maximum power 

deliverable by the source is: 

 W5.40
24

18

4

22

max 



s

s

L
R

V
P  

Half the maximum power deliverable is therefore 20.25 W. The power 

dissipated by the load resistor is: 

2

2















Ls

s
LLLL

RR

V
RIRP  

Substituting values gives: 

 

 

0412

162

2

324

2

18
25.20

2

2

2

2



















LL

LL

L

L

L

L

RR

RR

R

R

R
R

 

Solving this quadratic gives: 








 3431.0or    66.11

326

2

441212 2

LR
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4.4 Thévenin’s and Norton’s Theorem 

Thévenin’s and Norton’s theorems greatly simplify the analysis of many linear 

circuits. Léon Thévenin was a French engineer working in telegraphy who first 

published a statement of the theorem in 1883. Edward Norton was a scientist 

with the Bell Telephone Laboratories who mentioned his theorem in a 

technical memorandum in 1926, but never published it. 

Thévenin’s theorem tells us that it is possible to replace a large portion of a 

linear circuit (often a complicated and / or uninteresting portion) by an 

equivalent circuit containing only an independent voltage source in series with 

a resistor: 

 

rest

of

circuit

vTh

RTh

large

portion

of

linear

circuit

rest

of

circuit

Thévenin equivalent circuit  

 

Figure 4.13 

Norton’s theorem is the dual of Thévenin’s theorem, and uses a current source: 

 

rest

of

circuit

large

portion

of

linear

circuit

rest

of

circuit

Norton equivalent circuit

iN RN

 

 

Figure 4.14 

Thévenin’s theorem 
allows us to replace 
part of a circuit with 
a practical voltage 
source 

Norton’s theorem 
allows us to replace 
part of a circuit with 
a practical current 
source 
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We can state Thévenin’s theorem formally as: 

Given any linear circuit, rearrange it in the form of two circuits 

A and B that are connected together at two terminals. 

If either circuit contains a dependent source, its control variable 

must be in the same circuit. 

Define a voltage ocv  as the open-circuit voltage which would 

appear across the terminals of A if B were disconnected so that 

no current is drawn from A. Then all the currents and voltages in 

B will remain unchanged if A has all its independent sources set 

to zero and an independent voltage source ocv  is connected in 

series with the inactive A network. 

(4.17) 

The inactive circuit A will always reduce to a single resistor, which we call the 

Thévenin resistance, ThR . Also, since ocv  appears as an independent voltage 

source in the Thévenin equivalent circuit, it is also denoted as Thv . 

We can state Norton’s theorem formally as: 

Given any linear circuit, rearrange it in the form of two circuits 

A and B that are connected together at two terminals. 

If either circuit contains a dependent source, its control variable 

must be in the same circuit. 

Define a current sci  as the short-circuit current which would 

appear across the terminals of A if B were short-circuited so that 

no voltage is provided by A. Then all the voltages and currents in 

B will remain unchanged if A has all its independent sources set 

to zero and an independent current source sci  is connected in 

parallel with the inactive A network. 

(4.18) 

The inactive circuit A will always reduce to a single resistor, which we call the 

Norton resistance, NR . Also, since sci  appears as an independent current 

source in the Norton equivalent circuit, it is also denoted as Ni . 

Thévenin’s theorem 

Norton’s theorem 
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The Thévenin or Norton equivalent circuit allows us to draw a new simpler 

circuit and make rapid calculations of the voltage, current, and power. It also 

allows us to easily choose a “load” resistance for maximum power transfer. 

EXAMPLE 4.7 Thévenin and Norton Equivalent Circuits 

Consider the circuit shown below: 

3

12 V 6

7

Circuit A Circuit B

RL

 

The broken lines separate the original circuit into circuits A and B. We shall 

assume that our main interest is in circuit B, which consists only of a “load” 

resistor LR . To form the Thévenin equivalent circuit, we disconnect circuit B 

and use voltage division to determine that V 8ocv . When we set all 

independent sources in circuit A to zero, we replace the 12 V source with a 

short-circuit. “Looking back” into the inactive A circuit, we “see” a  7  

resistor connected in series with the parallel combination of  6  and  3 . 

Thus, the inactive A circuit can be represented by a  9  resistor. If we now 

replace circuit A by its Thévenin equivalent circuit, we have: 

 

9

8 V

Circuit A
Circuit BThévenin equivalent of

RL
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Note that the Thévenin equivalent circuit we have obtained for circuit A is 

completely independent of circuit B – an equivalent for A may be obtained no 

matter what arrangement of elements is connected to the A circuit, even if 

circuit B is nonlinear! 

From the viewpoint of the load resistor 
LR , the Thévenin equivalent circuit is 

identical to the original; from our viewpoint, the circuit is much simpler and we 

can now easily compute various quantities. For example, the power delivered 

to the load is: 

L

L

L R
R

P

2

9

8










  

Furthermore, we can now easily see that the maximum voltage which can be 

obtained across LR  is 8 V when LR . A quick transformation of the 

Thévenin equivalent circuit to a practical current source (the Norton 

equivalent) indicates that the maximum current which may be delivered to the 

load is A 98  for 0LR . The maximum power transfer theorem shows that a 

maximum power is delivered to LR  when   9LR . None of these facts is 

readily apparent from the original circuit. 
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To form the Norton equivalent circuit, we short-circuit the B circuit and use the 

current divider rule to discover: 

A  
9

8

81

72

4239

72

76

76
3

12

76

6





























sci  

When we set all independent sources in circuit A to zero, we get the same 

results as for the Thévenin circuit, and so   9NR . The Norton equivalent 

circuit is therefore: 

98/9 A

Circuit A
Circuit BNorton equivalent of

RL

 

It should be apparent from the previous example that we can easily find the 

Norton equivalent circuit from the Thévenin equivalent circuit, and vice versa, 

by a simple source transformation. Using our previous results, we must have: 

NTh RR   (4.19) 

Because of this result, we usually just refer to the resistor in either equivalent 

circuit as the Thévenin resistance, ThR . 

We also have: 

scThoc iRv   (4.20) 

 

The Thévenin and 
Norton equivalent 
resistances are the 
same 

The relationship 
between the 
Thévenin and 
Norton equivalent 
circuits 
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EXAMPLE 4.8 Thévenin and Norton Equivalent Circuits 

Consider the circuit shown below: 

2

4 V

Circuit A Circuit B

3

12 A

 

The Thévenin and Norton equivalent circuits are desired from the perspective 

of the  1  resistor. We determine ThR  for the inactive network, and then find 

either ocv  or sci . Making the independent sources inactive, we have: 

2 3

 

We thus have   5ThR . The open-circuit voltage can be determined using 

superposition. With only the 4 V source operating , the open-circuit voltage is 

4 V. When only the 2 A source is on, the open-circuit voltage is also 4 V. Thus, 

with both sources operating, we have V 8ocv . This determines the Thévenin 

equivalent, and from it the Norton equivalent, shown below: 

5

8 V 1 5 11.6 A
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We will often find it convenient to determine either the Thévenin or Norton 

equivalent by finding both the open-circuit voltage and the short-circuit 

current, and then determining the Thévenin resistance by: 

sc

oc
Th

i

v
R 

 
(4.21) 

This is especially true for circuits that contain dependent sources. 

EXAMPLE 4.9 Thévenin Equivalent with Mixed Sources 

Consider the circuit shown below: 

2

4 V

3

4

vx vx

 

To find ocv  we note that ocx vv  , and that the dependent source current must 

pass through the  2  resistor since there is an open circuit to the right. KCL at 

the top of the dependent source gives: 

V 8

0
42

4






oc

ococ

v

vv

 

Upon short-circuiting the output terminals, it is apparent that 0xv  and the 

dependent current source is zero. Hence   A 8.0324 sci . Thus 

  108.08scocTh ivR  and the Thévenin equivalent is: 

10

8 V

 

The Thévenin 
equivalent 
resistance can be 
obtained from the 
open-circuit voltage 
and short-circuit 
current 
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If a circuit contains only dependent sources and no independent sources, then 

the circuit qualifies as the inactive A circuit and 0ocv  and 0sci . We seek 

the value of ThR  represented by the circuit, but in this case scocTh ivR   is 

undefined, and we must use a different approach. We apply either an 

independent voltage source or an independent current source externally to the 

A circuit and “measure” the resultant current or voltage. 

EXAMPLE 4.10 Thévenin Equivalent with Dependent Source Only 

Consider the circuit shown below: 

3

2

i

1.5i

 

If we apply a 1 A source externally, and “measure” the resultant voltage, then 

1vRTh  : 

3

2

i

1.5i 1 Av

 

We see that A 1i  and KCL gives: 

 
01

23

15.1


 vv
 

so that V 6.0v  and   6.0ThR . The Thévenin equivalent is: 

0.6

 

If a circuit does not 
contain independent 
sources, then one 
must be applied to 
obtain the Thévenin 
equivalent 
resistance 
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4.4.1 Summary of Finding Thévenin Equivalent Circuits 

We have seen three approaches to finding the Thévenin equivalent circuit. The 

first example contained only independent sources and resistors, and we could 

use several different methods on it. One involved finding ocv  for the active 

circuit, and then ThR  for the inactive circuit. We could also have found sci  and 

ThR , or ocv  and sci . In the second example, both independent and dependent 

sources were present, and the method we used required us to find  ocv  and sci . 

The last example did not contain any independent sources, and we found ThR  

by applying a 1 A source and finding 1vRTh  . We could also have applied a 

1 V source and determined iRTh 1 .  

These important techniques and the types of circuits to which they may be 

applied most readily are indicated in the table below: 

 Circuit contains 

 

 

Methods 

 

  

 

 

ThR  and ocv  or sci   – – 

ocv  and sci  Possible 
 – 

A 1i  or V 1v  – –  

Table 4.1 – Suitable methods to obtain the Thévenin equivalent circuit 

Suitable 
methods to 
obtain the 
Thévenin 
equivalent 
circuit 
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All possible methods do not appear in the table. Another method has a certain 

appeal because it can be used for any of the three types of circuit tabulated. 

Simply label the terminals of the A circuit as v, define the current leaving the 

positive polarity as i, then analyse the A circuit to obtain an equation in the 

form iRvv Thoc  . 

EXAMPLE 4.11 Thévenin Equivalent Using a Linear Equation 

Consider the circuit shown below: 

2

4 V

3

2 A

i

v

v1

 

KCL at the middle node gives: 

iv

i
v

28

02
2

4

1

1






 

KVL at the output gives: 

iRv

i

ivv

Thoc 





58

31

 

from which V 8ocv  and   5ThR , as before: 

5

8 V

i

v

 

A method to obtain 
the Thévenin 
equivalent circuit 
that works for all 
circuits 
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EXAMPLE 4.12 Thévenin Equivalent Using a Linear Equation 

Consider the circuit shown below: 

2

4 V

3

4

v
v

iv1

 

KCL at the middle node gives: 

i
v

v

i
vv

2
2

4

0
42

4

1

1






 

KVL at the output gives: 

iRv

i

i
v

ivv

Thoc 







108

5
2

4

31

 

from which V 8ocv  and   10ThR , as before: 

10

8 V
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EXAMPLE 4.13 Thévenin Equivalent Using a Linear Equation 

Consider the circuit shown below: 

3

2

i

1.5i v

 

KCL at the top right node gives: 

iRv

iv

iv

i
viv

Thoc 








6.00

035

0
23

5.1

 

from which V 0ocv  and   6.0ThR , as before: 

0.6

 

This procedure is universally applicable, but one of the other methods is 

usually easier and quicker to perform. 



4.32 

Index Summary PMcL   

4 - Circuit Analysis Techniques  2017 

4.5 Summary 

 A linear circuit is one that contains linear elements, independent sources, 

and linear dependent sources. For a linear circuit, it is possible to show that 

“the response is proportional to the source”. 

 The superposition theorem states that, in evaluating the “response” in a 

linear circuit due to several sources, we are free to treat each independent 

source separately, collectively, or in any number of parts, and then 

superpose the response caused by each part. 

 A practical voltage source consists of an ideal voltage source sv  in series 

with a resistance svR . A practical current source consists of an ideal current 

source si  in parallel with a resistance siR . The practical sources can be 

made equivalent by setting ssisv RRR   and sss iRv  . 

 The maximum power transfer theorem states that if we know the source 

resistance sR  of a practical source, then to maximize power transfer to a 

load LR , we set sL RR  . 

 Thévenin’s theorem tells us that it is possible to replace a large portion of a 

linear circuit by an equivalent circuit containing only an independent 

voltage source in series with a resistor.  

 Norton’s theorem tells us that it is possible to replace a large portion of a 

linear circuit by an equivalent circuit containing only an independent 

current source in parallel with a resistor. 

 There are several methods that can be applied to determine a Thévenin or 

Norton equivalent circuit. Some methods are only applicable to certain 

circuits, and the most convenient analysis method should be chosen. 

4.6 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

Find the power dissipated in the  20  resistor of the circuit shown below by 

each of the following methods: 

(a) nodal equations 

(b) mesh equations 

(c) source transformations to eliminate all current sources, then a method of 

your choice 

(d) source transformations to eliminate all voltage sources, followed by any 

method you wish. 

27 V 4 6 A

1

5

20

 

2. 

The circuit shown below contains a dependent source. Use superposition to 

find I . 

2

3

1

I

5Vx

-4 V

2 A

Vx
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3. 

Consider the linear circuit shown below. 

vx

is2is1 Circuit

Linear

 

(a) The circuit contains only resistors. If A 81 si  and A 122 si , xv  is found 

to be 80 V. However, if A 81 si  and A 42 si , then V 0xv . Find xv  

when A 2021  ss ii . 

(b) The circuit now contains a source such that V 40xv  when 

A 021  ss ii . All data in part (a) are still correct. Find xv  when 

A 2021  ss ii . 

4. 

Consider the circuit shown below: 

18 A 2 18 V

1

a

b

6

12

 

(a) Find the Norton equivalent of the circuit. 

(b) If a variable resistor R were placed between terminals a and b, what value 

would result in maximum power being drawn from the terminals? 

(c) Find the maximum power that could be drawn from terminals a and b. 
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5. 

Find the maximum power that can be delivered to a variable R in the circuit 

below: 

20 V

R

21

3 4

 

6. 

In the circuit below, what value of resistance should be connected between 

terminals a-b to draw maximum power? 

3 9 sin(120    ) V

2
a

b

1

4
5vx

vx

t
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7. 

Consider the circuit below: 

iA

iArm

R2

R1 R3I S

 

(a) Determine an expression for the current 
Ai . 

(b) If 2Rrm  , what is the current Ai ? 

(c) What would happen if you tried to build such a circuit with 2Rrm  ? 



5.1 

PMcL Contents Index    

2017  5 - Linear Op-Amp Applications 

5 Linear Op-Amp Applications 
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Introduction 

One of the reasons for the popularity of the op-amp is its versatility. As we 

shall see shortly, you can do almost anything with op-amps! More importantly, 

the IC op-amp has characteristics that closely approach the assumed ideal. This 

implies that it is quite easy to design circuits using the IC op-amp. It also 

means that a real op-amp circuit will work in a manner that is very close to the 

predicted theoretical performance. 

Op-amp circuits which exhibit a linear characteristic (i.e. the response is 

proportional to the source) are known as linear op-amp circuits. They are 

chiefly, but not necessarily, composed of linear circuit elements, such as 

resistors and capacitors, Many important op-amp circuits can be created with 

linear circuit elements. For example, the weighted summer is able to output a 

voltage which is a weighted sum of the input signals. The difference amplifier 

is able to subtract two signals. Integrators, of both the inverting and 

noninverting variety, are used in many control and signal processing 

applications. 

Also, by exploiting the active nature of op-amp circuits, we can develop 

circuits which have no passive equivalent, such as the negative impedance 

converter, and the voltage-to-current converter. 
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5.1 Summing Amplifier 

Consider the circuit shown below: 

 

vo

R f

v1

R1

v2

R2

vn

Rn

 

 

Figure 5.1 – An Inverting Summing Amplifier 

The basic configuration is that of an inverting amplifier. We have a resistance 

fR  in the negative feedback path, but there are a number of input signals, 

1v , 2v , …, nv  each applied to a corresponding resistor 1R , 2R , …, nR  which 

are connected to the inverting terminal of the op-amp. Just like in the inverting 

amplifier configuration, the op-amp and the negative feedback will maintain a 

virtual short-circuit across the op-amp input terminals, and therefore maintain 

the inverting terminal at 0 V. Ohm’s Law then tells us that the currents 

1i , 2i , …, ni  are given by: 

1

1
1

R

v
i 

,  
2

2
2

R

v
i 

, …, 
n

n
n

R

v
i 

 

 

(5.1) 

 

 

An inverting 
summing amplifier 
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All these currents sum together at the inverting terminal, also known as the 

summing junction, to produce the current i: 

niiii  21  (5.2) 

Remembering that the ideal op-amp input terminals are open-circuits, 

application of KCL at the inverting terminal shows that this current is forced 

through fR . The output voltage ov  may now be determined by an application 

of Ohm’s Law and KVL: 

iRiRv ffo  0  (5.3) 

Thus: 









 n

n

fff

o v
R

R
v

R

R
v

R

R
v 2

2

1

1
 

(5.4) 

The output voltage is a weighted sum of the input signals 1v , 2v , …, nv .  This 

circuit is therefore called a weighted summer. Note that each summing 

coefficient may be independently adjusted by varying the corresponding “feed-

in” resistor (
1R  to nR ). This nice property is a consequence of the “virtual 

common” that exists at the inverting op-amp terminal. 
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EXAMPLE 5.1 Summing Amplifier 

We want to design a weighted summer such that 321 42 vvvvo  . 

We can firstly form the sum  211 2 vvvo   by using the circuit: 

vo

v1

v2

20 k

10 k

20 k

1

 

Then we can form  31
4vvv oo   using: 

v3

10 k

10 k

2.5k

vo

vo 1

 

Finally, we can put the two circuits together, in a cascade, to create: 

v3

10 k

10 k

2.5k

vo

v1

v2

20 k

10 k

20 k
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5.2 Difference Amplifier 

A simple difference amplifier can be constructed with four resistors and an 

op-amp, as shown below: 

 

R2

R1

vo

R3

R4

v i1

v i2

 

 

Figure 5.2 – A Difference Amplifier 

There are a number of ways to find the output voltage, but the easiest uses the 

principle of superposition (since the circuit is linear). To apply superposition 

we first reduce 2iv  to zero – that is, connect the terminal to which 2iv is applied 

to the common – and then find the corresponding output voltage, which will be 

due entirely to 1iv . We denote this output 1ov , as shown in (a) below: 

 

R2

R1

R3 R4

v i1

vo1

R2

R1

R3

R4

v i2

vo2

(a) (b)  

 

Figure 5.3 – Analyzing a Difference Amplifier 

The difference 
amplifier 

Analyzing a 
difference amplifier 
using superposition 
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We recognize the (a) circuit as that of an inverting amplifier. The existence of 

3R  and 
4R  does not affect the gain expression, since there is no current in 

either of them. Thus: 

1

1

2
1 io v

R

R
v 

 
(5.5) 

Next, we reduce 1iv  to zero and evaluate the corresponding output voltage 2ov . 

The circuit will now take the form shown in Figure 5.3(b), which we recognize 

as the noninverting configuration with an additional voltage divider, made up 

of 3R  and 4R , connected across the input 2iv . The output voltage 2ov  is 

therefore given by: 

2

43

4

1

2
2 1 io v

RR

R

R

R
v











 
(5.6) 

The superposition principle tells us that the output voltage ov  is equal to the 

sum of 1ov  and 2ov . Thus we have: 

2

43

12
1

1

2

1

1
iio v

RR

RR
v

R

R
v






 
(5.7) 

To act as a difference amplifier, the output must produce a signal which is 

proportional to 12 ii vv  . That is, the coefficients of 1iv  and 2iv  in Eq. (5.7) 

must be equal in magnitude but opposite in sign. This requirement leads to the 

condition: 

43

12

1

2

1

1

RR

RR

R

R






 
(5.8) 
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Simplifying we get: 

3

4

1

2

R

R

R

R


 
(5.9) 

Substituting in Eq. (5.7) results in the output voltage: 

 12

1

2
iio vv

R

R
v 

 
(4.1) 

Thus, if we choose 1234 RRRR   then we have produced a difference 

amplifier with a gain of 
12 RR . 

EXAMPLE 5.2 Difference Amplifier 

A difference amplifier with an input resistance of k 20  and a gain of 10 is 

shown below: 

vo

100 k

10 k

v i 10 k

100 k

v i=10

 

Note that “input resistance” is defined as the resistance “seen” between the two 

input terminals. Thanks to the virtual short-circuit at the op-amp input 

terminals, KVL around the input resistors gives  k 20inR . 

The output of a 
difference amplifier 
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5.3 Inverting Integrator 

An inverting integrator, also known as the Miller integrator after its inventor, is 

shown below: 

 

vo

v i

C

R

 

 

Figure 5.4 – The Miller Integrator 

We use the virtual short-circuit concept to analyse the circuit (it is essentially 

the same analysis as for the inverting amplifier). KCL at the inverting terminal, 

which is held at 0 V by the op-amp and negative feedback, gives: 

dt

dv
C

R

v oi 
 

(5.10) 

and therefore: 

     0
1  

0 
o

t

io vdttv
RC

tv    
(4.2) 

Thus,  tvo  is the time integral of  tvi , and  0ov  is the initial condition of 

this integration process. The product RC has units of time and is called the 

integration time constant. This integrator circuit is inverting because of the 

minus sign in front of the integral. 

The inverting 
integrator 
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Unfortunately, for DC input voltages, the op-amp circuit is operating as an 

open-loop, which is easily seen when we recall that capacitors behave as open 

circuits with DC. Thus, the above analysis does not apply, since there is no 

virtual short circuit. With an ideal op-amp and a DC input voltage, there is no 

current and iv  appears at the inverting terminal – the resulting output of the 

ideal op-amp will be infinite. In practice the output of a real op-amp will 

saturate close to one of the supply rail voltages (depending on the sign of the 

DC input voltage). 

A practical circuit that alleviates this problem is shown below: 

 

vo

C

R

R f

v i

 

 

Figure 5.5 – A Practical Approximation to the Miller Integrator 

This circuit provides a feedback path for DC voltages (i.e. the op-amp circuit is 

operating in a closed-loop) and prevents the output from saturating. To keep 

the DC offset at the output of the integrator low, we should select a small fR . 

Unfortunately, however, the lower the value of fR , the less ideal the integrator 

becomes. Thus selecting a value for fR  is a trade-off between DC 

performance and integrator performance. 
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5.4 Differentiator 

An ideal differentiator is shown below: 

 

C

vo

v i

R

 

 

Figure 5.6 – The Differentiator 

We use the virtual short circuit concept again to analyze the circuit. KCL at the 

inverting terminal, which is held at 0 V by the op-amp and negative feedback, 

gives: 

R

v

dt

dv
C oi 

 
(5.11) 

and therefore: 

 
dt

dv
RCtv i

o 
 

(5.12) 

Thus,  tvo  is the time derivative of  tvi . 

The very nature of a differentiator circuit causes it to be a “noise magnifier”. 

This is due to spikes introduced at the output every time there is a sharp change 

in the input. For this reason they are rarely used in practice. 

 

The differentiator 
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5.5 Negative Impedance Converter 

A negative impedance1 converter (NIC) is shown below:  

 

R2

R1

R
v i

R in

i i

v i

R1

v i

R1

vo

v i
R1

R2

R

1

v i

 

 

Figure 5.7 – The Negative Impedance Converter 

To investigate the operation of this circuit, we will evaluate the input resistance 

inR  of the circuit. To find 
inR  we apply an input voltage iv  and evaluate the 

input current 
ii . Then, by definition, ii ivR in . 

Owing to the virtual short circuit between the op-amp input terminals, the 

voltage at the inverting terminal will be equal to iv . The current through 1R  

will therefore be 1Rvi . Since the input resistance of the ideal op-amp is 

                                                 

1 Impedance generalises the concept of resistance – as will be seen later with the introduction 

of sinusoidal steady-state analysis, phasors, and reactance. 

The negative 
impedance 
converter 
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infinite, the current through 
2R  will also be 1Rvi . Thus, the voltage at the op-

amp output will be: 

i
i

io v
R

R

R

v
Rvv 










1

2

1

2 1
 

(5.13) 

which we recognise as the output of a normal noninverting amplifier. We now 

apply Ohm’s Law to R and obtain the current through it as: 

 
RR

R
v

R

vRRv 11

1

212 


 
(5.14) 

Since there is no current into the positive input terminal of the op-amp, KCL 

gives: 

1

2

R

R

R

v
ii 

 
(5.15) 

Thus: 

2

1
in

R

R
RR 

 
(5.16) 

That is, the input resistance is negative with a magnitude equal to R, the 

resistance in the positive-feedback path, multiplied by the ratio 21 RR . We 

now see why the circuit is called a negative impedance converter (NIC), where 

R may in general be replaced by an arbitrary circuit element, such as a 

capacitor or inductor. 
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5.6 Voltage-to-Current Converter 

To investigate the NIC further, consider the case rRR  21
, where r is an 

arbitrary value. It follows that RR in
. Let the input be fed with a voltage 

source sV  having a source resistance equal to R, as shown below: 

 

r

r

R

RL

I L

VL

R

Vs

NIC

source

load

 

 

Figure 5.8 – Application of the Negative Impedance Converter 

Utilizing the information gained previously, we can replace the NIC by a 

resistance equal to R : 

 

RL

I L

R

Vs
-R

 

 

Figure 5.9 

A voltage-to-current 
converter, invented 
by Prof. Bradford 
Howland, MIT, 
around 1962 
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The figure below illustrates the conversion of the voltage source to its Norton 

equivalent: 

 

RL

I L

-RR
Vs

R

 

 

Figure 5.10 

Finally, the two parallel resistances R  and R  are combined to produce an 

infinite resistance, resulting in the equivalent circuit: 

 

RL

I L

Vs

R

Vs

R
=

 

 

Figure 5.11 

We see that the load current is given by: 

R

V
I s

L   
(5.17) 

independent of the value of LR !. This is an interesting result; it tells us that the 

circuit of Figure 5.8 acts as a voltage-to-current converter, providing a current 

LI  that is directly proportional to sV  and is independent of the value of the 

load resistance. That is, the output terminal acts as a current-source output, 

with the impedance looking back into the output terminal equal to infinity. 

Note that this infinite resistance is obtained via the cancellation of the positive 

source resistance R  with the negative input resistance R . 
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5.7 Noninverting Integrator 

A specific application of the voltage-to-current converter, where a capacitor C 

is used as a load, is illustrated below: 

 

r

r

R

i =

R
v i

R

C

v i

vo

vL

 

 

Figure 5.12 

From the previous analysis of the voltage-to-current converter we conclude that 

capacitor C will be supplied by a current Rvi i . From the branch 

relationship for a capacitor we conclude: 

R

v

dt

dv
C iL 

 
(5.18) 

and thus: 

     0
1  

0 
L

t

iL vdttv
RC

tv    
(5.19) 

Thus,  tvL  is the time integral of  tvi . 

A noninverting 
integrator, invented 
by Gordon Deboo in 
1966 whilst working 
at the NASA Ames 
Research Centre 
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This circuit has some interesting properties. The integral relationship does not 

have an associated negative sign, as is the case with the Miller integrator. 

Noninverting, or positive, integrators are required in many applications. 

Another useful property is the fact that one terminal of the capacitor is 

connected to common. This would simplify the initial charging of the capacitor 

to  0Lv , as may be necessary to set an initial condition. 

The output of the circuit cannot be taken at the terminal labelled 
Lv  since the 

connection of a load there will change the preceding analysis. Fortunately, a 

voltage source output is available that is proportional to 
Lv  – at the output of 

the op-amp where you can easily verify that Lo vv 2 . Thus the output of the 

circuit is: 

     0
2  

0 
o

t

io vdttv
RC

tv    
(5.20) 
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5.8 Summary 

 The op-amp is a versatile electronic building block. Real op-amps perform 

close to the ideal, making circuit design and verification relatively easy. 

 The inverting summing amplifier: 

vo

R f

v1

R1

v2

R2

vn

Rn

 

has an output equal to: 









 n

n

fff

o v
R

R
v

R

R
v

R

R
v 2

2

1

1
 

 The difference amplifier: 

R2

R1

vo

R1

R2

v i1

v i2

 

has an output equal to: 

 12

1

2
iio vv

R

R
v 
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 The inverting integrator: 

vo

v i

C

R

 

is a poor implementation of an integrator since the op-amp is operating in 

an “open-loop” for DC input voltages, causing the output to saturate. A 

practical approximation that alleviates this problem is: 

vo

C

R

R f

v i

 

 The differentiator: 

C

vo

v i

R

 

has an output equal to: 

 
dt

dv
RCtv i

o 
 

It is rarely used in practice, because it tends to act as a “noise magnifier”. 



5.20 

Index Summary PMcL   

5 - Linear Op-Amp Applications  2017 

 A negative impedance converter (NIC): 

R2

R1

R
v i

R in  

has an input resistance given by: 

2

1
in

R

R
RR 

 

 The Howland voltage-to-current converter: 

r

r

R

RL

I L

VL

R

Vs

 

creates a voltage-controlled current source where: 

R

V
I s

L   
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 The Deboo noninverting integrator: 

r

r

RR
v i

C

vo

 

has an output: 

     0
2  

0 
o

t

io vdttv
RC

tv    

It is a very practical and useful integrator circuit. 
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Exercises 

1. 

Design an op-amp circuit with a 10 kΩ input resistance which converts a 

symmetrical square wave at 1 kHz having 2 V peak-to-peak amplitude and zero 

average value into a triangle wave of 2 V peak-to-peak amplitude. 

2. 

Design a two op-amp circuit with inputs 
1v  and 

2v  and input resistances of 

100 kΩ whose output is 21 10vvvo  . 

3. 

Determine the output voltage of the following circuit: 

v2

v1

vo

60 k

30 k
v3

20 k

20 k

20 k

 

4. 

Design a negative impedance converter having an input resistance of -1 kΩ. 

This circuit is connected to the output terminal of a source whose open-circuit 

voltage is 1 mV and whose output resistance is 900 Ω. What voltage is then 

measured at the output of the source? 



5.23 

PMcL Exercises Index    

2017  5 - Linear Op-Amp Applications 

5. 

Express oi  as a function of iv  for the circuit below: 

v i

R

io

R1

R1

R1

RL

R1
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6 Reactive Components 
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Introduction 

The capacitor is a circuit element whose voltage-current relationship involves 

the rate of change of voltage. Physically, a capacitor consists of two conducting 

surfaces on which a charge may be stored, separated by a thin insulating layer 

which has a very large resistance. Energy is stored in the electric field that 

exists between the capacitor’s two conducting surfaces. In addition, the 

insulating layer may be made of a high permittivity material (such as ceramic) 

which will dramatically increase the capacitance (compared to air). 

The inductor is a circuit element whose voltage-current relationship involves 

the rate of change of current. Physically, an inductor may be constructed by 

winding a length of wire into a coil. Energy is stored in the magnetic field that 

exists around the wire in the coil, and the geometry of a coil increases this field 

compared to a straight wire. In addition, the centre of the coil may be made of a 

ferromagnetic material (such as iron) which will dramatically increase the 

inductance (compared to air). 

Both the capacitor and the inductor are capable of storing and delivering finite 

amounts of energy, but they cannot deliver non-zero average power over an 

infinite time interval. They are therefore passive circuit elements, like the 

resistor. 

The capacitor and inductor are linear circuit elements. Therefore all the circuit 

methods previously studied, such as nodal analysis, superposition, Thévenin’s 

theorem, etc., can be applied to circuits containing capacitors and inductors. 

Lastly, in dealing with the capacitor and inductor in a circuit, we will note that 

the equations describing their behaviour bear a similar resemblance – they are 

the duals of each other. It will be shown that the concept of duality is a 

recurring theme in circuit analysis, and can be readily applied to many simple 

circuits, saving both time and effort. 
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6.1 The Capacitor 

The simplest capacitor is formed by two conductive plates separated by a 

dielectric layer: 

 

d

A



q

v

conductor

insulator

 

 

Figure 6.1 

One of the plates carries a positive charge, q, whilst the other carries an equal 

but opposite charge, -q. Therefore, the capacitor stores charge. There is a 

potential difference, v,  between the plates. Ideally, the amount of charge q 

deposited on the plates is proportional to the voltage v impressed across them. 

We define a constant1 called the capacitance, C, of the structure by the linear 

relationship: 

Cvq   (6.1) 

The unit of capacitance is the farad, with symbol F. 

There is an electric field between the capacitor plates which is established by 

the charges present on the plates. Energy is stored in the capacitor by virtue of 

this electric field. 

                                                 

1 The constant only models the behaviour of the structure under certain operating conditions. 

The capacitance of a structure in the real world will vary with temperature, voltage, pressure, 

frequency, chemical aging, etc, 

A parallel plate 
capacitor 

The definition of 
capacitance 
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The ideal capacitance relationship is a straight line through the origin: 

 

v

q

1

C

 

 

Figure 6.2 

Even though capacitance is defined as vqC  , it should be noted that C is a 

purely geometric property, and depends only on the conductor arrangements 

and the materials used in the construction. For example, it can be shown for a 

thin parallel plate capacitor that the capacitance is approximately: 

d

A
C




 
(6.2) 

where A is the area of either of the two parallel plates, and d is the distance 

between them. The permittivity,  , is a constant of the insulating material 

between the plates.  The permittivity is usually expressed in terms of relative 

permittivity, 
r : 

0 r  (6.3) 

where -1

0 pFm 854.8  is the permittivity of free space (and, for all practical 

purposes, air). 

The capacitor is a 
linear circuit element 

The capacitance of 
a parallel plate 
capacitor 

Relative permittivity 
defined 
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6.1.1 Capacitor v-i Relationships 

We now seek a v-i relationship for the capacitor. From the definition of current: 

dt

dq
i 

 
(6.4) 

we substitute Cvq   and obtain: 

dt

dv
Ci 

 
(6.5) 

The circuit symbol for the capacitor is based on the construction of the physical 

device, and is shown below together with the passive sign convention for the 

voltage and current: 

 

v C

i

 

 

Figure 6.3 

The capacitor voltage may be expressed in terms of the current by integrating 

Eq. (6.5): 

   0

 

 0

1
tvid

C
tv

t

t
  

 
(6.6) 

 

The capacitor’s v-i 
branch derivative 
relationship 

The circuit symbol 
for the capacitor 

The capacitor’s v-i 
branch integral 
relationship 
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EXAMPLE 6.1 Capacitor Voltage and Current Waveforms 

The voltage waveform across a 3 F capacitor is shown below: 

t1

1

0

tv (  )

(s)2 3

(V)

-1  

Since the voltage is zero and constant for 1t , the current is zero in this 

interval. The voltage then begins to increase at the linear rate -1Vs 1dtdv , 

and thus a constant current of A 3 dtdvCi  is produced. During the 

following 2 second interval, the voltage is constant and the current is therefore 

zero. The final decrease of the voltage causes a negative 3 A and no response 

thereafter. The current waveform is sketched below: 

t1

3

0

ti (  )

(s)2 3

(A)

-1

-3
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6.1.2 Energy Stored in a Capacitor 

The power delivered to a capacitor is: 

dt

dv
Cvvip 

 
(6.7) 

and the energy stored in its electric field is therefore: 
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(6.8) 

If the capacitor voltage is zero at 0t , then the electric field, and hence the 

stored capacitor energy,  0twC , is also zero at that instant. We then have: 

   tCvtwC

2

2

1


 
(6.9) 

We can see that the energy stored in a capacitor depends only on the 

capacitance and the voltage. Therefore, a finite amount of energy can be stored 

in a capacitor even if the current through the capacitor is zero. 

Whenever the voltage is not zero, and regardless of its polarity, energy is 

stored in the capacitor. It follows, therefore, that power must be delivered to 

the capacitor for a part of the time and recovered from the capacitor later. 

The stored energy in 
a capacitor 
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EXAMPLE 6.2 Energy Stored in a Capacitor 

A sinusoidal voltage source is connected in parallel with an k 80  resistor and 

a 2 μF capacitor, as shown below: 

2 F80 kvs

 

The k 80  resistor in the circuit represents the dielectric losses present in a 

typical μF 2  capacitor. Let  V 100sin325 tv s  , which corresponds to a 

typical low voltage 230 V RMS household supply. 

The current through the resistor is: 

  mA   100sin063.4 t
R

v
i R   

and the current through the capacitor is: 

     mA   100cos2.204100sin325102 6 tt
dt

d

dt

dv
CiC     

The power delivered to the capacitor is: 

        W200sin18.33100cos2042.0100sin325 tttvip CC    

A graph of the power delivered to the capacitor versus time is shown below: 

33.18

t (ms)

p
C

0 10 15 205-5-10

(W)

-33.18  
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The instantaneous power delivered to the capacitor is sinusoidal, and varies at 

twice the frequency of the voltage source. Negative power delivered to the 

capacitor means that power is sourced from the capacitor. Note that the 

average power dissipated in the capacitor is zero. 

The energy stored in the capacitor is: 

     mJ   100sin6.105100sin325102
2

1

2

1 2262 ttCvwC     

A graph of the stored energy versus time is shown below: 

t (ms)

w
C

0

105.6

10 15 205-5-10

(mJ)

 

The energy stored is sinusoidal and varies at twice the frequency of the voltage 

source, but it also has a finite average component of 52.81 mJ. 

We see that the energy increases from zero at 0t  to a maximum of 105.6 mJ 

at ms 5t and then decreases to zero in another 5 ms. During this 10 ms 

interval, the energy dissipated in the resistor as heat is: 

     mJ   602.6200cos16602.0100sin320.1
01.0 

0 

01.0 

0 

2
01.0 

0 
  dttdttdtpw RR   

Thus, an energy equal to 6.25% of the maximum stored energy is lost as heat in 

the process of storing and removing the energy in the physical capacitor. Later 

we will formalise this concept by defining a quality factor Q that is 

proportional to the ratio of the maximum energy stored to the energy lost per 

period. 
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6.1.3 Summary of Important Capacitor Characteristics 

Several important characteristics of the ideal capacitor are summarised below. 

1. If a constant voltage is held across a capacitor, then 0dtdv  and 

subsequently no current enters (or leaves) it. A capacitor is thus an 

open-circuit to DC. This fact is represented by the capacitor symbol. 

2. A capacitor voltage cannot change instantaneously, for this implies 

dtdv , and the capacitor would require infinite current. Thus, 

capacitor voltage is smooth and continuous. This fact will be used 

frequently when undertaking transient analysis of circuits. 

 

V

t0 t
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tv (  )

t
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V

t0 t
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tv (  )

t
1

t
2

t
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Figure 6.4 

3. For an ideal capacitor, current can change instantaneously. 
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Figure 6.5 

4. An ideal capacitor never dissipates energy, but stores it and releases it 

using its electric field. 

The capacitor is an 
open-circuit to DC 

A capacitor voltage 
cannot change 
instantaneously 
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6.2 The Inductor 

On 21 April 1820, the Danish scientist Ørsted noticed a compass needle 

deflected from magnetic north when an electric current from a battery was 

switched on and off, confirming a direct relationship between electricity and 

magnetism. Three months later he began more intensive investigations and 

soon thereafter published his findings, showing that an electric current 

produces a circular magnetic field. 

An inductor is a two-terminal device, usually constructed as a coil of wire, that 

is designed to store energy in a magnetic field. The coil effectively increases 

the magnetic field by the number of “turns” of wire, and as we shall see, also 

increases the number of “circuits” which “link” the magnetic field. 

An ideal inductor produces a magnetic field which is wholly confined within it. 

The closest approximation to an ideal inductor that we can physically produce 

is a toroid, which has an almost uniform magnetic field confined within it: 

 

B

i

magnetic
field

core

winding

 

 

Figure 6.6 

An electric current 
produces a 
magnetic field 

A toroidal inductor 
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To explain magnetism, 19th century scientists invoked an analogy with fluids 

and postulated the existence of a magnetic fluid, known as magnetic “flux”,  , 

which streamed throughout space and manifested itself as magnetism. 

Magnetic flux always streams out of north poles and into south poles, and 

forms a closed loop. We still use this concept of flux today, as the theory has 

been spectacularly successful. 

If a tube of magnetic flux (which is a closed loop) streams through a closed 

loop of wire (a circuit), then it is said to “link” with the circuit. The amount of 

“flux linkage”,  , is given by: 

 N  (6.10) 

where N is the number of loops of wire, or turns, in the circuit, and   is the 

average amount of magnetic flux streaming through each loop. 

 

N turns


1


2


3


N
...

N = +
1


2
+

3
+ ...+

N
= 

av  

 

Figure 6.7 

An ideal inductor is a structure where the flux linkage (with itself) is directly 

proportional to the current through it. We define a constant, called the self  

inductance, L, of the structure by the linear relationship: 

Li  (6.11) 

The unit of inductance is the henry, with symbol H. 

Magnetic flux 
defined 

Magnetic flux 
linkage defined 

Magnetic flux 
linkage shown 
graphically 

The definition of 
inductance 
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The ideal inductance relationship is a straight line through the origin: 

 

i



1

L

 

 

Figure 6.8 

Even though inductance is defined as iL  , it should be noted that L is a 

purely geometric property, and depends only on the conductor arrangements 

and the materials used in the construction. 

For example, it can be shown for a closely wound toroid that the inductance is 

approximately: 

l

A
NL

2
 

(6.12) 

where A is the cross-sectional area of the toroid material, and l is the mean path 

length around the toroid. The permeability,  , is a constant of the material 

used in making the toroid.  The permeability is usually expressed in terms of 

relative permeability, 
r : 

0 r  (6.13) 

where -1

0 nHm 400   is the permeability of free space (and, for all practical 

purposes, air). 

The inductor is a 
linear circuit element 

The inductance of a 
toroidal inductor 

Relative 
permeability defined 
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6.2.1 Inductor v-i Relationships 

We now seek a v-i relationship for the inductor. In 1840, the great British 

experimentalist Michael Faraday2 discovered that a changing magnetic field 

could induce a voltage in a neighbouring circuit, or indeed the circuit that was 

producing the magnetic field. Faraday’s Law states that the induced voltage is 

equal to the rate-of-change of magnetic flux linkage: 

dt

d
v




 
(6.14) 

The minus sign comes from the fact that the polarity of the induced voltage is 

such as to oppose the change in flux. For an inductor, we can figure out that the 

polarity of the induced voltage must be positive at the terminal where the 

current enters the inductor. If we know this, then we can mark the polarity on a 

circuit diagram and deal with the magnitude of the induced voltage by 

dropping the minus sign (the determination of the voltage polarity is called 

Lenz’s Law). 

If we allow the polarity to be set by Lenz’s Law, and substitute Li  into the 

previous equation, then we get: 

dt

di
Lv 

 
(6.15) 

 

                                                 

2 The American inventor Joseph Henry discovered this phenomenon independently, but 

Faraday was the first to publish. 

Faraday’s Law 

The inductor’s v-i 
branch derivative 
relationship 
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The circuit symbol for the inductor is based on the construction of the physical 

device, and is shown below together with the passive sign convention for the 

voltage and current: 

 

v L

i

 

 

Figure 6.9 

The inductor current may be expressed in terms of the voltage by integrating 

Eq. (6.15): 

   0

 

 0

1
tivd

L
ti

t

t
  

 
(6.16) 

 

The circuit symbol 
for the inductor 

The inductor’s v-i 
branch integral 
relationship 
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EXAMPLE 6.3 Inductor Current and Voltage Waveforms 

The variation of current through a 25 mH inductor as a function of time is 

shown below: 

1

20

0
t (ms)

2 3

ti (  ) (mA)

-1 4 5

10

-10
 

Since the current is constant for 0t , the voltage is zero in this interval. The 

current then begins to increase at the linear rate -1As 10dtdi , and thus a 

constant voltage of mV 250 dtdiLv  is produced. During the following 

2 millisecond interval, the current decreases at the linear rate -1As 15dtdi , 

and so the voltage is mV 375 dtdiLv . The final increase of the current 

causes a positive 125 mV and no response thereafter. The voltage waveform is 

sketched below: 

-200

1

400

0
t (ms)

2 3

tv (  ) (mV)

-1 4 5

200

-400  
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EXAMPLE 6.4 Inductor Current, Voltage and Power Waveforms 

Consider the simple circuit below: 

2 Hvi

 

Let the current  ti  which is produced by the source be described by the 

function of time shown below: 

1

0
t (s)

1

ti (  ) (A)

2

 

Since dtdidtdiLv 2  then the voltage across the inductor is as shown 

below: 

-1

2

0
t (s)

1

tv (  ) (V)

2

1

-2  



6.18 

Index The Inductor PMcL   

6 - Reactive Components  2017 

We know that a resistor always absorbs power and the energy absorbed is 

dissipated as heat – but how about an inductor? For the inductor in this 

example, the instantaneous power      titvtp   absorbed by the inductor is 

given by the graph below: 

-1

2

0
t (s)

1

tp(  ) (W)

2

1

-2
 

We see that the power absorbed by the inductor is zero for 0 t  and 

 t2 . For 10  t , since  tp  is a positive quantity, the inductor is 

absorbing power (which is produced by the source). However, for 21  t , 

since  tp  is a negative quantity, the inductor is actually supplying power (to 

the source). 

To get the energy absorbed by the inductor, we simply integrate the power 

absorbed over time. For this example, the energy absorbed increases from 0 to 

   J 121
2
1   as time goes from 0t  to s 1t . However, from 1t  to s 2t , 

the inductor supplies energy such that at time s 2t  and thereafter, the net 

energy absorbed by the inductor is zero. Since all of the energy absorbed by the 

inductor is not dissipated but is eventually returned, we say that the inductor 

stores energy. The energy is stored in the magnetic field that surrounds the 

inductor. 
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6.2.2 Energy Stored in an Inductor 

The power delivered to an inductor is: 

i
dt

di
Lvip 

 
(6.17) 

and the energy stored in its magnetic field is therefore: 

   

 

 

 
 

      00

22

0

 

 

0

 

 

0

 

 

2

1

0

0

0

twtitiL

twidiL

twdt
dt

di
iL

twpdttw

L

L

ti

ti

L

t

t

L

t

t
L















 

(6.18) 

If the inductor current is zero at 0t , then the magnetic field, and hence the 

stored inductor energy,  0twL  , is also zero at that instant. We then have: 

   tLitwL

2

2

1


 
(6.19) 

We can see that the energy stored in an inductor depends only on the 

inductance and the current. Therefore, a finite amount of energy can be stored 

in an inductor even if the voltage across the inductor is zero. 

Whenever the current is not zero, and regardless of its direction, energy is 

stored in the inductor. It follows, therefore, that power must be delivered to the 

inductor for a part of the time and recovered from the inductor later. 

The stored energy in 
an inductor 
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EXAMPLE 6.5 Energy Stored in an Inductor 

A sinusoidal current source is connected in series with a m 100  resistor and a 

3 mH inductor, as shown below: 

3 mH

100 m

vR

vLis

 

The m 100  resistor in the circuit represents the resistance of the wire which 

must be associated with the physical coil. Let  A 100sin12 ti s  . 

The voltage across the resistor is: 

  V   100sin2.1 tRivR   

and the voltage across the inductor is: 

     V   100cos31.11100sin12103 3 tt
dt

d

dt

di
LvL     

The power delivered to the inductor is: 

        W200sin86.67100sin12100cos31.11 tttivp LL    

A graph of the power delivered to the inductor versus time is shown below: 

67.86

t (ms)

p
L

0 10 15 205-5-10

(W)

-67.86  
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The instantaneous power delivered to the inductor is sinusoidal, and varies at 

twice the frequency of the current source. Negative power delivered to the 

inductor means that power is sourced from the inductor. Note that the average 

power dissipated in the inductor is zero. 

The energy stored in the inductor is: 

     mJ   100sin216100sin12103
2

1

2

1 2232 ttLiwL     

A graph of the stored energy versus time is shown below: 

t (ms)

w
L

0

216

10 15 205-5-10

(mJ)

 

The energy stored is sinusoidal and varies at twice the frequency of the current 

source, but it also has a finite average component of 108 mJ. 

We see that the energy increases from zero at 0t  to a maximum of 216 mJ at 

ms 5t and then decreases to zero in another 5 ms. During this 10 ms interval, 

the energy dissipated in the resistor as heat is: 

     mJ   72200cos12.7100sin4.14
01.0 

0 

01.0 

0 

2
01.0 

0 
  dttdttdtpw RR   

Thus, an energy equal to 33.33% of the maximum stored energy is lost as heat 

in the process of storing and removing the energy in the physical inductor. 

 

 



6.22 

Index The Inductor PMcL   

6 - Reactive Components  2017 

6.2.3 Summary of Important Inductor Characteristics 

Several important characteristics of the ideal inductor are summarised below. 

1. If a constant current is passed through an inductor, then 0dtdi  and 

subsequently no voltage appears across it. An inductor is thus a short-

circuit to DC. 

2. An inductor current cannot change instantaneously, for this implies 

dtdi , and the inductor would require infinite voltage. Thus, 

inductor current is smooth and continuous. This fact will be used 

frequently when undertaking transient analysis of circuits. 

 

I

t0 t
0

ti (  )

t
1

I

t0 t
0

ti (  )

t
1

t
2

t
3  

 

Figure 6.10 

3. For an ideal inductor, voltage can change instantaneously. 

 

20

0 1 2 3 4 t (ms)

t (ms)

5

0

i

1 2 3 4

v= L
di

dt

 

 

Figure 6.11 

4. An ideal inductor never dissipates energy, but stores it and releases it 

using its magnetic field. 

The inductor is a 
short-circuit to DC 

An inductor current 
cannot change 
instantaneously 
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6.3 Practical Capacitors and Inductors 

Practical capacitors and inductors are manufactured for different values, 

voltage and current ratings, accuracy, volumetric efficiency, temperature 

stability, etc. As such, their construction will play a role in their electrical 

behaviour. To represent these physical components in a circuit we need to 

model their non-ideal and parasitic effects. 

6.3.1 Capacitors 

There are many different types of capacitor construction. Some are shown 

below, labelled by the type of dielectric: 

 

polystyrene 

 

polypropylene 

 

polycarbonate 

 

 

PTFE (Teflon) 

 

polyester 

 

paper 

 

ceramic 

 

 

tantalum electrolytic 

 

 

aluminium electrolytic 

Figure 6.12 – Some types of capacitors 

Practical 
components have 
non-ideal and 
parasitic effects 

Some types of 
capacitors 
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A reasonably accurate circuit model of a real capacitor is shown below: 

 

C
Rs

Ls

Rp

 

 

Figure 6.13 

In the model, the series resistance sR  takes into account the finite resistance of 

the plates used to make the capacitor. The series inductance sL  is used to 

model the fact that a current is required to charge and discharge the plates, and 

this current must have a magnetic field. Finally, no practical material is a 

perfect insulator, and the resistance pR  represents conduction through the 

dielectric. 

We call sR , sL  and pR  parasitic elements. Capacitors are designed to 

minimize the effects of the parasitic elements consistent with other 

requirements such as physical size and voltage rating. However, parasitics are 

always present, and when designing circuits care must be taken to select 

components for which the parasitic effects do not compromise the proper 

operation of the circuit. 

6.3.2 Electrolytic Capacitors 

One side (the anode) of an electrolytic capacitor is formed from a foil of 

aluminium which is anodised to produce an oxide layer which is the dielectric. 

The oxide-coated foil  is immersed in an electrolytic solution which forms the 

cathode. A large capacitance per unit volume is achieved. However, exposure 

to a reverse voltage for a long time leads to rapid heating of the capacitor and 

to breakdown. Thus, electrolytic capacitors are polarised and it must be 

ensured that the correct voltage polarity is applied to avoid failure. 

Model of a real 
capacitor 

Parasitic elements 
defined 

Electrolytic 
capacitors have a 
large capacitance 
per unit volume, but 
are polarised 
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6.3.3 Inductors 

There are many different types of inductor construction. Some are shown 

below, labelled by the type of core:  

 

 

ferrite core 

 

laminated steel core 

 

air core 

Figure 6.14 – Some types of inductors 

The construction of the core of the inductor is especially important in 

determining its properties. Laminated steel cores are common for low 

frequencies, and ferrites (non-conducting oxides of iron) are used for high 

frequencies. Since the core is subjected to a changing magnetic field, the 

induced voltages in the core create what are known as eddy currents. Steel 

laminations and ferrites reduce the energy losses caused by these eddy currents. 

There are also energy loss mechanisms associated with reversing the “magnetic 

domains” in a core, and so the losses due to the magnetic characteristic and the 

induced eddy currents are combined into a term called the core loss. 

Air-cored inductors are linear and do not exhibit core losses (since there is no 

conductive core). They can be made by winding a coil on a non-magnetic 

former, such as plastic, or may be self-supporting if made large enough. Air-

cored inductors have lower inductance than ferromagnetic-core inductors, but 

are often used at high frequencies because they are free of core losses. 

Some types of 
inductors 

The core of an 
inductor is generally 
a magnetic material 
which exhibits 
energy losses 

Air-cored inductors 
do not exhibit core 
losses 
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A reasonably accurate circuit model of a real inductor is shown below: 

 

Rs
L

Cp

Rp

 

 

Figure 6.15 

The series resistance sR  takes into account the finite resistance of the wire 

used to create the coil. The parallel capacitance pC  is associated with the 

electric field in the insulation surrounding the wire, and is called interwinding 

capacitance. The parallel resistance pR  represents the core losses. 

The following inductor model, showing just the predominant non-ideal effect 

of finite winding resistance, is often used at low frequencies: 

 

Rs
L

 

 

Figure 6.16 

 

 

Model of a real 
inductor 

Low frequency 
model of a real 
inductor showing the 
winding resistance 
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6.4 Series and Parallel Connections of Inductors and 
Capacitors 

Resistors connected in series and parallel can be combined into an equivalent 

resistor. Inductors and capacitors can be combined in the same manner. 

6.4.1 Inductors 

A series connection of inductors is shown below: 

 

i

v

v1

v2

L 1

L 2

 

 

Figure 6.17 

We find from KVL that: 

 

dt

di
L

dt

di
LL

dt

di
L

dt

di
L

vvv









21

21

21

 

(6.20) 

where: 

21 LLL    (series) (6.21) 

 

Combining inductors 
in series 
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We depict this below: 

 

L 1 L 2 +L 2L 1L =

 

 

Figure 6.18 

For the case of two inductors in parallel, as shown below: 

 

i

v

i1

L 1 L 2

i2

 

 

Figure 6.19 

we have, by KCL: 

   

   

 0

 

 

0201

 

 
21

02
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1
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11

tivdt
L

titivdt
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tivdt
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tivdt
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iii
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(6.22) 
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where: 

21

111

LLL


 (parallel) (6.23) 

and: 

     02010 tititi   (6.24) 

We depict this below: 

 

L 1

L 2

L
1

+
L 2L 1

=
L
1 1

ti (  )0 = ti (  )01 + ti (  )02

ti (  )01

ti (  )02  

 

Figure 6.20 

Combining inductors 
in parallel 
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6.4.2 Capacitors 

Consider two capacitors in parallel as shown below: 

 

i

v

i1

C1 C2

i2

 

 

Figure 6.21 

By KCL, we have: 

 

dt

dv
C

dt

dv
CC

dt

dv
C

dt

dv
C

iii









21

21

21

 

(6.25) 

so that we obtain: 

21 CCC   (parallel) (6.26) 

 

Combining 
capacitors in parallel 
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We depict this below: 

 

C1

C2

+ C2C1C =

 

 

Figure 6.22 

For capacitors in series, analogously to inductors in parallel, we get the result: 

21

111

CCC


  (series) (6.27) 

which is shown below: 

 

C
+

C2C1

=
C
1 11

(  )(  )(  )tv 0 = tv 01 + tv 02

C2C1

(  )tv 01 (  )tv 02  

 

Figure 6.23 

In summary, inductors in series and parallel are treated like resistors, whereas 

capacitors in series and parallel are treated like conductances. 

Combining 
capacitors in series 
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6.5 Circuit Analysis with Inductors and Capacitors 

For the ideal inductor and ideal capacitor, all of the relationships between 

voltage and current are linear relationships (apart from the integral 

relationships that have an initial condition term). Consequently, circuit analysis 

techniques which rely on the linearity property (such as nodal analysis, mesh 

analysis, superposition, Thévenin’s theorem and Norton’s theorem) can be 

applied to circuits containing inductors and capacitors. 

6.5.1 DC Circuits 

An ideal inductor behaves as a short-circuit to DC, and the capacitor behaves 

as an open-circuit to DC. We can use these facts to determine voltages and 

currents in DC circuits that contain both inductors and capacitors. Other 

sources, such as sinusoidal sources, will be treated later. 

EXAMPLE 6.6 DC Analysis of a Circuit with Storage Elements 

Determine the current i in the circuit below: 

1

1 F6 A 2

4 H

2 F

4

3 F

3
i

 

The circuit has one independent current source whose value is constant. For a 

resistive circuit we would naturally anticipate that all voltages and currents are 

constant. However, this is not a resistive circuit. Yet, our intuition suggests that 

the constant-valued current source produces constant-valued responses. This 

fact will be confirmed more rigorously later. In the meantime, we shall use the 

result that a circuit containing only constant-valued sources is a DC circuit. 

Linear circuit 
analysis techniques 
can be applied to 
circuits with 
inductors and 
capacitors 

A DC circuit is 
treated as a purely 
resistive circuit in 
the “steady-state” 
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Since for DC all inductors behave like short-circuits and all capacitors behave 

like open-circuits, we can replace the original circuit with an equivalent 

resistive circuit: 

1

6 A 2 4
3

i
 

 

By current division we find that: 

  A 46
24

4



i  
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6.5.2 Nodal and Mesh Analysis 

Just as we analysed resistive circuits with the use of node and mesh equations, 

we can write a set of equations for circuits that contain inductors and capacitors 

in addition to resistors and sources. The procedure is similar to that described 

for the resistive case – the difference being that for inductors and capacitors the 

appropriate relationship between voltage and current is used in place of Ohm’s 

Law. 

EXAMPLE 6.7 Mesh Analysis of a Circuit with Storage Elements 

Consider the circuit shown below: 

1 A 2

3 H1 F

5
6 F

3 V

4 H

i1 i 2

i3i4

 

By mesh analysis, for mesh 1i : 

11 i  

For mesh 2i : 

    332 3212  ii
dt

d
ii  

Nodal and mesh 
analysis can be 
applied to circuits 
with inductors and 
capacitors 
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For mesh 3i : 

    0
6

1
43

 

 
34323   

t

dtiii
dt

d
ii

dt

d
 

For mesh 
4i : 

    045
1

1
344

 

 
14  

ii
dt

d
idtii

t

 

The equation obtained for mesh 2i  is called a differential equation since it 

contains variables and their derivatives. The equations obtained for meshes 3i  

and 4i  are called integrodifferential equations since they contain integrals as 

well as derivatives. 

Writing the equations for a circuit, as in the preceding example, is not difficult. 

Finding the solution of equations like these, however, is another matter – it is 

no simple task. Thus, with the exception of some very simple circuits, we shall 

have to resort to additional concepts and techniques to be introduced later. 
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6.6 Duality 

Duality is a concept which arises frequently in circuit analysis. To illustrate, 

consider the two circuits shown below: 

 

R

i2i1

vs

v1

v2i is
G C

v

Circuit A Circuit B

L

 

 

Figure 6.24 

Using mesh analysis for circuit A and nodal analysis for circuit B, we get the 

following results: 

Circuit A Circuit B 

21 vvvs   21 iiis   

dt

di
LRivs   

dt

dv
CGvis   

In other words, both circuits are described by the same equations: 

dt

dy
ayax

xxx

s

s

21

21





 
(6.28) 

except that a variable that is a current in one circuit is a voltage in the other and 

vice versa. For these two circuits this result is not a coincidence, but rather is 

due to a concept known as duality, which has its roots in the subject of graph 

theory. 

Dual circuits 
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In actuality, circuits A and B are dual circuits since the following roles are 

interchanged: 

parallelseries 







CL

GR

iv

 

(6.29) 

The usefulness of duality lies in the fact that once a circuit is analysed, its dual 

is in essence analysed also. Note that if circuit B is the dual of circuit A, then 

taking the dual of circuit B in essence results in circuit A. Not every circuit, 

however, has a dual. With the aid of graph theory it can be shown that a circuit 

has a dual if and only if it is a planar network. 

The technique for obtaining the dual of a planar network is: 

1. Inside of each mesh, and in the infinite region surrounding the 

circuit, place a node. 

2. Suppose two of these nodes, say nodes a and b, are in adjacent 

meshes. Then there is at least one element in the boundary common 

to these two meshes. Place the dual of each common element 

between nodes a and b. 

When using this procedure to obtain the dual circuit, in order to get the mesh 

equations of the original circuit to correspond to the node equations of the dual 

circuit, place clockwise mesh currents niii  ..., , , 21  in the finite regions. The 

corresponding nodes in the dual are labelled with the voltages  nvv  ..., , v, 21  

respectively. The reference node of the dual circuit corresponds to the infinite 

region of the original circuit. 

Dual circuit 
relationships 

The technique for 
obtaining the dual of 
a planar circuit 
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EXAMPLE 6.8 Analysis of a Dual Circuit 

For the circuit given in the previous example (shown in blue), the dual is 

obtained as (shown in red): 

1 A 2

3 H

1 F

5
6 F

3 V

4 H

v1 v2

v3v4

3 A

6 H

1 V

4 F
1 H

2 S

5 S

3 F

 

The dual circuit is redrawn for simplicity: 

v1 v2

3 A 6 H1 V

4 F

1 H 2 S

5 S

3 F

v3v4
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By nodal analysis, at node 
1v : 

11 v  

At node 
2v : 

    332 3212  vv
dt

d
vv  

At node 3v : 

    0
6

1
43

 

 
34323   

t

dtvvv
dt

d
vv

dt

d
 

At node 
4v : 

    045
1

1
344

 

 
14  

vv
dt

d
vdtvv

t

 

Note that these are the duals of the mesh equations that we obtained earlier for 

the original circuit. 
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6.7 Summary 

 The v-i relationship for a capacitor is: 

dt

dv
Ci   

 A capacitor behaves as an open-circuit to direct current. 

 The voltage across a capacitor cannot change instantaneously. 

 The energy stored in a capacitor is: 

2

2

1
CvwC   

 The v-i relationship for an inductor is: 

dt

di
Lv   

 An inductor behaves as a short-circuit to direct current. 

 The current through an inductor cannot change instantaneously. 

 The energy stored in an inductor is: 

2

2

1
LiwL   

 Inductors in series and parallel are combined in the same way as are 

resistances. Capacitors in series and parallel  are combined in the same way 

as are conductances. 

 Writing node and mesh equations for circuits containing inductors and 

capacitors is done in the same manner as for resistive circuits. Obtaining 

solutions of equations in this form will be avoided, except for simple 

circuits. 

 A planar circuit and its dual are in essence described by the same equations. 
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Exercises 

1. 

There is a current A 10sin5 ti   through an inductance H 2L . What is the 

first instant of time after 0t  when the power entering the inductor is exactly: 

(a) 100 W 

(b) -100 W 

2. 

The energy stored in a certain 10 mH inductor is zero at ms 1t  and increases 

linearly by 20 mJ each second thereafter. Find the inductor current and voltage 

for ms 1t  if neither is ever negative. 

3. 

A μF 25  capacitor having no voltage across it at 0t  is subjected to the single 

pulse of current shown below. 

10

0
t (ms)

10

ti (  ) (mA)

20 30

20

 

Determine the voltage across, the power entering, and the energy stored in C at 

t : 

(a) 17 ms 

(b) 40 ms 
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4. 

Find eqC  for the lattice network shown below if terminals a and b are: 

(a) open-circuited as shown 

(b) short-circuited 

a

1 nF

b

3 nF

4 nF

2 nF

Ceq

 

5. 

The series combination of a μF 4  and a μF 3  capacitor is in series with the 

parallel combination of a μF 2 , a μF 1  and a μF C  capacitor. 

(a) What is the maximum possible value for the equivalent capacitance of 

the five capacitors? 

(b) Repeat for the minimum value. 

(c) Find C if μF 1.5eqC . 
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6. 

At 0t , A 5i  in the circuit shown below: 

1 H 3 Ht8 sin 10   A

i

v

 

(a) Find  tv  for all t. 

(b) Find  ti  for 0t . 

7. 

(a) Write the single nodal equation for the circuit (a) below: 

(b) Write the single mesh equation for the circuit (b) below: 

200   F

40 mH

is

vC (0)

5 k

iL (0)

(a) (b)

200   F

40 mH

vsvC (0)

5 k

iL (0)
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8. 

Using a reference node at the bottom of the circuit, assign node-to-reference 

voltages in the circuit below and write nodal equations. Let   A 5.00 Li  and 

  V 120 Cv . 

v1

v2 0.1 H

20

v1

50

200   F vC

iL

0.8e
-100 t

A

3
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7 Diodes and Basic Diode Circuits 
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Introduction 

Nonlinear circuits play a major role in modern electronics. Examples include 

signal generators, communication transmitters and receivers, DC power 

supplies, and digital circuits. 

To begin a study of nonlinear circuits, we need to examine the most 

fundamental two-terminal nonlinear device: the diode. The semiconductor 

junction diode, or p-n junction diode, also forms the basis for other 

semiconductor devices, such as the transistor. 

The terminal characteristics of the diode will be presented, rather than the 

underlying solid-state physics, so that we can focus on providing techniques for 

the analysis of diode circuits. There are three types of diode circuit analysis 

technique – graphical, numerical and use of a linear model. Graphical analysis 

of diode circuits is done using graphs of the diode’s terminal characteristic and 

the connected circuit. Numerical analysis can be performed with the nonlinear 

equations of the diode with a technique known as iteration. Lastly, diodes can 

be replaced with linear circuit models (of varying complexity), under assumed 

diode operating conditions, so that we revert to linear circuit analysis. Each 

analysis technique has its advantages and disadvantages, so it is important to 

choose the most appropriate technique for a given circuit. 

Basic applications of the diode will be introduced, with circuits such as the 

rectifier, and the limiter. Lastly, with the use of so-called breakdown diodes, 

we can design circuits that act as voltage regulators – i.e. circuits that provide a 

steady output voltage when subjected to a wide range of input voltages and 

output load currents. 
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7.1 The Silicon Junction Diode 

A typical silicon p-n junction diode has the following i-v characteristic: 

 

v

i
(mA)

(V)0.60.40.2

2

4

6

8

10

forward
bias

reverse
bias

-0.2
-150

(reverse saturation current)I
S

= 1 nA

breakdown
(large change in current,
small change in voltage)

-V
ZK

 

 

Figure 7.1 

The diode is clearly a nonlinear element – its characteristic is not a straight line 

through the origin! The i-v characteristic can be divided up into three distinct 

regions: 

1. The forward-bias region, determined by 0v  

2. The reverse-bias region, determined by 0v  

3. The breakdown region, determined by ZKVv   
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7.1.1 The Forward-Bias Region 

The forward-bias region of operation is entered when the terminal voltage v is 

positive. In the forward region the i-v relationship is closely approximated by 

the Shockley equation, which can be derived from semiconductor physics: 

 1 TnVv

S eIi  (7.1) 

 There is not much increase in current until the “internal barrier voltage” is 

overcome (approximately 0.6 V in silicon). Then large conduction results. 

The current SI  is called the saturation current and is a constant for a given 

diode at a given temperature. 

The constant n is called the emission coefficient, and has a value between 1 and 

2, depending on the material and the physical structure of the diode. 

The voltage 
TV  is a constant called the thermal voltage, given by: 

q

kT
VT 

 
(7.2) 

where: 

1-23 JK 10381.1

constant sBoltzmann'



k
 

Kelvin degreesin  etemperaturT  

C 10602.1

chargeelectron  of magnitude

19

q
 

(7.3) 

 

(7.4) 

 

(7.5) 

 

The thermal voltage is approximately equal to 26 mV at 300 K (a temperature 

that is close to “room temperature” which is commonly used in device 

simulation software). 

The Shockley 
equation 

When forward 
biased, the diode 
conducts 

Saturation current 
defined 

Emission coefficient 
defined 

Thermal voltage 
defined 
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For appreciable current in the forward direction ( SIi  ), the Shockley 

equation can be approximated by: 

TnVv

SeIi   (7.6) 

This equation is usually “good enough” for rough hand calculations when we 

know that the current is appreciable. 

From the characteristic we note that the current is negligibly small for v smaller 

than about 0.5 V (for silicon). This value is usually referred to as the cut-in 

voltage. This apparent threshold in the characteristic is simply a consequence 

of the exponential relationship. 

Another consequence of the exponential relationship is the rapid increase of 

current for small changes in voltage. Thus for a “fully conducting” diode the 

voltage drop lies in a narrow range, approximately 0.6 to 0.8 V for silicon. We 

will see later that this gives rise to a simple model for the diode where it is 

assumed that a conducting diode has approximately a 0.7 V drop across it 

(again, for silicon). 

The Shockley equation can be rearranged to give the voltage in terms of the 

current: 









 1ln

S

T
I

i
nVv

 
(7.7) 

This logarithmic form is used in the numerical analysis of diode circuits. 
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7.1.2 The Reverse-Bias Region 

The reverse-bias region of operation is entered when the diode voltage v is 

made negative. The Shockley equation predicts that if v is negative and a few 

times large than 
TV  in magnitude, the exponential term becomes negligibly 

small compared to unity and the diode current becomes: 

SIi   (7.8) 

That is, the current in the reverse direction is constant and equal to SI . This is 

the reason behind the term saturation current. However, real diodes exhibit 

reverse currents that, although quite small, are much larger than SI . 

7.1.3 The Breakdown Region 

The breakdown region is entered when the magnitude of the reverse voltage 

exceeds a threshold value specific to the particular diode and called the 

breakdown voltage. This is the voltage at the “knee” of the i-v curve and is 

denoted by 
ZKV , where the subscript Z stands for Zener (to be explained 

shortly) and K denotes knee. 

Breakdown is not a destructive process unless the device cannot dissipate the 

heat produced in the breakdown process. Breakdown is actually exploited in 

certain types of diodes (e.g. the Zener diode) because of the near vertical 

characteristic in this region. 

When reverse 
biased, the diode 
does not conduct 

Breakdown occurs 
eventually for a 
large enough 
reverse bias 
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7.1.4 Diode Symbol 

The circuit symbol for the diode is shown below, with the direction of current 

and polarity of voltage that corresponds to the characteristic: 

 

anode

cathode

v

i

 

 

Figure 7.2 

7.2 Breakdown Diodes 

Some diodes are designed to operate in the breakdown region. It is usually a 

sharper transition than the forward bias characteristic, and the breakdown 

voltage is higher than the forward conduction voltage. There are two main 

types of breakdown. 

7.2.1 Zener Breakdown 

The electric field in the depletion layer of a p-n junction becomes so large 

that it rips covalent bonds apart, generating holes and electrons. The electrons 

will be accelerated into the n-type material and the holes into the p-type 

material. This constitutes a reverse current. Once the breakdown starts, large 

numbers of carriers can be produced with negligible increase in the junction 

voltage. 

7.2.2 Avalanche Breakdown 

If the minority carriers are swept across the depletion region of a p-n junction 

too fast, they can break the covalent bonds of atoms that they hit. New 

electron-hole pairs are generated, which may acquire sufficient energy to 

repeat the process. An avalanche starts. 

Some diodes are 
designed to operate 
in the breakdown 
region 

Zener breakdown is 
caused by a large 
internal electric field 

Avalanche 
breakdown is 
caused by electrons 
with a large kinetic 
energy 
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7.3 Other Types of Diode 

The silicon junction diode is not the only type of diode. A variety of diode 

constructions exist, with many of them essential to the modern world, such as 

the LED. 

7.3.1 The Photodiode 

In a photodiode, the p-n junction is very close to the surface of the crystal. The 

Ohmic contact with the surface material is so thin, it is transparent to light. 

Incident light (photons) can generate electron-hole pairs in the depletion layer 

(a process called photoionisation). 

7.3.2 The Light Emitting Diode (LED) 

When a light-emitting diode is forward biased, electrons are able to recombine 

with holes within the device, releasing energy in the form of light (photons). 

The color of the light corresponds to the energy of the photons emitted, which 

is determined by the “energy gap” of the semiconductor. LEDs present many 

advantages over incandescent and compact fluorescent light sources including 

lower energy consumption, longer lifetime, improved robustness, smaller size, 

faster switching, and greater durability and reliability. At the moment LEDs 

powerful enough for room lighting are relatively expensive and require more 

precise current and heat management than compact fluorescent lamp sources of 

comparable output. 

LEDs are used in diverse applications. The compact size of LEDs has allowed 

new text and video displays and sensors to be developed, while their high 

switching rates are useful in advanced communications technology. Infrared 

LEDs are also used in the remote control units of many commercial products 

including televisions, DVD players, and other domestic appliances. 

A photodiode is 
controlled by light 

An LED emits 
photons when 
forward biased 
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7.3.3 The Schottky Diode 

A Schottky diode is the result of a metal-semiconductor junction. The Schottky 

diode is a much faster device than the general purpose silicon diode. There are 

three main reasons for this: 1) the junction used is a metal-semiconductor 

junction, which has less capacitance than a p-n junction, 2) often the 

semiconductor used is gallium arsenide (GaAs) because electron mobility is 

much higher, and 3) the device size is made extremely small. The result is a 

device that finds applications in high speed switching. 

7.3.4 The Varactor Diode 

This device is also known as a variable capacitance diode. It has a relatively 

large capacitance, brought about by a large junction area and narrow depletion 

region. The applied reverse voltage changes the length of the depletion region, 

which changes the capacitance. Thus, the device can be used in applications 

that rely on a voltage controlled capacitance. Applications include electronic 

tuning circuits used in communication circuits, and electronic filters. 

A Schottky diode is 
a metal-
semiconductor 
junction 
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7.4 Analysis Techniques 

Since the diode’s characteristic is nonlinear, we can’t apply linear circuit 

analysis techniques to circuits containing diodes. We therefore have to resort to 

other analysis methods: graphical, numerical and linear modelling. 

7.4.1 Graphical Analysis 

Circuits with a single nonlinear element can always be modelled using the 

Thévenin equivalent of the linear part: 

 

i
D

v
D

VTh

RTh

linear

circuit

Thévenin equivalent circuit

i
D

v
D

 

 

Figure 7.3 

KVL around the loop gives: 

DThThD iRVv   (7.9) 

which, when rearranged to make iD  the subject, gives: 

 ThD

Th

D Vv
R

i 
1

 
(7.10) 

When graphed, we call it the load line. It was derived from KVL, and so it is 

always valid. The load line gives a relationship between iD  and vD  that is 

determined purely by the external circuit. The diode’s characteristic gives a 

relationship between iD  and vD  that is determined purely by the geometry and 

physics of the diode. 

The “load line” is 
derived using linear 
circuit theory 
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Since both the load line and the characteristic are to be satisfied, the only place 

this is possible is the point at which they meet. This point is called the 

quiescent point, or Q point for short: 

 

 

 

Figure 7.4 – Graphical Analysis Using a Load Line 

If the Thévenin voltage changes to ThV  , then the operating point moves to Q  

(the DC load line is shifted to the right). 

The two end points of the load line are easily determined to enable quick 

graphing. The two axis intercepts are: 

Th

Th
DD

R

V
iv  ,0

 
(7.11) 

and: 

0,  DThD iVv  (7.12) 

Alternatively, we can graph the load line using one known point and the fact 

that the slope is equal to 
ThR

1
 . 

The “load line” and 
device characteristic 
intersect at the Q 

point 



7.12 

Index Analysis Techniques PMcL   

7 - Diodes and Basic Diode Circuits  2017 

7.4.2 Numerical Analysis 

Since, in the preceding analysis, we have two equations (the load line and the 

diode characteristic) and two unknowns, it is tempting to try and solve them 

simultaneously. If we substitute the voltage from the Shockley equation: 









 1ln

S

D
TD

I

i
nVv

 
(7.13) 

into the load line equation: 

 ThD

Th

D Vv
R

i 
1

 
(7.14) 

we get: 























 Th

S

D
T

Th

D V
I

i
nV

R
i 1ln

1
 

(7.15) 

This equation is a transcendental equation, and its solution cannot be 

expressed in term of elementary functions (try it!). With a sufficiently 

advanced calculator (or mathematical software), we can use a special function 

called the Lambert W function to solve it, but for engineering purposes, there 

are usually simpler methods of solution. 

We can solve transcendental equations graphically (as shown in the preceding 

section) but we can also solve them numerically using a technique known as 

iteration – which is suitable for computer simulations. 
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We begin with an initial “guess” for the diode current, labelled 0,Di , and then 

compute: 
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(7.16) 

and so on until we get “convergence”, i.e. kDkD ii ,1,  . Convergence is not 

always guaranteed, and depends on the initial “guess”. Computer simulation 

software uses several clever methods to aid in numerical convergence. 

EXAMPLE 7.1 Numerical Analysis of a Circuit with a Real Diode 

The following circuit contains a diode, with 1n  and fA 030.2SI . We wish 

to find the diode’s operating point, or Q point. Assume that mV 26TV . 

i
D

v
D5 V

1 k

 

Starting with mA 10, Di  we have: 

mA 262.451
1003.2

0043.0
ln026.0

10

1

mA 3.451
1003.2

001.0
ln026.0

10

1

1532,

1531,

















































D

D

i

i

 

Since the second value is very close to the value obtained after the first 

iteration, no further iterations are necessary, and the solution is mA 262.4Di  

and V 7379.0Dv . 
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7.5 Diode Models 

The curve describing the diode’s terminal characteristics is non-linear. How 

can we use this curve to do circuit analysis? We only know how to analyze 

linear circuits. There is therefore a need for a linear circuit model of the 

diode. 

When we model something, we transform it into something else – usually 

something simpler – which is more amenable to analysis and design using 

mathematical equations. Modelling mostly involves assumptions and 

simplifications, and the only requirement of a model is for it to “work” 

reasonably well. By “work” we mean that it agrees with experimental results 

to some degree of accuracy. 

Models are sometimes only valid under certain operating conditions, as we 

shall see when modelling the diode. 

Why we model the 
diode 

The concept of 
modelling 
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7.5.1 The Ideal Diode Model 

As a first approximation, we can model the diode as an ideal switch: 

 

v

i
(mA)

(V)

"ideal" diode diode on

diode off

 

 

Figure 7.5 – The Ideal Diode Model 

The characteristic in this case is approximated by two straight lines – the 

vertical representing the “on” state of the diode, and the horizontal 

representing the “off” state. To determine which of these states the diode is 

in, we have to determine the conditions imposed upon the diode by an 

external circuit. This model of the diode is used sometimes where a quick 

“feel” for a diode circuit is needed. The above model can be represented 

symbolically as: 

 

 ideal

 

 

Figure 7.6 

The diode as an 
ideal (controlled) 
switch 

The ideal diode 
model 
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EXAMPLE 7.2 Analysis Using the Ideal Diode 

(i) Find the current, I, in the circuit shown below, using the ideal diode 

model. 

(ii) If the battery is reversed, what does the current become? 

E

R

ideal

10 k

10 V

I

 

(i) Firstly, we must determine whether the diode is forward biased or reverse 

biased. In this circuit, the positive side of the battery is connected (via the 

resistor) to the anode. Therefore, the anode is positive with respect to the 

cathode, and the diode is forward biased. In order to use the ideal diode 

model, the diode is simply replaced by the ideal diode model (forward 

bias model), and the simplified circuit is analysed accordingly. 

The equivalent circuit is shown below, where the diode has now been 

replaced by a short circuit. 

E

R

10 k

10 V I
I=

E

R
=

10

10 k
= 1 mA

 

Ohm’s Law may be used to determine the current, I, as shown: 

(ii) If the battery is reversed, the diode becomes reverse biased. In this case, 

the diode is replaced by the ideal diode model for reverse bias. Since the 

reverse biased ideal diode model is simply an open circuit, there is no 

current, i.e. 0I . 
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7.5.2 The Constant Voltage Drop Model 

A better model is to approximate the forward bias region with a vertical line 

that passes through some voltage called e fd : 

 

v

i
(mA)

(V)e
fd

 

 

Figure 7.7 – The Constant Voltage Drop Diode Model 

This “constant voltage drop” model is better than the ideal model because it 

more closely approximates the characteristic in the forward bias region. The 

“voltage drop” is a model for the barrier voltage in the p-n junction. The 

model of the diode in this case is: 

 

 ideal efd

 

 

Figure 7.8 

This model is the one of the simplest and most widely used. It is based on the 

observation that a forward-conducting diode has a voltage drop that varies in 

a relatively narrow range, say 0.6 V to 0.8 V. The model assumes this voltage 

to be constant, say, 0.7 V. The constant voltage drop model is the one most 

frequently employed in the initial phases of analysis and design. 

A model that takes 
into account the 
forward voltage drop 

The constant 
voltage drop diode 
model 



7.18 

Index Diode Models PMcL   

7 - Diodes and Basic Diode Circuits  2017 

EXAMPLE 7.3 Analysis Using the Constant Voltage Drop Model 

(i) Find the current, I, in the circuit shown below, using the constant voltage 

drop model of the diode (assume V 7.0fde ). 

(ii) If the battery is reversed, what does the current become? 

E

R

10 k

10 V

I

 

(i) Analysis proceeds in exactly the same manner as the previous example, 

except that the constant voltage drop diode model is used instead. The 

diode is again forward biased, and so the equivalent circuit is shown 

below, along with the calculation for I. 

E

R

10 k

10 V

I

I=
E

R
=

10 - 0.7

10k
= 0.93 mA

 ideal - e fd

e fd

 

(ii) If the battery is reversed, the diode becomes reverse biased, 

resulting in no current, i.e. 0I . 
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7.5.3 The Piece-Wise Linear Model 

An even better approximation to the diode characteristic is called a “piece-

wise” linear model. It is made up of pieces, where each piece is a straight 

line: 

 

v

i
(mA)

(V)e
fd

slope = 
1

r
fd

slope = 
1

r
rd

reverse bias 
model is valid 

forward bias 
model is valid  

 

Figure 7.9 – The Piece-Wise Linear Diode Model 

For each section, we use a different diode model (one for the forward bias 

region and one for the reverse bias region): 

 

forward bias model
reverse bias model

r rd
e fd rfd

 ideal

 

 

Figure 7.10 

Typical values for the resistances are   5fdr  and   109

rdr . 

Notice how we have done away with the ideal diode part of the model for 

when the diode is reverse biased. This is because there is a separate 

equivalent circuit for the forward bias and reverse bias regions, so an ideal 

diode is not necessary (we apply one equivalent circuit or the other). 

A model that 
approximates the 
characteristic by 
using straight lines 

The piece-wise 
linear diode model 
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EXAMPLE 7.4 Analysis Using the Piece-Wise Linear Model 

(i) Find the current, I, in the circuit shown below, using the piece-wise linear 

model of the diode (assume V 7.0fde ,   5fdr  and   10 9

rdr ). 

(ii) If the battery is reversed, what does the current become? 

E

R

10 k

10 V

I

 

(iii) Analysis proceeds in exactly the same manner as the previous example, 

except that the piece-wise linear diode model is used instead. The diode 

is again forward biased, and so the equivalent circuit is shown below, 

along with the calculation for I. 

R

10 k

E 10 V
I

I=
E

=
10 - 0.7

10k + 5
= 0.9295 mA

-

R+
e fd

rfd

e fd

rfd

 ideal

 

(iv) If the battery is reversed, the diode becomes reverse biased, and the 

diode is replaced by the piece-wise linear model for the reverse 

region, which is just the resistance rdr . Since   10 9

rdr , the 

reverse current is: 

nA 10
1010

10
49








rdrR

E
I  

which is negligible, i.e. 0I . 
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7.5.4 The Small Signal Model 

Suppose we know the diode DC voltage and current exactly. We may want to 

examine the behaviour of a circuit when we apply a signal (a small AC 

voltage) to it. In this case we are interested in small excursions of the voltage 

and current about the “DC operating point” of the diode. The best model in 

this instance is the following (the forward bias region is used as an example, 

but the method applies anywhere): 

 

v

i
(mA)

(V)

slope = 
1

r
d

tangent
DC
operating
point

I
DQ

V
DQ  

 

Figure 7.11 – Diode Model as the Tangent to a DC Operating Point 

We approximate the curved characteristic by the tangent that passes through 

the operating point. It is only valid for small variations in voltage or current. 

This is called the small signal approximation. A straight line is a good 

approximation to a curve if we don’t venture too far. 

A model that 
approximates the 
characteristic by a 
tangent at a DC 
operating point 

A first look at the 
small signal 
approximation 
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Thus, for a small change 
Dv  in the diode voltage, we get a small change in 

the diode current 
Di , which can be approximated by the change in current 

we would get by following the tangent: 

D

D

D
D v

dv

di
i 

 
(7.17) 

 From the Shockley equation in the forward-biased region, we have: 

TnVv

T

S

D

D e
nV

I

dv

di


 
(7.18) 

We define the dynamic resistance of the diode as: 

DQ

T

IiD

D
d

I

nV

di

dv
r

DQD




 

(7.19) 

Therefore, using Eq. (7.17) and Eq. (7.19), a small AC signal dv  superimposed 

upon the DC operating point will result in a small AC current di  given by: 

d

d

d v
r

i
1


 

(7.20) 

Thus, for small AC signals, the diode can be modelled as a resistance, dr . 

Dynamic resistance 
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Now consider the case where the Thévenin equivalent circuit contains both a 

DC source and a small signal AC source: 

 

i
D

v
D

VDC

RTh

Thévenin equivalent circuit

vAC

 

 

Figure 7.12 

In this case we analyse two separate circuits. The first circuit contains the DC 

source which is used to establish the DC operating point. The diode in this 

circuit has the standard i-v characteristic and the DC operating point can be 

obtained using graphical methods (load line) or numerical methods (iteration). 

The second circuit contains the small AC source and uses the dynamic 

resistance model of the diode. The small AC currents and voltages in this 

circuit can be superimposed upon the diode’s DC current and voltage obtained 

from the first circuit. Thus we analyse: 

 

RThRTh

+ v
d

v
AC r

d

i
d

V
DQ

I
DQ

V
DC

 

 

Figure 7.13 
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The analysis can also be illustrated graphically: 

 

v
d

t

V
DQ

I
DQ

i
d

t

diode
characteristic

v
D

i
D

DC load
line

Q

 

 

Figure 7.14 

The figure above illustrates the two separate analysis steps. First, the DC 

operating point, or Q point for short, is found using graphical or numerical 

techniques. Then the application of an AC voltage on top of the original DC 

voltage results in a change in current given by the projection of the applied 

voltage onto the diode i-v characteristic. If the AC voltage is a “small signal”, 

then the diode characteristic can be replaced by a straight line. In this context, a 

“small signal” is defined as one for which the tangent to the curve is a good 

approximation to the curve, resulting in a linear relationship between the 

voltage and current. 

Development of the 
diode small signal 
model 
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7.6 Basic Diode Circuits 

There are many diode circuits that are used in a wide variety of applications. 

The most important are summarised below. 

7.6.1 Half-Wave Rectifier 

A rectifier is a circuit that converts a bipolar (AC) signal into a unidirectional 

one. The figure below shows a diode rectifier fed by a sine-wave voltage 

source iv . 

 

voRLv i

 

 

Figure 7.15 

A sinusoidal input waveform, and the resulting output waveform ov  that 

appears across the “load resistor”, LR , are shown below: 

 

t

v
i

t

v
o

0 0

Vp Vp

 

 

Figure 7.16 

The half-wave 
rectifier 
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Operation of the circuit is straightforward when we assume the diode is ideal: 

When iv  is positive the diode conducts and acts as a short-circuit. The voltage 

iv  appears directly at the output – that is, io vv  , and the diode forward 

current is equal to Li Rv . On the other hand, when iv  is negative the diode 

cuts off – that is, there is no current. The output voltage ov  will be zero, and the 

diode becomes reverse-biased by the value of the input voltage iv . It follows 

that the output voltage waveform will consist of the positive half cycles of the 

input sinusoid. Since only half-cycles are utilized, the circuit is called a half-

wave rectifier. 

It should be noted that while the input sinusoid has a zero average value, the 

output waveform has a finite average value or DC component. Therefore, 

rectifiers are used to generate DC voltages from AC voltages. 

The transfer characteristic is often used to describe non-linear circuits – it is 

simply a plot of the output, ov , versus the input, iv . The figure below shows 

the transfer characteristic of the half-wave rectifier: 

 

1

vo

v i

1

 

 

Figure 7.17 

As can be seen, the half-wave rectifier produces an output voltage equal to the 

input voltage when the input voltage is positive and produces zero output 

voltage when the input voltage is negative. 

Half-wave rectifier 
transfer 
characteristic 
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7.6.2 Full-Wave Rectifier 

The full-wave rectifier utilizes both halves of the input signal – it inverts the 

negative halves of the waveform. One popular implementation is shown below, 

where the diodes are connected in a bridge configuration: 

 

Ro

vi

io

vo

vs

D1 D2

D3D4

 

 

Figure 7.18 

We can perform the usual analysis quickly. In the positive half cycle of the 

input voltage, 
2D  and 

4D  are on. Meanwhile, 1D  and 3D  will be reverse 

biased. In the negative half cycle of the input voltage, 1D  and 3D  are on, and 

2D  and 4D  are off. The important point to note is that during both half-cycles, 

the current through the resistor Ro is in the same direction (down), and thus ov  

will always be positive. The waveforms are shown below: 

 

t

v
i

t

v
o

0 0

Vp Vp

 

 

Figure 7.19 

 

A full-wave “bridge 
rectifier” 
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7.6.3 Limiter Circuits 

Consider the following circuit: 

 

R

D1 D2

E1 E2

vo
v i

 

 

Figure 7.20 

The circuit works very simply. Assume both diodes are off. KVL then gives: 

io vv   (7.21) 

If the output voltage is greater than 1E , then diode 1D  will be on. This limits or 

clamps the output voltage to 1E : 

11 for EvEv io   (7.22) 

 If the output voltage is less than 2E  then diode 2D  will be on, limiting the 

output voltage to 2E : 

22 for EvEv io   (7.23) 

 

A limiting circuit 



7.29 

PMcL Basic Diode Circuits Index    

2017  7 - Diodes and Basic Diode Circuits 

A graph of the output is shown below for a sinusoidal input: 

 

t

v
i

v
o

E1

-E2

 

 

Figure 7.21 

The transfer characteristic of this limiter is shown below: 

 

v i

vo

0

slope = 1

E1

-E2

 

 

Figure 7.22 
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7.7 Summary 

 The silicon junction diode forms the basis of modern electronics. It is a 

device that effectively allows a current in only one direction. 

 The forward conduction region of practical silicon diodes is accurately 

characterised by the Shockley equation: 

 1 TnVv

S eIi  

 Beyond a certain value of reverse voltage (that depends on the diode) 

breakdown occurs, and current increases rapidly with a small 

corresponding increase in voltage. This property is exploited in diodes 

known as breakdown diodes. 

 A variety of diode constructions exist, with many of them essential to the 

modern world, such as the LED. 

 Since the diode’s characteristic is nonlinear, we can’t apply linear circuit 

analysis techniques to circuits containing diodes. We therefore have to 

resort to other analysis methods: graphical, numerical and linear modelling 

 A hierarchy of diode models exists, with the selection of an appropriate 

model dictated by the application. 

 In the forward direction, the ideal diode conducts any current forced by the 

external circuit while displaying a zero voltage drop. The ideal diode does 

not conduct in the reverse direction; any applied voltage appears as reverse 

bias across the diode. 

 In many applications, a conducting diode is modelled as having a constant 

voltage drop, usually approximately 0.7 V. 
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 A diode biased to operate at a direct current 
DI  has a small-signal 

resistance: 

DQ

T
d

I

nV
r 

 

 The unidirectional-current property makes the diode useful in the design of 

a variety of circuits, such as the half-wave rectifier, the full-wave rectifier, 

limiting circuits, and many others. 

 The half-wave rectifier is: 

1

vo

v i

1

(a) circuit (b) transfer characteristic

voRLv i

 

 The full-wave rectifier is: 

1

vo

v i

1

(a) circuit (b) transfer characteristic

Ro

vi

io

vo

vs

D1 D2

D3D4
1

1
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 A limiting circuit is: 

(a) circuit (b) transfer characteristic

R

D1 D2

E1 E2

vo
v i

v i

vo

0

slope = 1

E1

-E2
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8 Source-Free RC and RL Circuits 
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Introduction 

The analysis of a linear circuit that has storage elements (capacitors and 

inductors) inevitably gives rise to a linear differential equation. The solution of 

the differential equation always consists of two parts – one part leads to the so-

called forced response, the other is the natural response. The forced response 

is due to the application of a source to the circuit. The natural response is due 

entirely to the circuit’s configuration, its initial energy, and the amplitude of 

the applied source at the instant of application. 

Initially, we will study the theory of differential operators, which leads to a 

rather simple method of solving linear differential equations. For simple RC 

and RL circuits, the differential operator seems like overkill – a powerful 

method applied to a simple situation. However, some of the insights resulting 

from such a method will put us in good stead when we look at more 

complicated circuits that have both capacitors and inductors in them. 

We shall then study the natural response of some simple source-free RC and 

RL circuits. This study will reveal some surprising results, such as the fact that 

there is only ever one form of natural response – an exponential response. 

We will become familiar with the exponential response, and we will give some 

special names to the algebraic terms involved in it, such as initial condition and 

time constant. 

With practice, we will also see that we can write down the natural response for 

simple circuits by inspection. This will lead to intuition of circuit behaviour, 

and we will “get a feel” for the way a circuit behaves by simply looking at it. 
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8.1 Differential Operators 

Let D denote differentiation with respect to t: 

dt

d
D 

 
(8.1) 

Then 2D  denotes differentiation twice with respect to t, and so on. That is, for 

positive integer k: 

k

k
k

dt

yd
yD 

 
(8.2) 

The expression: 

01

1

1 ... aDaDaDaA n

n

n

n  

  (8.3) 

is called a differential operator of order n. The coefficients ka  in the operator A 

may be functions of t, but most of the time they will be constant coefficients. 

The product AB of two operators A and B is defined as that operator which 

produces the same result as is obtained by using the operator B followed by the 

operator A. Thus: 

 ByAABy   (8.4) 

The product of two differential operators always exists and is a differential 

operator. For operators with constant coefficients it is true that BAAB . 

D  is just shorthand 

for dtd  

Differential 
operators commute 
if they have constant 
coefficients 
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EXAMPLE 8.1 Product of Differential Operators 

Let 2 DA  and 13  DB . 

Then: 

  y
dt

dy
yDBy  313  

and: 

   

 yDD

y
dt

dy

dt

yd

y
dt

dy

dt

dy

dt

yd

y
dt

dy
DByA

253

253

263

32

2

2

2

2

2

















 

Hence    253132 2  DDDDAB . 

The sum of two differential operators is obtained by expressing each in the 

form: 

01

1

1 ... aDaDaDa n

n

n

n  

  (8.5) 

and adding corresponding coefficients. 

EXAMPLE 8.2 Summation of Differential Operators 

Let 23 3  DDA  and 742  DDB . 

Hence 933 23  DDDBA . 

Differential operators are linear operators. Therefore, differential operators 

with constant coefficients satisfy all the laws of the algebra of polynomials 

with respect to the operations of addition and multiplication. 

Differential 
operators are linear 
operators that obey 
the laws of algebra 
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8.2 Properties of Differential Operators 

Since for constant s and positive integer k: 

stkstk eseD   (8.6) 

it is easy to find the effect that a differential operator has upon 
ste . Let  Df  

be a polynomial in D: 

  01

1

1 ... aDaDaDaDf n

n

n

n  

  (8.7) 

Then:  

  stststn

n

stn

n

st easeaesaesaeDf 01

1

1 ...  

  (8.8) 

so: 

    stst esfeDf   (8.9) 

This equation does not mean that    sfDf  .  Df  is an operator, and it 

means “to take a linear sum of derivatives” of a function that it operates on. 

 sf  is a standard polynomial in s. The equation means that the effect of the D 

operator on 
ste  is the same as multiplication by s. The function 

ste  is the only 

function that enjoys this property – a deeper insight into the special function 

ste will be developed later. 

If s is a root of the equation   0sf , then in view of the above result: 

    0 if,0  sfeDf st
 (8.10) 

 

Operating with D  
and multiplication by 
s  are equivalent for 

the function 
ste  
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EXAMPLE 8.3 Solution of a Homogeneous Differential Equation 

Let   1252 2  DDDf . Then the equation   0sf  is: 

01252 2  ss  

or: 

   0324  ss  

of which the roots are 41 s  and 2
3

2 s . 

With the aid of Eq. (8.10), it can be seen that: 

  01252 42   teDD  

and that: 

  01252 232  teDD  

In other words, tey 4

1

  and 23

2

tey   are solutions of: 

  01252 2  yDD . 
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Next consider the effect of the operator sD  on the product of 
ste  and a 

function y. Utilising the “product rule” of differentiation, we have: 

    
Dye

yseyeDyesD

st

ststst





 
(8.11) 

and: 

      
yDe

DyesDyesD

st

stst

2

2




 

(8.12) 

Repeating the operation, we are led to: 

    yDeyesD nststn
  (8.13) 

Using the linearity of differential operators, we conclude that when  Df  is a 

polynomial in D with constant coefficients, then: 

    yesDfyDfe stst   (8.14) 

This relation shows us how to shift an exponential factor from the left of an 

operator to the right of an operator. 

  

Shifting an 
exponential factor 
from the left of a 
differential operator 
to the right 
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EXAMPLE 8.4 Solution of a Homogeneous Differential Equation 

Let us solve the differential equation: 

  03
4

 yD  

First, we multiply the equation by 
te3
 to obtain: 

  03
43  yDe t  

Applying the exponential shift as in Eq. (8.14) leads to: 

  034 yeD t  

Integrating four times gives us: 

3

3

2

210

3 tctctccye t   

and finally: 

  tetctctccy 33

3

2

210

  

It can be shown that the four functions 
te 3
, 

tte 3
, 

tet 32 
 and 

tet 33 
 are linearly 

independent – thus the solution given is the general solution of the differential 

equation. 

In Eq. (8.13), if we let   nDDf   and kty  , then: 

    knststkn
tDeetsD   (8.15) 

But 0kntD  for 1 ..., 2, 1, ,0  nk , and so: 

     1 ..., 1, ,0,0  nketsD stkn

 (8.16) 

 

The solution to a 
special class of 
differential equation 
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8.3 The Characteristic Equation 

The general linear differential equation with constant coefficients of order n is 

an equation that can be written: 

 trya
dt

dy
a

dt

yd
a

dt

yd
a

n

n

nn

n

n 




 011

1

1   
(8.17) 

If  tr  is identically zero (i.e. zero for all time, not just a specific time), then 

we have an equation that is said to be homogeneous: 

0011

1

1 




 ya
dt

dy
a

dt

yd
a

dt

yd
a

n

n

nn

n

n 
 

(8.18) 

Any linear combination of solutions of a linear homogeneous differential 

equation is also a solution. If iy , with ki  ..., 2, ,1 , are solutions of 

Eq. (8.18) and if ic , with ki  ..., 2, ,1 , are constants, then: 

kk ycycycy  2211  (8.19) 

is a solution of Eq. (8.18). 

If the solutions iy  are linearly independent (i.e. they cannot be expressed as 

linear combinations of one another), then there are n of them and we say that 

the general solution of the differential equation is: 

nn ycycycy  2211  (8.20) 

 

Homogeneous 
differential equation 
defined 
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The linear homogeneous differential equation with constant coefficients may 

also be written in the form: 

  0yDf  (8.21) 

where  Df  is a linear differential operator. As we saw in the preceding 

section, if s is any root of the algebraic equation   0sf , then: 

  0steDf  (8.22) 

which means simply that stey   is a solution of Eq. (8.21). The equation: 

  0sf  (8.23) 

is called the characteristic equation associated with Eq. (8.21). 

Let the characteristic equation for Eq. (8.21) be of degree n. Let its roots be 

1s , 2s , …, ns . If these roots are all real and distinct, then the n solutions 

ts
ey 1

1  , 
ts

ey 2

2  , …, 
ts

n
ney   are linearly independent and the general 

solution of Eq. (8.21) can be written at once. It is: 

ts

n

tsts necececy  21

21  (8.24) 

in which 
1c , 

2c , …, nc  are arbitrary constants. Repeated roots of the 

characteristic equation will be treated later. 

 

A solution to a linear 
homogeneous 
differential equation 
with constant 
coefficients is 

stey   

Characteristic 
equation defined 

General solution of 
a linear 
homogeneous 
differential equation 
with constant 
coefficients 
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EXAMPLE 8.5 General Solution of a Homogeneous Differential Equation 

Solve the equation: 

064
2

2

3

3

 y
dt

dy

dt

yd

dt

yd
 

First write the characteristic equation: 

    0321

064 23





sss

sss
 

whose roots are 3 2, ,1s . Then the general solution is seen to be: 

ttt ecececy 3

3

2

21    

 

EXAMPLE 8.6 General Solution of a Homogeneous Differential Equation 

Solve the equation: 

  0253 23  yDDD  

The characteristic equation is: 

   0132

0253 23





sss

sss
 

whose roots are 3
1 ,2 ,0 s . Using the fact that 1ote , the desired solution 

may be written: 

3

3

2

21

tt ececcy  
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EXAMPLE 8.7 General Solution of a Homogeneous Differential Equation 

with Initial Conditions 

Solve the equation: 

04
2

2

 y
dt

yd
 

with the conditions that when 0t , 0y  and 3dtdy . 

The characteristic equation is: 

042 s  

with roots 2 ,2 s . Hence the general solution of the differential equation is: 

tt ececy 2

2

2

1

  

It remains to enforce the conditions at 0t . 

The condition that 0y  when 0t  requires that: 

210 cc   

Now: 

tt ecec
dt

dy 2

2

2

1 22   

The condition that 3dtdy  when 0t  requires that: 

21 223 cc   

From the simultaneous equations for 1c  and 2c  we conclude that 
4
3

1 c  and 

4
3

2 c . Therefore: 

 tt eey 22

4
3   
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8.4 The Simple RC Circuit 

Consider the parallel RC circuit shown below. 

 

RC v

 

 

Figure 8.1 

We designate the time-varying voltage by  tv , and we shall let the value of 

 tv  at 0t  be prescribed as 0V . 

Kirchhoff’s Current Law (KCL) applied to the top node gives us: 

0
R

v

dt

dv
C

 
(8.25) 

Division by C gives us: 

0
RC

v

dt

dv
 

(8.26) 

and we must determine an expression for  tv  which satisfies this equation and 

also has the value 0V  at 0t . 

The simple RC 
circuit 

The governing 
differential equation 
of the simple RC 
circuit 
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Written in operator notation, Eq. (8.26) is: 

0
1









 v

RC
D

 
(8.27) 

for which the characteristic equation is: 

0
1











RC
s

 
(8.28) 

which has a root at RCs 1 . Therefore, the solution to the differential 

equation is: 

RCtecv  1  (8.29) 

It remains to enforce the condition that   00 Vv  . Thus: 

10 cV   (8.30) 

and the final form of the solution is: 

RCteVv  0  (8.31) 

This solution is known as the natural response of the circuit. Its mathematical 

form is 
stAe , where RCs 1  and A is the initial condition.  It turns out, for 

any linear circuit, that this mathematical form is the only form for the natural 

response! That is, the solution to a linear homogeneous differential equation 

always takes the form 
stAe . The actual values of s and A depend only on the 

initial energy in the circuit (in this case the initial capacitor voltage), and the 

circuit element configuration and values. 

 

The solution to the 
governing 
differential equation 
of the simple RC 
circuit 
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Let us check the power and energy relationships in this circuit. The power 

being dissipated in the resistor is: 

R

eV

R

v
p

RCt

R

22

0

2 


 

(8.32) 

and the total energy turned into heat in the resistor is found by integrating the 

instantaneous power from zero time to infinite time: 

2

02
1

0

2
2

0

 

0 

2
2

0
 

0 

2

CV

e
RC

R

V

dte
R

V
dtpE

RCt

RCt

RR


























 

(8.33) 

This is the result we expect, because the total energy stored initially in the 

capacitor is 2

02
1 CV , and there is no energy stored in the capacitor at infinite 

time. All the energy is accounted for by dissipation in the resistor. 

 

Power and energy 
dissipated in the 
simple RC circuit 
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8.5 Properties of the Exponential Response 

We will now consider the nature of the response in the parallel RC circuit. We 

found that the voltage is represented by: 

RCteVv  0  (8.34) 

At zero time, the voltage is the assumed value 0V  and as time increases, the 

voltage decreases and approaches zero. The shape of this decaying exponential 

is seen by a plot of 0Vv  versus t, as shown below: 

 

t

1

v

V0

 

 

Figure 8.2 

Since the function we are plotting is 
RCte

, the curve will not change if RC 

does not change. Thus, the same curve must be obtained for every RC circuit 

having the same product of R and C. Let’s see how this product affects the 

shape of the curve. 

If we double the product RC, then the exponent will be unchanged if t is also 

doubled. In other words, the original response will occur at a later time, and the 

new curve is obtained by moving each point on the original curve twice as far 

to the right. With this larger RC product, the voltage takes longer to decay to 

any given fraction of its original value. 

The decaying 
exponential 
response 
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To get a “handle” on the rate at which the curve decays, let’s consider the time 

that would be required for the voltage to drop to zero if it continued to drop at 

its initial rate. 

The initial rate of decay is found by evaluating the derivative at zero time: 

RC
e

RCV

v

dt

d

t

RCt

t

11

000








 
(8.35) 

We designate the value of time it takes for 0Vv  to drop from unity to zero, 

assuming a constant rate of decay, by T  (or sometimes the Greek letter  ). 

Thus 1RCT , or: 

RCT   (8.36) 

The product RC has the units of seconds, and therefore the exponent RCt  is 

dimensionless (as it must be). The value of time T  is called the time constant. 

It is shown below: 

 

t

1

v

V0

T  

 

Figure 8.3 

Time constant 
defined for the 
simple RC circuit 

Time constant 
shown graphically 
on the natural 
response curve 
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An equally important interpretation of the time constant T  is obtained by 

determining the value of 0Vv  at Tt  . We have:  

0

1

0

3679.0or3679.0 Vve
V

v
 

 (8.37) 

Thus, in one time constant the response has dropped to 36.8 percent of its 

initial value. The value of T  may be determined graphically from this fact 

from the display on an oscilloscope, as indicated below: 

 

t

1

v

V0

T T2 T3 T4

0.3679

0.1353
0.0498

0  

 

Figure 8.4 

At some point three to five time constants after zero time, most of us would 

agree that the voltage is a negligible fraction of its former self. 

Why does a larger value of the time constant RC produce a response curve 

which decays more slowly? An increase in C allows a greater energy storage 

for the same initial voltage, and this larger energy requires a longer time to be 

dissipated in the resistor. For an increase in R, the power flowing into the 

resistor is less for the same initial voltage; again, a greater time is required to 

dissipate the stored energy. 

In terms of the time constant T , the response of the parallel RC circuit may be 

written simply as: 

TteVv  0  (8.38) 

Response curve 
values at integer 
multiples of the time 
constant 
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8.6 Single Time Constant RC Circuits 

Many of the RC circuits for which we would like to find the natural response 

contain more than a single resistor and capacitor. We first consider those cases 

in which the given circuit may be reduced to an equivalent circuit consisting of 

only one resistor and one capacitor. Such a circuit is known as a single time 

constant circuit. 

Firstly, consider a circuit with any number of resistors and one capacitor. We 

fix our attention on the two terminals of the capacitor and determine the 

equivalent resistance across these terminals. The circuit is thus reduced to the 

simple parallel case. 

EXAMPLE 8.8 Analysis of a Single Time Constant RC Circuit 

The circuit shown in (a) below may be simplified to that of (b): 

C v

i1

R1

R2

R3

(a) (b)

C Reqv

 

enabling us to write: 

CRt eqeVv


 0
 

where: 

  00 Vv   and 
31

31
2

RR

RR
RReq


  

Every current and voltage in the resistive portion of the circuit must have the 

form 
CRt eqAe


, where A is the initial value of that current or voltage. 

Single time constant 
RC circuit defined 
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Since the current in a resistor may change instantaneously, we shall indicate 

the instant after any change that may have occurred at 0t  by use of the 

symbol 0 . 

Thus, the current in 
1R , for example, may be expressed as: 

  Tteii  011  

where: 

C
RR

RR
RT 












31

31
2  

and  01i  remains to be determined from some initial condition. Suppose that 

 0v  is given. Since v  cannot change instantaneously, we may think of the  

capacitor as being replaced by an independent DC source,  0v , for the instant 

of time 0t . Thus: 

   
  31

3

31312

1

0
0

RR

R

RRRRR

v
i




 

The solution is obtained by collecting all these results: 

 
 

  CRRRRR

t

e
RR

R

RRRRR

v
i 31312

31

3

31312

1

0 




  

Another special case includes those circuits containing one resistor and any 

number of capacitors. The resistor voltage is easily obtained by establishing the 

value of the equivalent capacitance and determining the time constant. 

Some circuits containing a number of both resistors and capacitors may be 

replaced by an equivalent circuit containing only one resistor and one 

capacitor; it is necessary that the original circuit be one which can be broken 

into two parts, one containing all resistors and the other containing all 

capacitors. This is not possible in general. 

Not all RC circuits 
can be converted 
into single time 
constant RC circuits 
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8.7 The Simple RL Circuit 

Consider the series RL circuit shown below. 

 

RL v

i

 

 

Figure 8.5 

We designate the time-varying current by  ti , and we shall let the value of  ti  

at 0t  be prescribed as 0I . 

Kirchhoff’s Voltage Law (KVL) applied around the loop gives us: 

0 Ri
dt

di
L

 
(8.39) 

Division by L gives us: 

0 i
L

R

dt

di
 

(8.40) 

This equation has a familiar form; comparison with: 

0
RC

v

dt

dv
 

(8.41) 

shows that the replacement of v  by i  and RC  by RL  produces an equation 

identical to Eq. (8.40). It should, for the RL circuit we are now analysing is the 

dual of the RC circuit we considered first. 

The simple RL 
circuit 

The governing 
differential equation 
of the simple RL 
circuit 
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This duality forces  ti  for the RL circuit and  tv  for the RC circuit to have 

identical expressions if the resistance of one circuit is equal to the conductance 

of the other and if L is numerically equal to C. That is, we will obtain the dual 

circuit (and equation) if we make the substitution: 

LC

GR

iv







 
(8.42) 

Thus, the response of the RC circuit: 

    RCtRCt eVevtv   00  (8.43) 

enables us to write immediately: 

    LtRLtR eIeiti   00  (8.44) 

for the RL circuit. 

Let’s examine the physical nature of the response of the RL circuit as expressed 

by Eq. (8.44). At 0t  we obtain the correct initial condition, and as t  

becomes infinite the current approaches zero. This latter result agrees with our 

thinking that if there were any current remaining through the inductor, then 

energy would continue to flow into the resistor and be dissipated as heat. Thus 

a final current of zero is necessary. 

Duality relations for 
all dual circuits 

The solution to the 
governing 
differential equation 
of the simple RL 
circuit 
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The time constant of the RL circuit may be found by using the duality 

relationships on the expression for the time constant of the RC circuit, or it may 

be found by simply noting the time at which the response has dropped to 36.8 

percent of its initial value: 

R

L
T 

 
(8.45) 

Our familiarity with the negative exponential and the significance of the time 

constant T  enables us to sketch the response curve readily: 

 

t

i

I
0

T

0.3679

0

I
0

 

 

Figure 8.6 

An increase in L allows a greater energy storage for the same initial current, 

and this larger energy requires a longer time to be dissipated in the resistor. If 

we reduce R, the power flowing into the resistor is less for the same initial 

current; again, a greater time is required to dissipate the stored energy. 

Time constant 
defined for the 
simple RL circuit 
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8.8 Single Time Constant RL Circuits 

It is not difficult to extend the results obtained for the series RL circuit to a 

circuit containing any number of resistors and inductors. We first consider 

those cases in which the given circuit may be reduced to an equivalent circuit 

consisting of only one resistor and one inductor; that is, single time constant 

(STC) circuits. 

EXAMPLE 8.9 Analysis of a Single Time Constant RL Circuit 

The circuit shown in (a) below may be simplified to that of (b): 

i

(a) (b)

L Req

R3 L

R1 R2 R4

i1 i2

i

 

The equivalent resistance which the inductor faces is: 

21

21
43

RR

RR
RRReq


  

and the time constant is therefore: 

eqR

L
T   

The inductor current is: 

  Tteii  0  

and represents what we might call the basic solution to the problem. It is quite 

possible that some current or voltage other than i  is needed, such as the current 

2i  in 2R . We can always apply Kirchhoff’s laws and Ohm’s law to the resistive 

Single time constant 
RL circuit defined 
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portion of the circuit without any difficulty, but current division provides the 

quickest answer in this circuit: 

  Ttei
RR

R
i 


 0

21

1
2  

It may also happen that we know the initial value of some current other than 

the inductor current. Thus, if we are given the initial value of 
1i  as  01i , then 

it is apparent that the initial value of 
2i  is: 

   
2

1
12 00

R

R
ii    

From these values, we obtain the necessary initial value of  0i : 

         
 0000 1

2

21
21 i

R

RR
iii  

and the expression for 
2i  becomes: 

  Ttei
R

R
i  01

2

1
2  

We can obtain this last expression more directly. Every current and voltage in 

the resistive portion of the circuit must have the form 
TtAe

, where A is the 

initial value of that current or voltage. We therefore express 2i  as: 

TtAei 2  

and A must be determined from a knowledge of the initial value of 2i . We 

found this initial value previously. We therefore have: 

  Ttei
R

R
i  01

2

1
2  
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A similar sequence of steps provides a solution to a large number of problems. 

This technique is also applicable to a circuit which contains one resistor and 

any number of inductors, as well as to those special circuits containing two or 

more inductors and also two or more resistors that may be simplified by 

resistance or inductance combination until the simplified circuits have only one 

inductance or one resistance. 

EXAMPLE 8.10 Analysis of a Single Time Constant RL Circuit 

Consider the circuit shown below: 

2 mH

60 

i1

3 mH

120 

50 1 mH

iL

90 

t=0

18 V

 

After 0t , when the voltage source is disconnected, we easily calculate an 

equivalent inductance, 

mH 2.21
32

32





eqL  

an equivalent resistance, 

 





  11050

18090

1206090
eqR  

and the time constant: 

μs 20
110

102.2 3







eq

eq

R

L
T  
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Thus, the form of the natural response is 
tAe 50000
. With the independent source 

connected  0t , 
Li  is 50

18 , or 0.36 A, while 
1i  is 90

18 , or 0.2 A. At 
 0t , 

Li  

must still be 0.36 A, but 
1i  will jump to a new value determined by  0Li . 

Thus, by the current divider rule: 

    A 24.000 270
180

1  

Lii  

Hence: 

0

0

36.0

36.0

50000 







 t

t

e

i

t

L
 

and: 

0

0

24.0

2.0

50000

1









 t

t

e

i

t
 

The responses are sketched below: 

806040

0.4

t
0

0.1

20-20

0.2

iL

0.3

(   s)
806040

0.4

t
0

0.1

20-20

0.2

i1

0.3

(   s)

-0.1

-0.2

-0.3  

A circuit containing several resistances and several inductances does not in 

general possess a form which allows either the resistances or inductances to be 

combined into single equivalent elements. There is no single negative 

exponential term or single time constant associated with the circuit. Rather, in 

general, there will be several negative exponential terms, the number of terms 

being equal to the number of inductances that remain after all possible inductor 

combinations have been made. The natural response of these more complex 

circuits is obtained using mathematical techniques that will appear later. 

Not all RL circuits 
can be converted 
into single time 
constant RL circuits 
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8.9 Summary 

 The solution to the linear homogeneous differential equation   0yDf  is 

ts

n

tsts necececy  21

21  where the is ’s are the roots of the characteristic 

equation   0sf  and the ic ’s are arbitrary constants. 

 The natural response of any voltage or current in a single time constant 

circuit always takes the form of TtAey  , where T  is the time constant 

and A is determined from the initial conditions. 

 For single time constant RC circuits, the time constant is eqeqCRT  . 

 For single time constant RL circuits, the time constant is 
eq

eq

R

L
T  . 

 Not all RC and RL circuits can be reduced to single time constant circuits. 
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Exercises 

1. 

The current in a simple source-free series RC circuit is given by 

  mA 20 5000teti  , and the capacitor voltage is 2 V in magnitude at 0t . 

Find R and C.  

2. 

Consider the circuit shown below: 

1 kV 50 F600

200

t=0

 

(a) Find the charge in coulombs present on the capacitor at 
 0t . 

(b) What is the charge at s 01.0t ? 

3. 

Let v and i be the voltage and current variables for a capacitor, assuming the 

passive sign convention. The capacitor is the only energy-storage element 

present in a source-free resistive circuit. If   V 800 v ,   A 1.00 i , and 

 0q  for the capacitor is 20 mC, find  01.0v . 
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4. 

Consider the circuit shown below: 

5 2 F400

100

ix

ix

 

If   mA 30 

xi , find  tix  for 0t . 

5. 

Consider the circuit shown below: 

2 F10 M

fuse

vs

 

The M 10  resistor in the circuit represents the leakage resistance present in a 

typical μF 2  high-voltage capacitor. The fuse blows (opens) at 0t . Let 

 V 100cos23000 tvs  . Assuming 50 V is relatively nonlethal, at what time is 

it safe to get your hands across the capacitor? 
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6. 

Consider the circuit shown below: 

20F

2 M

30F1 M4 M

9 V

t=0

i2

 

The switch closes at 0t . Find  ti2
 for 0t . 

7. 

The magnitude of the current in a series RL circuit decreases at a rate of 

-1As 2000  at 0t  and 
-1As 100  at s 2.0t . At what time has the energy 

stored in the inductor decreased to 1 per cent of its initial value?  

8. 

Consider the circuit shown below: 

2

0.4 

24 V

t=0

i2

8

2 H1 H

i1

v  t(  )

 

Find: 

(a)  01i  (b)  02i  (c)  ti1 , 0t  (d)  ti2 , 0t  (e)  tv , 0t  
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9. 

What is the time constant of a series RL circuit if: 

(a) the current decreases by a factor of 1000 in 0.2 s? 

(b) the time required for the current to drop to half of its initial value is 0.1 s 

less than the time required for it to drop to one-quarter of its initial value? 

10. 

The switch in the circuit shown below has been open for a long time. 

3

12 V

t=0

2 H1.5 H

i

2030

 

Find i  at t : 

(a) -0.08 s  (b) +0.08 s 

11. 

The voltage across the resistor in a simple source-free series RL circuit is 

  V 50 400t

R etv   for 0t . If the value of resistance changes from Ω 200  to 

Ω 40  at 0t  when a second resistor is placed in parallel with it, find  tvR  

for 0t .  
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12. 

The switch in the circuit shown below has been open for a long time. 

100

12 V
t=0

200

0.5 H
i

4 F

1 k

 

It closes at 0t . Find  ti . 

Hint: Superposition can be very useful. 
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9 Nonlinear Op-Amp Applications 
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Introduction 

Nonlinear op-amp circuits play a major role in modern electronics. Examples 

include comparators, precision rectifiers, peak detectors, limiters and clamps. 

Each of these circuits can be used as a “building block” in the creation of more 

advanced signal conditioning circuitry found in a large variety of applications, 

such as: communication receivers, automatic gain control circuits, oscillators 

and waveform generators. 

In non-linear op-amp circuits the non-linearity can be provided by either (or 

both) of the following: 

 the op-amp’s transfer characteristic, i.e. saturation 

 a non-linear element, such as a diode or transistor 

An op-amp operated open-loop can be configured as a comparator – a circuit 

that can compare one voltage with another, and provide, in effect, a digital 

output – either “high” or “low”. 

Precision rectifiers are used in instrumentation and communication systems 

where the forward voltage drop of a silicon diode (approx. 0.7 V) is larger than 

the signal being processed. In this case the op-amp’s extremely large gain 

causes the forward diode drop to be effectively reduced to zero, thus allowing 

precision rectification of signals in the mV range. 

Peak detectors are used in a wide variety of instrumentation and 

communication systems, and again the op-amp allows precision detection. 

A limiter circuit can be used to limit a signal to within a certain range – such a 

circuit can be used to protect following circuitry from overload conditions, and 

they are often used in signal generation circuitry. 

Clamp circuits are used to restore the DC component of an incoming AC 

waveform. Such circuits find utility in communication systems. 
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9.1 The Comparator 

The op-amp in an open-loop configuration can be used as a basic comparator. 

When two inputs are applied to the open-loop op-amp, it attempts to amplify 

the difference, but because the gain is so large, it will saturate close to one of 

the supply voltages (within 1 or 2 V), depending on whether the difference was 

positive or negative. Thus, the output of a comparator has two voltage levels, 

either “high” or “low” – it is not linearly proportional to the input voltage. 

A basic non-inverting comparator is shown below: 

 

ov
vi

(a) circuit

vi

ov

(b) transfer characteristic

positive saturation

negative saturation

+Vsat

-Vsat

 

 

Figure 9.1 

Although general purpose op-amps (like the TL071) can be used as 

comparators, specially designed comparator ICs (like the LM311) can switch 

faster and have additional features not found on general-purpose op-amps. 

Some applications of a comparator are: 

1. Zero crossing detector 

2. Level detector 

3. Window detector 

4. Pulse width modulator 

5. Pulse generator 

 

A basic non-
inverting comparator 
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EXAMPLE 9.1 Zero Crossing Detector 

The basic noninverting comparator can be used as a zero crossing detector. A 

typical circuit for such a detector is shown below: 

vo

RL

v i

 

During the positive half-cycle, the input voltage is positive, hence the output 

voltage is satV . During the negative half-cycle, the input voltage is negative, 

hence the output voltage is satV . Thus the output voltage switches between 

satV  and satV  whenever the input signal crosses the zero level: 

t
T

0

v
i

t
T

0

v
o

+V
sat

-V
sat

 

Looking at the waveform shown above, we realize that a zero crossing detector 

can be used as a sine- to square-wave converter. 

This is an impractical circuit, since any noise on the input waveform near the 

zero crossings will cause multiple level transitions in the output signal. 
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EXAMPLE 9.2 Level Detector 

We would like to monitor a 12 V car battery by having an LED on 

continuously when the battery voltage is above 10 V. We have a +10 V supply 

available. 

The circuit we would use contains an LM311 comparator: 

R3

vp

R2

LM311

R1

v i

vn

R4

+VCC

Vref

72

3

14

8

 

It consists of a voltage reference to establish a stable switching level, a voltage 

divider to scale the desired input level to the value of the voltage reference, and 

a voltage comparator to compare the two. 

We choose a Zener diode (with V 5.2ZV  and mA 23ZI ) to provide a 

reference voltage. The LED has V 8.1LEDV  at mA 3LEDI . We calculate the 

Zener diode’s current setting resistor as follows: 

 value)(standard      330

k 326.0
23

5.210
3










Z

ZCC

I

VV
R
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Careful examination of the LM311 datasheet reveals that the output transistor 

will be turned ON when np vv  . The voltage at the inverting terminal of the 

comparator is given by the voltage divider rule: 

in v
RR

R
v

21

1


  

and the voltage at the noninverting terminal of the comparator is just Zp Vv  . 

The threshold voltage of the comparator is given by pn vv  , or: 

Zi

Zi

V
R

R
v

Vv
RR

R














1

2

21

1

1

 

Solving for the resistor ratio we have: 

1
1

2 
Z

i

V

v

R

R
 

The threshold input voltage is given as 10 V, and so: 

31
5.2

10

1

2 
R

R
 

We therefore choose  k 11R  and  k 32R . 

From the datasheet of the LM311, we obtain the saturation voltage of the 

output transistor as V 3.0at CEsV . The current limiting resistor for the LED is 

then given by: 

 value)(standard     k 7.2

k 633.2
3

3.08.110sat
4










LED

CELEDCC

I

VVV
R
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9.2 Precision Rectifiers 

Rectifier circuits can be implemented with silicon junction diodes. Recall that 

for the diode to conduct appreciably, the voltage across it must be  0.7 V. 

Therefore, a major limitation of these circuits is that they cannot rectify 

voltages below about 0.7 V. In addition, since the input voltage has to rise to 

about 0.7 V before any appreciable change can be seen at the output, the output 

is distorted: 

 

t

v
i

Half-wave

Rectifier

(HWR)

t

v
o

 

 

Figure 9.2 

The transfer characteristic of a half-wave rectifier with a real silicon junction 

diode is shown below: 

 

ideal

v i

vo

real

1.7

1

10.8

10

1

1

0  

 

Figure 9.3 

Notice the effect of the finite voltage drop of the diode. To achieve precision 

rectification we need a circuit that keeps ov  equal to iv  for 0iv . Such 

circuits can be made using op-amps and are known as precision rectifiers. 

The output of a half-
wave rectifier is 
distorted due to real 
diode characteristics 

The transfer 
characteristic of a 
half-wave rectifier 
with real diodes 
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9.2.1 The Superdiode 

The figure below shows a precision half-wave rectifier circuit consisting of a 

diode placed in the negative-feedback path of an ideal op-amp, with 
LR  being 

the rectifier load resistance: 

 

vo

RL

v i

"superdiode"
 

 

Figure 9.4 

If iv  is positive, then assuming there is a virtual short-circuit across the 

op-amp input terminals (due to a negative feedback path around the op-amp), 

then the input voltage appears at the output, and ov  equals iv . In this case the 

op-amp supplies the load current through the diode, and the output of the op-

amp is do vv  . 

With a real op-amp with a finite open-loop gain, OLA , negative feedback will 

work to ensure that the output of the op-amp is: 

  dooiOL vvvvA   (9.1) 

Therefore the output voltage is: 

 diOL

OL

o vvA
A

v 



1

1
 

(9.2) 

A precision half-
wave rectifier using 
a superdiode 
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Since 000 100OLA  for a typical op-amp, the transfer characteristic is nearly 

perfect, with a slope of 1
1


OL

OL

A

A
, and with 0ov  when 0 OLdi Avv . In 

other words, the rectified output appears when iv  exceeds a negligibly small 

voltage equal to the diode drop divided by the op-amp open-loop gain. 

Thus, for 0iv , io vv   (to a high degree of precision). 

Now consider the case when iv  goes negative, and assume that the diode is 

reverse-biased (“off”). Since there is no current, the output voltage is 0ov , 

the voltage appearing across the op-amp input terminals is negative, and the 

op-amp saturates close to its negative supply rail. A quick check of the 

assumption that the diode is reverse-biased under these conditions reveals that 

our analysis is correct. Thus, for 0iv , 0ov . 

The transfer characteristic of the circuit will be almost identical to the ideal 

characteristic of a half-wave rectifier. The non-ideal diode characteristic has 

been almost completely masked by placing it in the negative-feedback path of 

an op-amp. This is another dramatic application of negative feedback. The 

combination of diode and op-amp, shown in the dotted box in Figure 9.4, is 

appropriately referred to as a superdiode. 

The circuit does have serious disadvantages which make it impractical. When 

iv  goes negative and 0ov , the entire magnitude of iv  appears between the 

two input terminals of the op-amp. If this magnitude is greater than a few volts, 

the op-amp may be damaged unless it is equipped with what is called 

“overvoltage protection” (a feature that most modern IC op-amps have). 

Another disadvantage is that when iv  is negative the op-amp will be saturated 

close to its negative supply rail. Although not harmful to the op-amp, saturation 

should usually be avoided, since getting the op-amp out of saturation and back 

into its linear region of operation takes some time. This time delay is 

determined by the op-amp’s slew rate, and even a very fast op-amp will limit 

the circuit to a low frequency range of operation. 
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9.2.2 Precision Inverting Half-Wave Rectifier 

An alternative precision half-wave rectifier circuit that does not suffer from the 

disadvantages of the previous circuit is shown below: 

 

vo

R1

v i
D2

D1

R2

 

 

Figure 9.5 

To analyze this circuit, we firstly remember that the diode is a nonlinear 

element so that linear circuit analysis does not apply. We will assume that the 

op-amp has a negative feedback path around it so that there is a virtual short 

circuit at its input. Thus, the inverting terminal will be kept at 0 V. We will 

carry out the analysis with this assumption, and then check that the assumption 

is true. 

Due to the presence of diodes, we will consider two cases: one where the input 

voltage is positive, the other when the input voltage is negative. 

A precision half-
wave rectifier 
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In the positive half cycle ( 0iv ), direct analysis on the circuit diagram gives: 

 

-

vo

R2

R1

=

4

v i-

R2

v i

R1

R2

R1

v i
D2

D1

v i

R1

1

0 V

v i

R1

v i

R1

2

3

5

vo vD
2

6

vD
20

 

 

Figure 9.6 

The analysis steps are: 

1. We assume an ideal op-amp, and also assume that there is a negative 

feedback path around the op-amp – it is producing a finite output voltage 

(i.e., the overall amplifier is “working”). Thus, the ideal op-amp must have 

a virtual short-circuit (VSC) at its input terminals. Since there is no 

difference in the voltages across the VSC, the voltage at the inverting 

terminal is 0v . The current through resistor 1R , in the direction shown, 

is given by Ohm’s Law, 11 Rvi i . 

2. Due to the infinite input resistance of the ideal op-amp, the current entering 

the inverting terminal is 0 A. We also assume that diode 1D  is “off” (an 

assumption that we will check later). KCL at the inverting terminal now 

gives 112 Rvii i . 
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3. The voltage drop across the resistor 
2R  is given by Ohm’s Law, 

1

2222 R

v
RiRv i

R  , with the polarity shown. 

4. KVL, from the common, across the VSC, across 
2R  and to the output 

terminal gives i
i

o v
R

R

R

v
Rv

1

2

1

20  . 

5. We assume that diode 
2D  is “on” (an assumption that we will check later). 

KCL at the output then gives 122
Rvii iD  . The diode “on” voltage drop 

is then given by its characteristic, and is labelled  
2Dv . 

6. The output of the op-amp is, by KVL, 
2Do vv  , which is a negative voltage 

(remember that io v
R

R
v

1

2  and 0iv ). Thus, diode 1D  is indeed reverse-

biased, and our original assumption about it being “off” is correct. Also, the 

diode 
2D  is indeed forward-biased, thus establishing a negative-feedback 

path around the op-amp and forcing a virtual common to appear at the 

inverting input terminal. That is, negative feedback works to ensure that the 

op-amp output voltage is maintained at 
2Do vv  . 

Thus, in the positive half cycle ( 0iv ), the output of the circuit is: 

io v
R

R
v

1

2
 

(9.3) 

That is, the output is negative for positive inputs. 
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In the negative half cycle ( 0iv ), direct analysis on the circuit diagram gives: 

 

vo =

4

0

R2

R1

v i
D2

D1

v i

R1

1

0 V

v i

R1

3

5

vD
1

vD
1

0

0 V

0
-

-

2

 

 

Figure 9.7 

The analysis steps are: 

1. With the usual assumption that the ideal op-amp has a negative feedback 

path, then a virtual short-circuit (VSC) exists at its input terminals. The 

voltage at the inverting terminal is 0v . The current through resistor 1R , 

in the direction shown, is given by Ohm’s Law, 11 Rvi i . Note that this 

current is positive since 0iv . 

2. We assume that diode 2D  is “off” (an assumption that we will check later). 

Then there is no current in resistor 
2R , and hence 0

2
Rv . 

3. KVL, from the common, across the VSC, across 2R  and to the output 

terminal gives 0ov . 

4. We assume that diode 1D  is “on” (an assumption that we will check later). 

Due to the infinite input resistance of the ideal op-amp, the current entering 

the inverting terminal is 0 A. KCL at the inverting terminal now gives 

111
Rvii iD  . The diode “on” voltage drop is then given by its 

characteristic, and is labelled  
1Dv . 
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5. The output of the op-amp is, by KVL, 
1

0 Dv , which is a positive voltage. 

Thus, diode 
1D  is indeed forward-biased, and our original assumption 

about it being “on” is correct. Diode 
1D  thus establishes a negative-

feedback path around the op-amp and forces a virtual common to appear at 

the inverting input terminal. That is, negative feedback works to ensure that 

the op-amp output voltage is maintained at 
1Dv . Also, the diode 

2D  is 

indeed reverse-biased. 

Thus, in the negative half cycle ( 0iv ), the output of the circuit is: 

0ov  (9.4) 

The transfer characteristic of the circuit is shown below for the case 
21 RR  : 

 

vo

v i

1

1

 

 

Figure 9.8 

The circuit is seen to be a precision inverting half-wave rectifier. Note that 

unlike the previous circuit, here the slope of the characteristic can be set to any 

desired value, including unity, by selecting appropriate values for 1R  and 2R .  

The major advantage of this circuit is that the feedback loop around the op-amp 

remains closed at all times. Hence the op-amp remains in its linear operating 

region, avoiding the possibility of saturation and the associated time delay 

required to “get out” of saturation. 

The transfer 
characteristic of a 
precision inverting 
half-wave rectifier 
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9.2.3 Precision Full-Wave Rectifier 

There are many applications in instrumentation where the information provided 

by both halves of an AC signal is either useful or necessary, but the signal must 

be converted into a unipolar waveform. This need can be met by using a 

precision full-wave rectifier. 

There are many possible arrangements for implementing a precision full-wave 

rectifier. One possible arrangement is depicted symbolically below: 

 

1

1

vo

-2

-1

v i

vo

v i

1

1

v i vo

 

 

Figure 9.9 

As shown, the block diagram consists of two boxes: a precision half-wave 

rectifier, and a weighted inverting summer. Convince yourself that this block 

diagram does in fact realize a precision full-wave rectifier. 

Block diagram of a 
precision full-wave 
rectifier 
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An implementation of the block diagram is shown below: 

 

R2 R2

R1

R1
D2

D1
vo

v i

R2/2

 

 

Figure 9.10 

The output, which is “buffered” since it comes from the output of an op-amp, is 

the absolute value of the input voltage: 

io vv   (9.5) 

The input resistance of the circuit is: 

21in || RRR   (9.6) 

If desired, a voltage follower can be placed at the input to buffer the incoming 

signal. 

An implementation 
of a precision full-
wave rectifier 
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9.2.4 Single-Supply Half-Wave and Full-Wave Rectifier 

There are a number of ways to construct half- and full-wave rectifiers using 

combinations of op-amps and diodes, but the circuit shown below requires only 

a dual op-amp, two resistors, and operates on a single supply: 

 

+VS

+VS

voF

v i

100 k 100 k

voH

R1 R2

0 V

0 V

0 V

 

 

Figure 9.11 

The circuit will work on any single supply op-amp whose inputs can withstand 

being pulled below 0 V. In addition, the op-amps need to have an output that is 

capable of swinging “rail-to-rail”, which means that the output can go within a 

few millivolts of the supply rails under light loading. 

When the input signal is above 0 V, the unity-gain follower presents the input 

signal to the noninverting input of the second op-amp. The feedback around the 

second op-amp creates a virtual short-circuit across its input terminals, and 

subsequently the inputs are equal. Thus, there is no voltage across resistor 1R , 

and no current in 1R  and 2R . The output oFv  therefore “tracks” the input. 

Conversely, when the input is negative, the output of the first op-amp is forced 

to zero (it saturates at the limit of its supply). The noninverting input of the 

second op-amp see the 0 V output, and during this phase operates as a unity-

gain inverter, rectifying the negative portion of the input, iv . 

The net output at oFv  is therefore a full-wave rectified version of iv . In 

addition, a half-wave rectified version is obtained at the output oHv  if desired. 

A single-supply half-
wave and full-wave 
rectifier 
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9.3 Peak Detector 

A peak detector is a circuit that produces an output voltage equal to the positive 

or negative peak value of the input voltage waveform. The simplest form of 

positive peak detector is shown below: 

 

D

ideal

vovi C

 

 

Figure 9.12 

The ideal diode allows the capacitor to charge, but not to discharge. Therefore, 

the capacitor will retain the positive peak value of the input waveform: 

 

vo

vi

t

v

 

 

Figure 9.13 

A positive peak 
detector… 

… and its input and 
output waveforms 
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A precision peak detector is implemented using a superdiode and a capacitor: 

 

vo

v i

"superdiode"

C RL

 

 

Figure 9.14 

Here we have represented the input resistance of the following circuit as a load 

resistance, 
LR .  

For iv  positive and greater than the output voltage the op-amp will drive the 

diode on, thus closing the negative-feedback path and causing the op-amp to 

act as a follower. The output voltage will therefore follow that of the input, 

with the op-amp supplying the capacitor charging current. This process 

continues until the input reaches its peak value. 

Now consider what happens if the input signal falls below the peak value 

stored on the capacitor. In this case 
  vv  at the op-amp’s input terminals, 

and the op-amp enters negative saturation, reverse-basing the diode. The 

superdiode is effectively in the “off” state and the capacitor will discharge 

through the load resistance LR : 

CR

t

io
Levv



 ˆ  
(9.7) 

The rate of decay of the output voltage is therefore dictated by the capacitor 

value and the attached load. This decay in output voltage is sometimes 

desirable – inclusion of a load resistance is essential if the circuit is required to 

detect reductions in the magnitude of the positive peak. 

A precision positive 
peak detector with a 
decaying output 
voltage 
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In other applications, we may wish to retain the peak voltage for a long period 

of time. In these cases, we should use a circuit like that shown below: 

 

vo
D2

D1

R

C

v i

A1

A2

 

 

Figure 9.15 

The op-amp 
1A  offers a high input impedance to the source. The op-amp 

2A  

acts as a buffer between the capacitor and any attached load, thus preventing it 

from discharging. The output ov  is equal to the voltage on the capacitor, which 

equals the positive peak of the input voltage up to that time. 

When oi vv   we will assume that diode 1D  is “off” and diode 
2D  is “on”: 

 

vo
D2

D1

R

C

v i

A1

A2

0

0 V

vD
2

v i

v i

v i

v1

 

 

Figure 9.16 

A precision positive 
peak detector which 
retains its output 
voltage for a long 
time 
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The negative feedback path around 
1A  consists of diode 

2D , the follower 
2A , 

and the resistor R. Thus, there is a virtual short-circuit across the input 

terminals of 
1A , and the input voltage iv  appears at the inverting terminal. 

Now since diode 
1D  is “off”, there is no path for current through R. Thus the 

voltage across R is 0 V. Thus the follower 
2A  must output a voltage such that: 

io vv   (9.8) 

Thanks to the virtual short-circuit across the follower 2A , this voltage must 

appear across the capacitor, and it therefore charges up. The op-amp 
1A  

provides the charging current, and its output voltage must be: 

21 Di vvv   (9.9) 

We can now see that the assumption that diode 
1D  is “off” is consistent with 

the voltage across it: 

0
21 1  DiD vvvv  (9.10) 

So long as oi vv  , the circuit will work in this manner, and the output ov  

tracks iv . This mode of operation is called the track mode. 

It can be observed that placing the diode 
2D  and the follower 

2A  within the 

feedback path of 1A  eliminates the possible error due to the diode drop across 

2D . We should choose an op-amp for 2A  that has low input bias currents so as 

to minimize the capacitance discharge. JFET input op-amps are ideal in this 

case. The op-amp we choose for 1A  must have a high output current capability 

to charge C during fast-occurring input voltage peaks. As will be seen shortly, 

neither op-amp enters saturation which means the circuit can be operated at 

relatively high frequencies. 
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When oi vv   we will assume that diode 
1D  is “on” and diode 

2D  is “off”: 
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Figure 9.17 

Since diode 
2D  is “off”, there is no path for a current to discharge the 

capacitor C. Thus, it retains a voltage iv̂ , the peak of the input voltage up to 

that time. The output of follower 2A  is then: 

io vv ˆ  (9.11) 

Since diode 1D  is “on”, there is a negative feedback path around 
1A  and so 

there is once again a virtual short-circuit across its input terminals such that the 

input voltage iv  appears at the inverting terminal. The output of 
1A  is then: 

11 Di vvv   (9.12) 

We can now see that the assumption that diode 2D  is “off” is consistent with 

the voltage across it: 

0ˆˆ
12 1  iDiiD vvvvvv  (9.13) 

So long as oi vv  , the circuit will work in this manner, and the output ov  

retains the peak value of iv . This mode of operation is called the hold mode. 
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9.4 Limiter 

Circuits which are used to clip off the unwanted portions of the input voltage 

above or below certain levels, so as to produce limited outputs, are called 

limiters or clippers. 

A double limiter circuit works on both positive and negative peaks of an input 

waveform. An implementation using an op-amp is shown below: 

 

vo
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v i
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Z 1Z 2

"double-anode
Zener diode"

 

 

Figure 9.18 

Its transfer characteristic is: 
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Figure 9.19 

Convince yourself that the transfer characteristic will be that shown. 

A double limiter 
circuit utilising a 
double-anode Zener 
diode… 

…and its transfer 
characteristic 
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EXAMPLE 9.3 Asymmetric Double Limiter 

An asymmetric double limiter is shown below: 

vo

v i

5.6 V

10 k

20 k

8.2 V

 

We assume that when a Zener diode conducts in the forward direction, the 

voltage drop is approximately 0.7 V. The circuit’s transfer characteristic is: 

v i

vo

0

8.9

- 6.3

slope = - 2

3.15

-4.45

 

The output waveform resulting from a 5 V peak sinusoidal input is shown 

below: 
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9.5 Clamp 

A clamp circuit is used to add a DC component to an AC input waveform so 

that the positive (or negative) peaks are forced to take a specified value – 

usually zero. In other words, the peaks of the waveform are “clamped” to a 

specified voltage value. The simplest form of positive clamp is shown below: 

 

C

ideal vovi D

vC

 

 

Figure 9.20 

Because of the polarity in which the diode is connected, it will allow the 

capacitor to charge to a voltage Cv  equal to the magnitude of the most negative 

peak of the input signal. Subsequently, the diode turns off and the capacitor 

retains its voltage indefinitely. 

Now since the output voltage ov  is given by: 

Cio vvv   (9.14) 

it follows that the output waveform will be identical to that of the input except 

shifted upwards by Cv . 

Another way of visualizing the operation of the circuit is to note that because 

the diode is connected across the output with the polarity shown, it prevents the 

output voltage from going below 0 V (by turning on and charging up the 

capacitor). 

An ideal positive 
clamp 
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An example of input and output signals is shown below: 

 

t

5
v

i

-5

10
v

o

0

v

 

 

Figure 9.21 

As can be seen from the figure above, another appropriate name for the circuit 

is a DC restorer. These circuits find application in communication systems. 

It should be obvious that reversing the diode polarity will provide an output 

waveform whose highest peak is clamped to 0 V – a negative clamp. 

If we replace the diode in the clamping circuit of Figure 9.20 by a 

“superdiode”, a precision positive clamping circuit is obtained: 

 

C

vovi

 

 

Figure 9.22 

Operation of this circuit should be self-explanatory. 

Input and output 
waveforms of an 
ideal positive clamp, 
showing DC 
restoration 

A precision positive 
clamp 
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9.6 Summary 

 The op-amp in an open-loop configuration can be used as a basic 

comparator: 

ov
vi

(a) circuit

vi

ov

(b) transfer characteristic

+Vsat

-Vsat

 

 The inverting half-wave precision rectifier is used to rectify signals in the 

mV range: 
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v i
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(a) circuit (b) transfer characteristic
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 A precision positive peak detector can retain its output voltage for a long 

time: 
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 A limiter is used to clip off the unwanted portions of the input voltage 

above or below certain levels, so as to produce a limited output: 

vo

R1

v i

R2

Z 1Z 2

v i

vo

0

+ 0.7)V
Z 2

(

V
Z 1
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slope =
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(a) circuit (b) transfer characteristic

 

 A precision positive clamp is used to clamp a signal’s minimum value to 0 

V, thus restoring a DC component: 

C

vovi
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Exercises 

1. 

The window detector circuit detects when an unknown voltage falls within a 

specified voltage band or window. It consists of two comparators and two 

reference voltages 
TLV  and 

THV  defining the lower and upper limits of the 

window, as shown below: 

VTL

v i

Rc

7

LM311

2

3

1

VTH

LM311

2

3

1

+VCC

7
vo

 

Note the use of a “wired-OR” output. If either comparator turns on then the 

output will be “pulled low” (i.e. V 0ov ). With both comparators off there is 

no current and the output is “pulled high” (i.e. CCo Vv  ). The resistor  cR   in 

this case is called a “pull-up resistor”. 
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Design a circuit to monitor an input voltage and turn an LED on when this 

voltage goes either above 5.5 V or below 4.5 V. Assume that V 8.1LEDV  and 

mA.2LEDI . A supply voltage of 12 V is available. 

2. 

Draw the transfer characteristic of the following op-amp circuit. 

v

R

D2

D1

o

v i

A1

R

R R R

A2

 

3. 

Draw the transfer characteristic of the following op-amp circuit. 

vo

R
v i

D2

D1

RR
+15 V

3

 

4. 

It is desired to clamp a 1 kHz, 5 V peak, sinusoid so that its maximum value is 

0 V. Draw the schematic of a circuit that will achieve such an operation with 

precision. 
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5. 

The following block diagram shows part of a “clock recovery” circuit for a 

communication system. Determine the function of each block, and therefore 

give the blocks a name: 

 

(i)

Waveform

(ii) (iii)
a b c d

t

a
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10 The First-Order Step Response 
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Introduction 

The determination of the natural response of a source-free circuit relies solely 

on the configuration of the circuit elements and on any initial energy storage 

present in the system (capacitor voltages and inductor currents). 

If we apply a DC source to a circuit, it will eventually settle to a state where all 

voltages and currents are DC. Such a DC source is termed a forcing function – 

it forces the form of the response in the circuit voltages and currents. 

If we apply a sinusoidal source to a circuit, it will eventually settle to a state 

where all voltages and currents are sinusoidal. Thus the concept of a forcing 

function is applicable to other styles of sources. We shall see later that the DC 

source and the sinusoidal source are special cases of a general forcing function. 

The application of a forcing function to a circuit will result in a “response” 

consisting of two parts. The first part is termed the forced response, or steady-

state response. The second part is the natural response. As we know, the 

natural response dies out after a period of time, leaving only the forced 

response. We can think of the natural response of a circuit as a necessary 

transient response to move the circuit from one “state” to another. 

We will consider circuits that are initially in a known state – any sources have 

either been off for a very long time, or on for a very long time. Any forcing 

functions are switched on at 0t . 

The forced response can be obtained by considering the response of the circuit 

after a very long time. The form of the natural response will be the same as that 

obtained for the source-free circuit. 

The complete response will be obtained by adding the forced response to the 

natural response. 
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10.1 The Unit-Step Forcing Function 

In an analysis of a circuit we often find the need to turn source voltages or 

currents on at a specified time. To do this, we define the unit-step function to 

be zero for all values of time less than zero, and unity for all values of time 

greater than zero: 

 









0,1

0,0

t

t
tu

 

 

(9.1) 

At 0t ,  tu  changes abruptly from 0 to 1. Its value at 0t  is undefined, but 

its value is known for all points arbitrarily close to 0t . We often indicate 

this by writing   00 u  and   10 u . 

Graphically, the unit-step function looks like: 

 

1

t

u t( )

0  

 

Figure 9.1 

Note that a vertical line of unit length is shown at 0t . This “riser” is of 

course impossible (how can a function take on many values simultaneously?) 

but is usually shown in drawings. 

We cannot always arrange for the switching of a source to occur at 0t . Since 

the unit-step function provides us with a discontinuity when the value of its 

argument is zero, then we need to consider a delayed version of the unit-step. 

The unit-step 
function defined 

and graphed 
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We will now make a very important observation: it is the argument of the 

function which determines the position of the function along the t-axis. We 

therefore have the delayed unit-step function: 

 









0

0

0
,1

,0

tt

tt
ttu

 

 

(9.2) 

We obtain the conditions on the values of the function by the simple 

substitution t t t  0  in Eq. (9.1). Graphically, we have: 

 

1

t0 t
0

(     )u t-t
0

 

 

Figure 9.2 

We see that the argument  0tt   simply shifts the origin of the original 

function to t0 . A positive value of t0  shifts the function to the right –  

corresponding to a delay in time. A negative value shifts the function to the left 

– an advance in time. 

To represent a constant voltage V being turned on in a circuit, we represent it as 

a source which is zero before 0tt   and a constant V after 0tt  : 

 

(      )u t - t0

General

network
V

 

 

Figure 9.3 

The argument of a 
function determines 
its position 
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The utility of the unit-step function is that it can be used as a “switch” to turn 

another function (not necessarily a constant) on or off at some point. For 

example, the product given by  u t t1 2cos   is shown below: 

 

1

t0 1 2 3 4-1-2

(    )u t- 1 cos t2

 

 

Figure 9.4 

Another useful forcing function may be obtained by manipulating the unit-step 

forcing function. Let us define a rectangular voltage pulse by the following 

conditions: 

 
















tt

tttV

tt

tv

1

10

0

,0

,

,0

 

 

(9.3) 

The pulse is shown below: 

 

V

t0 t
0

tv (  )

t
1  

 

Figure 9.5 

This rectangular pulse is the difference of two step functions: 

      10 ttuttuVtv   
(9.4) 

The unit-step 
function as a 
“switch” 

The rectangular 
pulse 
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EXAMPLE 10.1 The Unit-Step as a Switch 

The unit-step finds application in mathematically representing the application 

of a source via a switch. Consider the circuit shown below: 

General

network
V

t=0

(a)

 

It is tempting to replace the voltage source and switch by a step function: 

General

network
( )u tV(b)

 

However, this is incorrect, because the circuit with the step function actually 

represents: 

General

networkV(c)

t=0

 

That is, the step function applies 0v  for 0t , and then Vv   for 0t . The 

first circuit applies an open circuit for 0t , and then Vv   for 0t . 

However, circuit (b) can often be used if we establish that all initial currents 

and voltages in the original network and in circuit (b) for 0t  are equivalent. 

This is always the case for circuits that start out with zero initial conditions (no 

stored energy) at 0t . 

The circuit 
equivalent of a step-
voltage function 
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10.2 The Driven RC Circuit 

Consider a circuit consisting of a battery V in series with a switch, a resistance 

R, and a capacitance C. The switch is closed at 0t , as shown in the circuit 

diagram (a) below: 

 

V C

Rt=0

v  t(  )

(a)

C

R

v  t(  )

(b)

Vu  t(  )

 

 

Figure 9.6 

We will assume that there is no stored energy in the capacitor before 0t , and 

we are therefore able to replace the battery and switch by a voltage-step forcing 

function  tVu , which also produces no response prior to 0t . Hence, we will 

analyse the equivalent circuit shown in circuit diagram (b). 

We shall find  tv  by writing down the appropriate differential equation that 

describes the circuit, and then solve it using Euler’s integrating factor. 

Applying KCL to the top capacitor node, we have: 

 
0



dt

dv
C

R

tVuv
 

(9.5) 

which can be rewritten as: 

 
RC

tVu

RC

v

dt

dv


 

(9.6) 

 

A simple RC circuit 
driven by a step-
voltage 

The governing 
differential equation 
for the RC circuit 
driven by a step-
voltage 
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Since the unit-step function is discontinuous at 0t , we first consider the 

solution for 0t  and then for 0t . It is obvious that the application of zero 

voltage since t  has not produced any response, and therefore: 

  0,0  ttv  
(9.7) 

For positive time  tu  is unity, and we must solve the equation: 

0,  t
RC

V

RC

v

dt

dv
 

 

(9.8) 

To solve, first multiply both sides by an integrating factor equal to 
RCte . This 

gives: 

RC

V
e

RC

v
e

dt

dv
e RCtRCtRCt 

 

 

(9.9) 

Thus, recognising that the left hand-side is the derivative of 
RCtve , we have: 

 
RC

V
eve

dt

d RCtRCt 
 

 

(9.10) 

Integrating both sides with respect to time gives: 

Adt
RC

Ve
ve

RCt
RCt    

 

(9.11) 

where A is a constant of integration. Dividing both sides by the integrating 

factor gives: 

RCt
RCt

RCt Aedt
RC

Ve
ev     

 

(9.12) 
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Noting that V is a constant, we perform the integration and obtain: 

  RCtAeVtv   
(9.13) 

Prior to 0t ,   0tv , and thus   00 v . Since the voltage across a capacitor 

cannot change by a finite amount in zero time without being associated with an 

infinite current, we thus have   00 v . We thus invoke the initial condition 

that   00 v  and get: 

  0,   tVeVtv RCt
 

(9.14) 

Thus, an expression for the response valid for all t  would be: 

     tueVtv RCt 1  
(9.15) 

This is the desired solution, but it has not been obtained in the simplest manner. 

In order to establish a more direct procedure, we will interpret the two terms 

appearing in Eq. (9.15). 

The exponential term has the functional form of the natural response of the RC 

circuit – it is a negative exponential that approaches zero as time increases, and 

it is characterized by the time constant RC. The functional form of this part of 

the response is identical with that which is obtained in the source-free circuit. 

However, the amplitude of this exponential term depends on V, the forcing 

function. 

Eq. (9.15) also contains a constant term, V. Why is it present? The natural 

response approaches zero as the energy stored in the capacitor gradually 

reaches its limit. Eventually the capacitor will be fully charged and it will 

appear as an open circuit – the current will be zero, and the battery voltage V 

will appear directly across the capacitor terminals. This voltage is a part of the 

response which is directly attributable to the forcing function, and we call it the 

forced response. It is the response which is present a long time after the switch 

is closed. 

The complete 
response of an RC 
circuit to a step-
voltage 

The complete 
response is 
composed of two 
parts… 

the natural response 
and… 

the forced response 
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We see that the complete response is composed of two parts: 

response
natural

  
response
forced

  
response

complete


 

 

(9.16) 

The forced response has the characteristics of the forcing function; it is found 

by pretending that all switches have been thrown a long time ago. For circuits 

with only switches and DC sources, the forced response is just the solution of a 

simple DC circuit problem (all capacitors are open-circuits, all inductors are 

short-circuits). 

The natural response is a characteristic of the circuit, and not of the sources. Its 

form may be found by considering the source-free circuit, and it has an 

amplitude which depends on the initial amplitude of the source and the initial 

energy storage. 

The reason for the two responses, forced and natural, may also be seen from 

physical arguments. We know that our circuit will eventually assume the 

forced response. However, at the instant the switches are thrown, the initial 

capacitor voltages (or the currents through the inductors in other circuits) will 

have values which depend only on the energy stored in these elements. These 

voltages or currents cannot be expected to be the same as the voltages and 

currents demanded by the forced response. Hence, there must be a transient 

period during which the voltages and currents change from their given initial 

values to their required final values. The portion of the response which 

provides the transition from initial to final values is the natural response (often 

called the transient response). 

The complete 
response is the sum 
of the forced 
response and the 
natural response 

The forced response 
is determined by 
forcing function 

The natural 
response is 
determined by the 
circuit 

The natural 
response provides 
the link between the 
initial state and final 
state of a circuit 
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10.3 The Forced and the Natural Response 

There is an excellent mathematical reason for considering the complete 

response to be composed of two parts, the forced response and the natural 

response. The reason is based on the fact that the solution of a linear 

differential equation may be expressed as the solution of two parts, the 

particular solution (forced response) and the complementary solution (natural 

response). 

Recall that a general linear differential equation with constant coefficients of 

order n is an equation that can be written: 

 trya
dt

dy
a

dt

yd
a

dt

yd
a

n

n

nn

n

n 




 011

1

1   

 

(9.17) 

This linear nonhomogeneous differential equation with constant coefficients 

may also be written in the form: 

   tryDf   
(9.18) 

We may identify  tr  as a term that is due to the forcing function. 

We have already seen that the solution to the homogeneous differential 

equation with constant coefficients is the solution of the equation: 

  0cyDf  
(9.19) 

Such a solution, cy , is called the complementary solution. We know that the 

complementary solution has a form given by: 

ts

n

tsts

c
necececy  21

21  
(9.20) 

where the ic ’s are arbitrary constants and the is ’s are the roots of the 

characteristic equation. 

The solution to a 
general differential 
equation consists of 
two parts… 

the complementary 
solution (natural 
response) and… 
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The particular solution, py ,  is any solution we happen to come up with that 

satisfies the original differential equation. That is, the particular solution 

satisfies: 

   tryDf p   
(9.21) 

To see that the general solution of Eq. (9.18) is composed of two parts, let the 

complete solution be written as the sum of the particular solution and the 

complementary solution: 

cp yyy   
(9.22) 

Substitution into Eq. (9.18) results in: 

      

 
 tr

tr

yDfyDfyyDf cpcp







0
 

 

 

 

(9.23) 

That is, we can safely add cy  to any particular solution, since it contributes 

nothing to the right-hand side. 

We now have to find ways to obtain the particular solution of a differential 

equation. We will look at three methods – one where we utilise the concept of 

an inverse differential operator, one where the solution can be obtained by 

inspection, and one where the differential equation is first-order. 

the particular 
solution (forced 
response) 

The general solution 
is the sum of the 
particular solution 
and the 
complementary 
solution 
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10.3.1 Finding a Particular Solution using the Inverse Differential Operator 

The concept of the differential operator can be used to find particular solutions 

for nonhomogeneous differential equations. 

In seeking a particular solution of: 

   tryDf   
(9.24) 

it is natural to write: 

 
 tr

Df
y p

1


 

(9.25) 

and then try to find an operator  Df1  so that the function py  will have 

meaning and satisfy Eq. (9.24). All we require is that: 

 
 

   trtr
Df

Df 
1

 

(9.26) 

We proved before that: 

    stst esfeDf   
(9.27) 

This suggests that we define: 

   
  0,

11
 sfe

sf
e

Df

stst

 

 

(9.28) 

Now from Eq. (9.27) it follows that: 

 
 

 
 

st
stst

e
sf

esf

sf

e
Df 

 

(9.29) 

and thus, with the requirement of Eq. (9.26), Eq. (9.28) is verified. 

The inverse 
differential operator 
is introduced 
notationally… 

with the only 
requirement that it 
gives a solution to 
the original 
differential equation 

The effect of the 
inverse differential 
operator on an 
exponential function 
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EXAMPLE 10.2 Finding a Particular Solution to a Differential Equation 

Solve the equation: 

  teyDD 22   

Here the roots of the characteristic equation are 1 ,0 s . Further, 

  DDDf  2  and   02 f . Hence, using Eq. (9.28): 

t
t

t

p e
e

e
DD

y 2

2

2
2

2 6

1

22

1






  

So the solution is: 

tt eeccy 2

6
1

21    

 

EXAMPLE 10.3 Finding a Particular Solution to a Differential Equation 

Find a particular solution of: 

  teyD 3592   

Here the roots of the characteristic equation are 3 ,3 s  and   92  DDf . 

We also have   00 f  and   01 f . Hence, using superposition, we have: 

9

5

90

5
5

9

1
221 






D

y  

and: 

t
t

t e
e

e
D

y
8

3

91

3
3

9

1
222 





  

Hence: 

t

p eyyy
8
3

9
5

21   

is a particular solution. 



10.15 

PMcL The Forced and the Natural Response Index    

2017  10 - The First-Order Step Response 

10.3.2 Finding a Particular Solution by Inspection 

For the second method of finding a particular solution, we note that it is 

frequently easy to obtain a particular solution of a nonhomogeneous equation: 

   tryaDaDaDa n

n

n

n  

 01

1

1   
(9.30) 

by inspection. 

For example, if  tr  is a constant 0R  and 00 a , then: 

0

0

a

R
y p   

(9.31) 

is a solution because all derivatives of py  are zero. 

EXAMPLE 10.4 Finding a Particular Solution by Inspection 

Solve the equation: 

  16232  yDD  

We obtain the complementary function: 

tt

c ececy 2

21

   

By inspection a particular solution of the original equation is: 

8
2

16 py  

Hence the general solution is: 

82

21   tt ececy  

The particular 
solution for a 
constant forcing 
function is a 
constant 
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10.3.3 Finding a Particular Solution using an Integrating Factor 

For the third method of finding a particular solution, let us restrict ourselves to 

first-order differential equations. The general equation of the type encountered 

in analysing the RC circuit of the previous section can be written as: 

QPv
dt

dv


 

 

(9.32) 

P and Q can, in general, be functions of time. We identify Q as a term that is 

due to the forcing function, and P as a quantity due solely to the circuit 

configuration. Following the steps as before, we first multiply both sides by an 

integrating factor equal to 
Pte . This gives: 

QePve
dt

dv
e PtPtPt 

 

 

(9.33) 

Thus, recognising that the left hand-side is the derivative of 
Ptve , we have: 

  PtPt Qeve
dt

d


 

 

(9.34) 

Integrating both sides with respect to time gives: 

AdtQeve PtPt    

 

(9.35) 

where A is a constant of integration. Since the constant is explicitly shown, we 

should remember that no integration constant needs to be added to the 

remaining integral when it is evaluated. 

Dividing both sides by the integrating factor gives: 

PtPtPt AedtQeev     

 

(9.36) 

The general solution 
of a first-order 
differential 
equation… 
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If  tQ , the forcing function, is known, then it remains only to evaluate the 

integral to obtain the complete response. However, we shall not evaluate such 

an integral for each problem. Instead we are interested in using Eq. (9.36) to 

draw several general conclusions. 

We should note first that, for a source-free circuit, Q must be zero, and the 

solution is the natural response: 

Pt

n Aev   
(9.37) 

In linear time-invariant passive circuits, P is always a positive constant that 

depends only on the circuit elements and their interconnection in the circuit (if 

a circuit contains a dependent source or a negative resistance, it is possible for 

P to be negative). The natural response therefore approaches zero as time 

increases without limit. 

We therefore find that one of the two terms making up the complete response 

has the form of the natural response. It has an amplitude which will depend on 

the initial energy of the circuit as well as the initial value of the forcing 

function. 

We next observe that the first term of Eq. (9.36) depends on the functional 

form of  tQ , the forcing function. Whenever we have a circuit in which the 

natural response dies out as t becomes infinite, then this first term must 

describe the response completely after the natural response has disappeared. 

Thus, this term is the forced response. 

has a natural 
response… 

and a forced 
response 
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We have only considered those problems involving the sudden application of 

DC sources, and  tQ  is therefore a constant for all values of time after the 

switch has been closed. We can now evaluate the integral in Eq. (9.36), 

obtaining the forced response: 

P

Q
v f   

(9.38) 

and we can write the complete response: 

Pt

nf Ae
P

Q
vvv 

 

 

(9.39) 

For the RC series circuit, PQ  is the constant voltage V and P1  is the time 

constant T. We can see that the forced response might have been obtained 

without evaluating the integral, because it must be the complete response at 

infinite time. The forced response is thus obtained by inspection using DC 

circuit analysis. 

In the following section we shall attempt to find the complete response for 

several RC circuits by obtaining the forced and natural responses and adding 

them. 

The forced response 
for DC excitation 

The complete 
response for DC 
excitation 
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10.4 Step-Response of RC Circuits 

We will use the simple RC series circuit to illustrate how to determine the 

complete response by the addition of the forced and natural response. This 

circuit, shown below, has been analysed earlier, but by a longer method. 

 

C

R

v  t(  )Vu  t(  )

 

 

Figure 9.7 

The desired response is the voltage across the capacitor,  tv , and we first 

express this voltage as the sum of the forced and natural voltage: 

nf vvv   
(9.40) 

The functional form of the natural response must be the same as that obtained 

without any sources. We therefore replace the step-voltage source by a short-

circuit and recognize the resulting parallel source-free RC circuit. Thus: 

RCt

n Aev   
(9.41) 

where the amplitude A is yet to be determined. 

The simple RC 
circuit driven by a 
step-voltage 

The complete 
response expressed 
as the sum of the 
forced response and 
natural response 

The form of the 
natural response 
that results from the 
source-free circuit 
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We next consider the forced response, that part of the response which depends 

upon the nature of the forcing function itself. In this particular problem the 

forced response must be constant because the source is a constant V for all 

positive values of time. 

After the natural response has died out the capacitor must be fully charged and 

the forced response is simply: 

Vv f   
(9.42) 

Note that the forced response is determined completely – there is no unknown 

amplitude. We next combine the two responses: 

RCtAeVv   
(9.43) 

and apply the initial condition to evaluate A. The voltage is zero prior to 0t , 

and it cannot change value instantaneously since it is the voltage across a 

capacitor. Thus, the voltage is zero immediately after 0t , and: 

AV 0  
(9.44) 

Thus: 

VA   
(9.45) 

Therefore: 

 RCteVv  1  
(9.46) 

 

The forced response 
obtained from DC 
circuit analysis 

Determining the 
amplitude of the 
decaying 
exponential term 

The complete 
response – obtained 
without solving a 
differential equation! 
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The complete response is plotted below, and we can see the manner in which 

the voltage builds up from its initial value of zero to its final value of V. 

 

V

t

v

T T2 T3 T40

0.6321V

 

 

Figure 9.8 

The transition is effectively accomplished in a time T4 . In one time constant, 

the voltage has attained 63.2% of its final value. 

 

A graph of the step-
response of the RC 
circuit 
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EXAMPLE 10.5 Step Response of an RC Circuit 

Consider the circuit shown below: 

50 mF
120 V

10

t=0

50 V

60
200

50 v  t(  )

a

b

i  t(  )

 

The switch is assumed to have been in position a for a  long time, or, in other 

words, the natural response which resulted from the original excitation of the 

circuit has decayed to a negligible amplitude, leaving only a forced response 

caused by the 120 V source. 

We begin by finding the forced response when the switch is in position a. The 

voltages throughout the circuit are all constant, and there is thus no current 

through the capacitor (which is treated like an open-circuit). Simple voltage 

division determines the forced response prior to 0t : 

0,100120
1050

50



 tv f  

and we thus have the initial condition: 

  1000 v  

Since the capacitor voltage cannot change instantaneously, this voltage is 

equally valid at 
 0t  and 

 0t . 
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The switch is now thrown to b, and the complete response is: 

nf vvv   

The form of the natural response is obtained by replacing the 50 V source by a 

short-circuit and evaluating the equivalent resistance: 

24
6012001501

1



eqR  

CRt

n
eqAev


  

or 

2.1t

n Aev   

In order to evaluate the forced response with the switch at b, we wait until all 

the voltages and currents have stopped changing, thus treating the capacitor as 

an open circuit, and use voltage division once more: 

    
    

2050
200502005060

2005020050





fv  

Thus: 

2.120 tAev   

and from the initial condition already obtained: 

  100200  Av  

and thus: 

80A  

Therefore, the complete response is: 

0,8020 2.1   tev t  
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This response is sketched below: 

432

100

t

v

T0

20

1-1  

The natural response is seen to form a transition from the initial to the final 

response. 

Finally, let us calculate some response that need not remain constant during the 

instant of switching, such as  ti  in the circuit diagram. With the contact at a, it 

is evident that A 192.026050 i . When the switch is in position b, the 

forced response for this current now becomes: 

    
1.0

20050

50

200502005060

50



fi  

The form of the natural response is the same as that which we already 

determined for the capacitor voltage: 

2.1t

n Bei   

Combining the forced and natural responses, we obtain: 

2.11.0 tBei   
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To evaluate B, we need to know  0i . This is found by fixing our attention on 

the energy-storage element, here the capacitor, for the fact that v  must remain 

100 V during the switching interval is the governing condition establishing 

other currents and voltages at 
 0t . Since   V 1000 v , and since the 

capacitor is in parallel with the  200  resistor, we find   5.00 i , 4.0B , 

and thus: 

 
  04.01.0

0192.0
2.1 


 teti

tti
t

 

or: 

       tuetuti t 2.14.01.0192.0   

This response is sketched below: 

432

0.5

t

i

T0

0.1

1-1

0.192
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EXAMPLE 10.6 Step Response of an RC Circuit using Superposition 

Let us apply a rectangular voltage pulse of amplitude V and duration 0t to the 

simple RC series circuit. 

V

v  t(  )

(a)

C

R

v  t(  )

(b)

t0 t0

u  t - t(       )-V 0

Vu  t(  )

 

We represent the forcing function as the sum of two step-voltage sources  tVu  

and  0ttVu  , and plan to obtain the response by using the superposition 

principle. We will designate that part of  tv  which is due to the lower source 

 tVu  acting alone by the symbol  tv1
 and then let  tv2

 represent that part due 

to  0ttVu   acting alone. Then: 

     tvtvtv 21   

We now write each of the partial responses 1v  and 2v  as the sum of a forced 

and a natural response. The response  tv1
 is familiar: 

    0,11   teVtv RCt  

Note that the range of t , 0t , in which the solution is valid, is indicated. 
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We now consider the upper source and its response  tv2
. Only the polarity of 

the source and the time of its application are different. There is thus no need to 

determine the form of the natural response and the forced response, the 

solution for  tv1
 enables us to write: 

     02 ,1 0 tteVtv
RCtt




 

where the applicable range of t , 0tt  , must again be indicated. 

We now add the two solutions carefully, since each is valid over a different 

interval of time: Thus: 

   
       0

0

011

01

tteVeVtv

tteVtv
RCttRCt

RCt








 

or, simplifying the second equation: 

   
    0

0

1

01

0 tteeVtv

tteVtv
RCtRCt

RCt








 

The second equation can also be written as: 

     
0

001 tteeVtv
RCttRCt




 

We can identify the constant at the front of the decaying exponential term as 

the value of the initial response at time 0tt  . If we define: 

 RCt
eVV 010


  

then the second term is just: 

   
00

0 tteVtv
RCtt




 

This is a “time shifted” decaying exponential with an initial value given by the 

response at the switching instant, 0V . 
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The solution is completed by stating that  tv  is zero for negative t and 

sketching the response as a function of time. The type of curve obtained 

depends upon the relative values of 0t  and the time constant T. Two possible 

curves are shown below: 

V

t

v

(  )T

t
0

0 2t
0

t
0

1
2

(a)

V
0

V

t

v

(  )T

0 2t
0

t
0

(b)

3t
0

4t
0

V
0

 

The top curve (a) is drawn for the case where the time constant is only one-half 

as large as the length of the applied pulse – the rising portion of the exponential 

has therefore almost reached V before the decaying exponential begins. 

The opposite situation is shown on the bottom (b) – there, the time constant is 

twice 0t  and the response never has a chance to reach a large amplitude. 
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10.5 Analysis Procedure for Single Time Constant RC Circuits 

The procedure we have been using to find the response of an RC circuit after 

DC sources have been switched on or off or in or out of the circuit at some 

instant of time, say 0t , is summarized in the following. We assume that the 

circuit is reducible to a single equivalent resistance eqR  in parallel with a single 

equivalent capacitance eqC  when all independent sources are set equal to zero, 

i.e. we have a single time constant (STC) circuit. The response we seek is 

represented by  tf . 

1. With all independent sources set to zero, simplify the circuit to 

determine eqR , eqC , and the time constant eqeqCRT  . 

2. Viewing eqC  as an open circuit, use DC-analysis methods to find 

 0Cv , the capacitor voltage just prior to the discontinuity. 

3. Again viewing eqC  as an open circuit, use DC-analysis methods to 

find the forced response. This is the value approached by  tf  as 

t ; we represent it by  f . 

4. Write the total response as the sum of the forced and natural 

responses:     TtAeftf  . 

5. Find  0f  by using the condition that      00 CC vv . If desired, eqC  

may be replaced by a voltage source  0Cv  [a short circuit if 

  00 

Cv ] for this calculation. With the exception of capacitor 

voltages, other voltages and currents in the circuit may change 

abruptly. 

6. Then     Aff 0  and          Tteffftf   0 . 

Step-by-step guide 
to solving STC RC 
circuits with step-
sources 
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10.6 RL Circuits 

The complete response of any RL circuit may also be obtained as the sum of 

the forced response and natural response. 

EXAMPLE 10.7 Step Response of an RL Circuit 

Consider the circuit shown below: 

6 3 H

2

50 V

50u t( )
i t( )

 

The circuit contains a DC voltage source as well as a step-voltage source. Let 

us determine  ti  for all values of time. We might choose to replace everything 

to the left of the inductor by the Thévenin equivalent, but instead let us merely 

recognize the form of that equivalent as a resistor in series with some voltage 

source. The circuit contains only one energy-storage element, the inductor, and 

the  natural response is therefore a negative exponential: 

2
5.1

3


eqR

L
T  

and: 

2t

n Aei   

The forced response must be that produced by a constant voltage of 100 V. The 

forced response is constant, and no voltage is present across the inductor (it 

behaves like a short-circuit) and therefore: 

50
2

100
fi  

Solving RL circuits 
uses the same 
techniques as for 
RC circuits 
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Thus: 

250 t

nf Aeiii   

In order to evaluate A, we must establish the initial value of the inductor 

current. Prior to 0t , this current is 25 A, and it cannot change 

instantaneously. Thus: 

25or5025  AA  

Hence: 

0,2550 2   tei t  

We complete the solution by also stating: 

0,25  ti  

or by writing a single expression valid for all t: 

   A 12525 2 tuei t  

The complete response is sketched below: 

2 864

50

t

i

0-2

25

 

Note how the natural response serves to connect the response for 0t  with the 

constant forced response. 
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10.7  Analysis Procedure for Single Time Constant RL Circuits 

This is the dual of the statements given for the analysis procedure for single 

time constant RC circuits. 

The procedure we have been using to find the response of an RL circuit after 

DC sources have been switched on or off or in or out of the circuit at some 

instant of time, say 0t , is summarized in the following. We assume that the 

circuit is reducible to a single equivalent resistance eqR  in series with a single 

equivalent inductance eqL  when all independent sources are set equal to zero, 

i.e. we have a single time constant (STC) circuit. The response we seek is 

represented by  tf . 

1. With all independent sources set to zero, simplify the circuit to 

determine eqR , eqL , and the time constant eqeq RLT  . 

2. Viewing eqL  as a short circuit, use DC-analysis methods to find 

 0Li , the inductor current just prior to the discontinuity. 

3. Again viewing eqL  as a short circuit, use DC-analysis methods to find 

the forced response. This is the value approached by  tf  as t ; 

we represent it by  f . 

4. Write the total response as the sum of the forced and natural 

responses:     TtAeftf  . 

5. Find  0f  by using the condition that      00 LL ii . If desired, eqL  

may be replaced by a current source  0Li  [an open circuit if 

  00 

Li ] for this calculation. With the exception of inductor 

currents, other voltages and currents in the circuit may change 

abruptly. 

6. Then     Aff 0  and          Tteffftf   0 . 

Step-by-step guide 
to solving STC RL 
circuits with step-
sources 
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10.8 Summary 

 The unit-step function can be used to simulate the opening and closing of 

switches under certain conditions. 

 The complete response of a circuit to a forcing function consists of two 

parts: the forced response, and the natural response. 

 Mathematically, the forced response is the particular solution of a 

nonhomogeneous linear differential equation with constant coefficients. 

The natural response is the complementary solution to the corresponding 

homogeneous equation. 

 For circuits driven by constant voltages or currents, the forced response can 

be obtained by undertaking DC circuit analysis. 

 For single time constant circuits, the natural response is a decaying 

exponential, TtAey  , where T  is the time constant. 

 The complete response of single time constant circuits to DC excitation 

always takes the form of          Tteffftf   0 . We just need to 

determine the time constant of the circuit T, the forced response  f , and 

the initial response  0f . 
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Exercises 

1. 

A current source of 5 A, a  4  resistor, and a closed switch are in parallel. The 

switch opens at 0t , closes at s 2.0t , opens at s 4.0t , and continues in 

this periodic pattern. Express the voltage across the switch as an infinite 

summation of step functions.  

2. 

Consider the circuit shown below: 

25 F 2 k

2 k

10 u  t(  ) mA

30 u  t(  ) V

(  )v   tC (  )v   t1

 

Find  tvC  and  tv1 . 

3. 

Consider the circuit shown below: 

1F

3

10 u  t(  ) V(  )v   tC

i1

10 u  t(  ) A 1

i12

 

Find  tvC . 
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4. 

After being open for several minutes, the switch in the circuit below closes 

at 0t . 

0.2F

1 k

100 V

t=0

(  )v   tC

4 k

Vs

 

Find  tvC  for all t if sV : 

(a) -200 V 

(b) +100 V 

5. 

Consider the circuit shown below: 

100

CR100 V

 

Specify values for R and C in the circuit so that the capacitor voltage will reach 

80 V, 10 ms after the switch is closed, but will not drop below 90 V until 0.5 s 

after the switch is opened, assuming that it has been closed for a very long 

time. 
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6. 

Consider the circuit shown below: 

2F 40 V

t=0

(  )v  t

10 V

10

ix

0.2ix

 

Find  tv  for 0t . 

7. 

A Ω 250  resistor and a source,    V 101212 3 tutu , are in series with a 

H 2.0  inductor. Find the inductor current magnitude at 5.0t  and 2 ms. 

8. 

The general solution to the driven series RL circuit is given by Eq. (9.36). Use 

it to find  ti  for 0t  if   250R , H 2.0L , and the source voltage is: 

(a)  V 100 tu  

(b)  V 100 100 tue t  

(c)    V 1250cos100 tut  
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9. 

Consider the circuit shown below: 

20

v6 u  t(  ) A 60 u  t(  ) V40

4 mH

 

Find v  as a function of time. 

10. 

Consider the circuit shown below: 

2 A100 u  t(  ) V 2 H

40

 

Find the power being absorbed by the inductor at t : 

(a) 0   (b) 
0   (c) 0.05   (d)   
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Leonhard Euler (1707-1783) (Len´ ard Oy´ ler) 

The work of Euler built upon that of Newton and made mathematics the tool of 

analysis. Astronomy, the geometry of surfaces, optics, electricity and 

magnetism, artillery and ballistics, and hydrostatics are only some of Euler’s 

fields. He put Newton’s laws, calculus, trigonometry, and algebra into a 

recognizably modern form. 

Euler was born in Switzerland, and before he was an adolescent it was 

recognized that he had a prodigious memory and an obvious mathematical gift. 

He received both his bachelor’s and his master’s degrees at the age of 15, and 

at the age of 23 he was appointed professor of physics, and at age 26 professor 

of mathematics, at the Academy of Sciences in Russia. 

Among the symbols that Euler initiated are the sigma () for summation 

(1755), e to represent the constant 2.71828…(1727), i for the imaginary 1  

(1777), and even a, b, and c for the sides of a triangle and A, B, and C for the 

opposite angles. He transformed the trigonometric ratios into functions and 

abbreviated them sin , cos  and tan , and treated logarithms and exponents as 

functions instead of merely aids to calculation. He also standardised the use of 

 for 3.14159… 

His 1736 treatise, Mechanica, represented the flourishing state of Newtonian 

physics under the guidance of mathematical rigor. An introduction to pure 

mathematics, Introductio in analysin infinitorum, appeared in 1748 which 

treated algebra, the theory of equations, trigonometry and analytical geometry. 

In this work Euler gave the formula xixeix sincos  . It did for calculus what 

Euclid had done for geometry. Euler also published the first two complete 

works on calculus: Institutiones calculi differentialis, from 1755, and 

Institutiones calculi integralis, from 1768. 

Euler's work in mathematics is vast. He was the most prolific writer of 

mathematics of all time. After his death in 1783 the St Petersburg Academy 

continued to publish Euler's unpublished work for nearly 50 more years! 
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Some of his phenomenal output includes: books on the calculus of variations; 

on the calculation of planetary orbits; on artillery and ballistics; on analysis; on 

shipbuilding and navigation; on the motion of the moon; lectures on the 

differential calculus. He made decisive and formative contributions to 

geometry, calculus and number theory. He integrated Leibniz's differential 

calculus and Newton's method of fluxions into mathematical analysis. He 

introduced beta and gamma functions, and integrating factors for differential 

equations. He studied continuum mechanics, lunar theory, the three body 

problem, elasticity, acoustics, the wave theory of light, hydraulics, and music. 

He laid the foundation of analytical mechanics. He proved many of Fermat’s 

assertions including Fermat’s Last Theorem for the case 3n . He published a 

full theory of logarithms of complex numbers. Analytic functions of a complex 

variable were investigated by Euler in a number of different contexts, including 

the study of orthogonal trajectories and cartography. He discovered the 

Cauchy-Riemann equations used in complex variable theory. 

Euler made a thorough investigation of integrals which can be expressed in 

terms of elementary functions. He also studied beta and gamma functions. As 

well as investigating double integrals, Euler considered ordinary and partial 

differential equations. The calculus of variations is another area in which Euler 

made fundamental discoveries. 

He considered linear equations with constant coefficients, second order 

differential equations with variable coefficients, power series solutions of 

differential equations, a method of variation of constants, integrating factors, a 

method of approximating solutions, and many others. When considering 

vibrating membranes, Euler was led to the Bessel equation which he solved by 

introducing Bessel functions. 

Euler made substantial contributions to differential geometry, investigating the 

theory of surfaces and curvature of surfaces. Many unpublished results by 

Euler in this area were rediscovered by Gauss. 
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Euler considered the motion of a point mass both in a vacuum and in a resisting 

medium. He analysed the motion of a point mass under a central force and also 

considered the motion of a point mass on a surface. In this latter topic he had to 

solve various problems of differential geometry and geodesics. 

He wrote a two volume work on naval science. He decomposed the motion of a 

solid into a rectilinear motion and a rotational motion. He studied rotational 

problems which were motivated by the problem of the precession of the 

equinoxes. 

He set up the main formulas for the topic of fluid mechanics, the continuity 

equation, the Laplace velocity potential equation, and the Euler equations for 

the motion of an inviscid incompressible fluid. 

He did important work in astronomy including: the determination of the orbits 

of comets and planets by a few observations; methods of calculation of the 

parallax of the sun; the theory of refraction; consideration of the physical 

nature of comets. 

Euler also published on the theory of music... 

Euler did not stop working in old age, despite his eyesight failing. He 

eventually went blind and employed his sons to help him write down long 

equations which he was able to keep in memory. Euler died of a stroke after a 

day spent: giving a mathematics lesson to one of his grandchildren; doing some 

calculations on the motion of balloons; and discussing the calculation of the 

orbit of the planet Uranus, recently discovered by William Herschel. 

His last words, while playing with one of his grandchildren, were: “I die.” 
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11 Op-Amp Imperfections 
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Introduction 

The initial analysis phase of op-amp circuits assumes the op-amps to be ideal. 

Although in many applications such an assumption is not a bad one, a circuit 

designer has to be thoroughly familiar with the characteristics of practical op-

amps and the effects of such characteristics on the performance of op-amp 

circuits. 

Although no op-amp is ideal, modern processing techniques yield devices that 

come close, at least in some parameters. This is by design. In fact, different op-

amps are optimized to be close to ideal for some parameters, while other 

parameters for the same op-amp may be quite ordinary (some parameters can 

be improved, but only at the expense of others). It is the designer’s function to 

select the op-amp that is closest to ideal in ways that matter to the application, 

and to know which parameters can be discounted or ignored. 

For this reason, it is very important to understand the specifications and to 

compare the limitations of the different commercially available op-amps, in 

order to select the right op-amp for a specific application. 

DC imperfections in the op-amp’s internal circuit give rise to DC voltages 

appearing at the op-amp output that are independent of the input signal. 

The most serious real op-amp deficiency is finite gain and limited bandwidth. 

This causes “gain error” at low frequencies, and the op-amp to stop “working” 

altogether at high frequencies. 

Large signal operation of op-amps is limited by the power supplies, output 

current limiting, and the “slew rate” – the maximum rate of change at the 

output. 
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11.1 DC Imperfections 

The standard input stage of an integrated circuit op-amp is a “DC coupled 

differential pair” of transistors. Without delving deeply into the topology and 

analysis of such a configuration, we can imagine that for it to amplify only the 

“difference” in voltage appearing at its inputs that it must, in some sense, be 

perfectly “balanced”. This requires the transistors that make up the “differential 

pair” to be perfectly matched – i.e. each transistor should have exactly the 

same characteristics. In real devices it is impossible to perfectly match 

transistors – so there must be some “inherent imbalance” in the differential 

pair. This imbalance causes an output even when the inputs are connected to 

the same voltage (so that there is no differential input). The result is a DC 

offset appearing at the output of the op-amp. To take this into account, we refer 

the voltage back to the input, and define the offset voltage as that voltage which 

must be applied at the input of an op-amp to cause the output to be zero. 

In addition, each of the differential pair’s transistors is required to be “biased” 

at a certain “operating point” on the transistor’s characteristic. Thus, each input 

of the op-amp draws a DC bias current. Components of this current inevitably 

must pass through the resistors connected to the op-amp’s input terminals, with 

the result that they generate a DC output voltage (in addition to that generated 

by the offset voltage). 

Practical circuits therefore need to take these DC considerations into account 

so that non-intentional DC output voltages are minimised. 
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11.1.1 Offset Voltage 

The input offset voltage, OSV , is a DC voltage which must be applied to the op-

amp’s noninverting input terminal to drive the output voltage to 0 V, as 

illustrated below: 

 

V

(a) real circuit under test (b) offset voltage model

o

VOS

ideal op-amp

 

 

Figure 11.1 

To analyse the effect of the offset voltage on the closed-loop performance of 

the inverting and noninverting amplifiers, we can use superposition (since the 

offset voltage effectively appears as another independent source). In either 

configuration, the circuit we obtain just by considering the offset voltage is: 

 

vo

VOS

R2

R1

ideal op-amp

 

 

Figure 11.2 

It is easily seen that the resulting DC output voltage is given by: 











1

21
R

R
VV OSo  

(11.1) 



11.5 

PMcL DC Imperfections Index    

2017  11 - Op-Amp Imperfections 

11.1.2 Input Bias Currents 

For op-amps that have bipolar junction transistors (BJTs) at their inputs, a 

finite DC current is required for proper biasing of the internal differential 

amplifier. For op-amps that have junction field effect transistors (JFETs) at 

their inputs, the DC input currents are junction leakage currents. In either case, 

there are DC input bias currents which enter the input terminals of the op-amp: 

 

I 1B

I 2B

 

 

Figure 11.3 

The two currents are represented by two current sources, 1BI  and 2BI , 

connected to the two input terminals. The input bias currents are independent 

of the fact that the op-amp has a finite (though large) input resistance. 

We call the average value of 
1BI  and 2BI  the input bias current: 

2

21 BB
B

II
I




 
(11.2) 

while the difference is called the input offset current: 

21 BBOS III   (11.3) 
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To analyse the effect of the bias currents on the closed-loop performance of the 

inverting and noninverting amplifiers, we can analyse the following circuit: 

 

I 1B

I 2B

R3

R2

Vo

R1

- R3 I 2B

- R3 I 2B

R3 I 2B

R1

I 2B

I 1B -
R3 I 2B

R1

 

 

Figure 11.4 

With 03 R , the output DC voltage is given by: 

12 Bo IRV   (11.4) 

which can be significant if 2R  is large. Fortunately, a technique exists for 

reducing the value of the output DC voltage due to the input bias currents. The 

method consists of introducing a resistance 03 R  in series with the 

noninverting terminal. From a signal point of view (i.e. when we analyse the 

circuit considering the normal input voltages and an ideal op-amp), the 

inclusion of 3R  has no effect. 
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With 03 R , the output DC voltage is given by: 

 1321223 RRIIRIRV BBBo   (11.5) 

For the case 
BBB III  21

, we get: 

   Bo IRRRRV 1232 1  (11.6) 

We may reduce oV  to zero by selecting 3R  such that: 

21

21

21

12

2
3 ||

1
RR

RR

RR

RR

R
R 







 
(11.7) 

Therefore, to reduce the effect of DC bias currents, we should select 3R  to be 

equal to the parallel equivalent of 
1R  and 

2R . Having selected this value, 

substitution into Eq. (11.5) gives: 

OSBBo IRIIRV 2212   (11.8) 

which is usually about an order of magnitude smaller than the value obtained 

without 3R . 

Thus, to minimise the effect of the bias currents, we place a resistance in series 

with the noninverting terminal that is equal to the DC resistance seen by the 

inverting terminal. 
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11.2 Finite Open-Loop Gain 

To illustrate the effect of finite open-loop gain, we will consider what happens 

to the closed-loop gain of the standard noninverting and inverting amplifier 

configurations. 

11.2.1 Noninverting Amplifier 

For the noninverting amplifier, we have already derived the closed-loop gain 

due to a finite open-loop gain. The result was: 

OL

OL
CL

A

A
A




1  
(11.9) 

where: 

21

1

RR

R




 
(11.10) 

Dividing the gain expression’s numerator and denominator by OLA , we get: 

  OL

CL
A

A




11

1




 
(11.11) 

Substituting   we then get: 

 
  OL

CL
ARR

RR
A

12

12

11

1






 
(11.12) 

We note, with reassurance, that as OLA , the closed-loop gain approaches 

the ideal or nominal closed-loop gain, 121 RR . 
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11.2.2 Inverting Amplifier 

For the inverting configuration, we will use the following model for the op-

amp, which has an infinite input resistance, zero output resistance, but a finite 

open-loop gain, OLA : 

 

(   -    )

vo

AOL

v

v

v v

 

 

Figure 11.5 

If we substitute this model into the inverting amplifier configuration, we get: 

 

vo

v

v

v(   -    )AOL v

R2

R1

v i

 

 

Figure 11.6 
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Since 0v , the voltage at the inverting input terminal must be 

OLo Avv  . The current 
1i  through 

1R  is therefore: 

 

11

1
R

Avv

R

Avv
i OLoiOLoi 





 

(11.13) 

The infinite input resistance of the op-amp causes this current to go through 

2R . The output voltage is then: 








 




1

2

12

R

Avv
R

A

v

iR
A

v
v

OLoi

OL

o

OL

o
o

 

(11.14) 

Collecting terms, the closed-loop gain is found to be: 

  OLi

o
CL

ARR

RR

v

v
A

12

12

11 




 
(11.15) 

Again, we note with reassurance, that as OLA , the closed-loop gain 

approaches the ideal or nominal closed-loop gain, 
12 RR . 
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11.2.3 Percent Gain Error 

We observe that the denominators of both the noninverting and inverting 

closed-loop gain expressions are identical. This is a result of the fact that both 

configurations have the same feedback loop, which can be seen if the input 

signal sources are set to zero. 

The numerators, however, are different, for the numerator gives the ideal or 

nominal closed-loop gain, which we will denote G. The percent gain error 

between the actual and ideal gain, for either configuration, is then: 
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(11.16) 

For example, if an op-amp with 410OLA  is used to design a noninverting 

amplifier with a nominal closed-loop gain of 100G , we would expect the 

closed-loop gain to be about 1% below the nominal value. 

Thus, in either configuration, to achieve gain accuracy we must have: 

  121 RRAOL   (11.17) 
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11.3 Finite Bandwidth 

The open-loop gain of an op-amp is finite and decreases with frequency. 

The gain is quite high at DC and low frequencies, but it starts to fall off at a 

rather low frequency (10’s of Hz). Most op-amps have a capacitor included 

within the IC whose function is to cause the op-amp to have a single-time-

constant (STC) lowpass response shown: 

|A|  (dB)

f (Hz)

-20 dB/decade

f
b

f
t

A0

G

B
log scale

0

 

This process of modifying the open-loop gain is termed frequency 

compensation, and its purpose is to ensure that op-amp circuits will be 

stable (as opposed to oscillating). 

For frequencies bff   (about 10 times and higher), the magnitude of the 

open-loop gain A can be approximated as: 

f

ftA  

The frequency tf  where the op-amp has a gain of 1 (or 0 dB) is known as 

the unity-gain bandwidth. Datasheets of internally compensated op-amps 

normally call tf  the gain-bandwidth product, since: 

bt fAf 0  

The noninverting amplifier configuration exhibits a constant gain-

bandwidth product equal to tf  of the op-amp. Thus, you can easily 

determine the “bandwidth”, B,  of a non-inverting amplifier with a gain, G, 

since the gain-bandwidth product is a constant: 

constant tfGB  
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11.4 Output Voltage Saturation 

Real amplifiers can only output a voltage signal that is within the capabilities 

of the internal circuitry and the external DC power supplies. When amplifier 

outputs approach their output limitation, they are said to saturate – they cannot 

provide the output that is required by a linear characteristic. The resulting 

transfer characteristic, with the positive and negative saturation levels denoted 

L  and 
L  respectively, is shown below: 

 

vo

vi

L+

L
 

 

Figure 11.7 

Each of the two saturation levels is usually within a volt or so of the voltage of 

the corresponding power supply. Obviously, in order to avoid distorting the 

output signal waveform, the input signal swing must be kept within the linear 

range of operation. If we don’t, then the output waveform becomes distorted 

and eventually gets clipped at the output saturation levels. 

 

 

 

Figure 11.8 

The transfer 
characteristic of a 
real amplifier, 
showing that it 
saturates eventually 

The input signal and 
the output signal of 
a saturated amplifier 
showing clipping 
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11.5 Output Current Limits 

The output current of an op-amp is normally limited by design to prevent 

excessive power dissipation within the device which would destroy it. For 

example, the popular TL071 op-amp has a resistor in series with the output: 

 

 

 

Figure 11.9 

The datasheet specifies that, typically, the output current is limited to 40 mA. 

Thus, in designing closed-loop circuits utilizing the TL071, the designer has to 

ensure that under no conditions will the op-amp be required to supply an output 

current, in either direction, exceeding 40 mA. This current has to include both 

the current in the feedback circuit as well as the current supplied to any load. If 

the circuit requires a larger current, the op-amp output voltage will saturate at 

the level corresponding to the maximum allowed output current. 
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11.6 Slew Rate 

The slew-rate limit of an op-amp is caused by a current source within the 

amplifier that limits the amount of current that can be supplied by the first 

stage of the amplifier. When the amplifier is pushed to the point where this 

limit is reached, it can no longer function properly. The slew-rate limit 

manifests itself as a maximum value of dtdvo  for the amplifier because there 

is an internal amplifier capacitance that must be charged by the first-stage 

output current and a first-stage current limit thus corresponds to a maximum 

dtdv  for this capacitor. We therefore define: 

max

SR
dt

dvo
 

(11.18) 

If the input signal applied to an op-amp circuit is such that it demands an 

output response that is faster than the specified value of SR, the op-amp will 

not comply. Rather, its output will change at the maximum possible rate, which 

is equal to its SR. The amplifier is then said to be slewing. 

 

v
o

t

theoretical output

slew-rate limited output

 

 

Figure 11.10 
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11.6.1 Full-Power Bandwidth 

Slew rate can be related to the full-power bandwidth 
Mf , which is defined as 

the frequency at which a sine-wave output whose amplitude is equal to the 

rated op-amp output voltage starts to show distortion (due to op-amp slewing). 

If the op-amp is producing a maximum amplitude output sinusoid, then: 

 tVv mo sin  (11.19) 

Then: 

 

m
o

m
o

V
dt

dv

tV
dt

dv









max

cos

 

(11.20) 

Denoting the slew rate by SR, it follows that: 

mMVSR  (11.21) 

or: 

m

M
V

f
2

SR


 
(11.22) 
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11.7 Summary 

 The input offset voltage, OSV , is the magnitude of DC voltage that, when 

applied between the op-amp input terminals, with appropriate polarity, 

reduces the DC offset voltage at the output to zero. 

 Direct currents exist at the input of the op-amp terminals. The average of 

these currents, 
BI , is termed the bias current. The difference between these 

currents, OSI , is called the offset current. These currents produce a DC 

voltage at the output. The effect of bias currents can be minimised by 

organising for the two op-amp inputs to “see” the same resistance. 

 The finite open-loop gain, OLA , of an op-amp causes a gain error. The 

open-loop gain also drop off with frequency. For internally compensated 

op-amps at high frequencies (> 1 kHz), the magnitude of the open-loop 

gain OLA  can be approximated as: 

f

f
A t

OL   

where tf  is specified on the op-amp datasheet and is called the gain-

bandwidth product. 

 Real amplifiers can only output a voltage signal that is within the 

capabilities of the internal circuitry and the external DC power supplies. 

 The output current of an op-amp is normally limited by design to prevent 

excessive power dissipation within the device which would destroy it. 
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 The maximum rate at which the op-amp output voltage can change is called 

the slew rate: 

max

SR
dt

dvo
 

The slew rate is usually specified in op-amp datasheets in V/s. Op-amp 

slewing can result in nonlinear distortion of output signal waveforms. 

11.8 References 

Sedra, A. and Smith, K.: Microelectronic Circuits, Saunders College 

Publishing, New York, 1991. 
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Exercises 

1. 

The op-amp circuit below is to be used at DC and very low frequencies. 

R1

vo

R2

v i

R3

 

A closed-loop gain of -200 is required. Specifications indicate that: 

(i) the error due to finite open-loop gain cannot exceed 0.1% 

(ii) DC output voltage due to input offset voltage  100 mV 

(iii) DC output voltage due to input offset current  5 mV 

Determine: 

(a) the minimum open-loop gain required of the op-amp 

(b) the maximum input offset voltage required of the op-amp 

(c) assuming that the op-amp’s input offset current is 10 nA, and a suitable 

compensating resistor 3R  is used, calculate the maximum value of 2R  that 

can be permitted. 
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12 The Phasor Concept 
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Introduction 

The sinusoid is the most important function in electrical engineering. There are 

several reasons for this. 

It was the great Swiss mathematician Euler (1707-1783) who first identified 

the fact that: 

For circuits described by linear differential equations a 

sinusoidal source yields a sinusoidal response. 

(11.1)  

The response sinusoid has the same frequency as the source, it is however 

altered in amplitude and phase. 

Only sinusoids have this property with respect to linear systems. For example, 

applying a square wave input does not produce a square wave output. 

The source / response form-invariance of the sinusoid can be attributed to the 

fact that derivatives and integrals of a sinusoid yield sinusoids. Euler 

recognised that this was because the sinusoid is really composed of exponential 

components, and it is the exponential function which enjoys the rather peculiar 

property that:  

  tt ee
dt

d


 

 

(11.2) 

That is, the derivative of the exponential function is itself an exponential 

function. We have already seen that this relationship plays a vital role in 

determining the solution to differential equations, where the form of each term 

has to be the same for the differential equation to “work”, i.e. so that each term, 

such as dtdy3  or 225 dtyd , can actually be added together. 

The special 
relationship enjoyed 
by sinusoids and 
linear circuits 
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The second major reason for the importance of the sinusoid can be attributed to 

Joseph Fourier (1768-1830), who in 1807 recognised that: 

Any periodic function can be represented as the weighted 

sum of a family of sinusoids. 

(11.3) 

With this observation, we can analyse the behaviour of a linear circuit for any 

periodic forcing function by determining the response to the individual 

sinusoidal (or exponential) components and adding them up (superposition). 

This decomposition of a periodic forcing function into a number of 

appropriately chosen sinusoidal forcing functions is a very powerful analytical 

method. It is called frequency-domain analysis, and we shall use it extensively. 

The third reason is that the sinusoid is easy to generate, transmit and utilise. 

Most of our electric power is generated as a sinusoid, and the functional form 

of the sinusoid is needed to make most of our motors turn (it doesn’t really 

matter about the lights or heaters). It is therefore of great practical importance 

to engineers who specialise in “power and machines”. 

It is also extremely important to engineers who specialise in communications. 

Our modern-day communications are “carried” through the air (and the 

vacuum of space) on “sinusoidal carriers”. In fact, the basis of analog 

communication is to “modulate” some aspect of a sinusoid such as its 

amplitude (AM), its frequency (FM), or its phase (PM). 

With digital communications, we encode the binary ones and zeros into some 

aspect of the sinusoid, e.g. amplitude shift keying (ASK), frequency shift 

keying (FSK), phase shift keying (PSK), and Gaussian minimum-shift keying 

(GMSK) which is used in the Groupe Spécial Mobile (GSM) mobile telephone 

network. 

Thus, the sinusoid plays a prominent role in electrical engineering due to both 

its theoretical and practical importance. 

Periodic signals are 
made up of 
sinusoids - Fourier 
Series 

Sinusoids are 
utilised in a lot of 
practical 
applications 
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12.1 Sinusoidal Signals 

Consider the sinusoid: 

   tVtv m cos  
(11.4) 

which is shown graphically below: 

 

(a)

2
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4

 

 

Figure 11.1 

The amplitude of the cosine wave is mV , and the argument is t . The radian 

frequency or angular frequency is  . In Figure 11.1 (a) the function repeats 

itself every 2  radians, and its period is therefore 2  radians. In Figure 11.1 

(b), the function is plotted against t  and the period is now T where  2T . 

A cosine wave having a period T seconds per period must execute T1  periods 

each second – its frequency is therefore: 

T
f

1


 

 

(11.5) 

The cosinusoid 
graphed 

The relationship 
between frequency 
and period 
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Since  2T , we have the relationship between frequency and radian 

frequency: 

f 2  
(11.6) 

A more general form of the sinusoid is: 

     tVtv m cos  
(11.7) 

which now includes a phase angle   in its argument   t . Eq. (11.7) is 

plotted below as a function of t , and the phase angle appears as the number 

of radians by which the original cosine wave, shown as a dotted line, is shifted 

to the left or earlier in time. 

 

2

Vm

v  t(  )

t (rad)





Vm-

t(    )cosVm

t(    +  )cosVm   

 

Figure 11.2 

Since corresponding points on the cosinusoid   tcos  occur   rad earlier 

compared to  tcos , we say that   tcos  leads  tcos  by   rad. 

Conversely,   tcos  lags  tcos  by   rad. In either case, leading or 

lagging, we say that the cosinusoids are out of phase. If the phase angles are 

equal, they are said to be in phase. 

In electrical engineering the phase angle is commonly given in degrees rather 

than radians. Thus, instead of writing  6100cos100   tv  we write 

  30100cos100 tv  . 

The relationship 
between frequency 
and radian 
frequency 

The phase angle 
defined 
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12.2 Sinusoidal Steady-State Response 

We are now ready to apply a sinusoidal forcing function to a simple circuit and 

obtain the forced response. We shall first write the differential equation which 

applies to the given circuit. We know that the complete solution is composed of 

the natural response and the forced response. 

The form of the natural response is independent of the mathematical form of 

the forcing function and depends only upon the type of circuit and the element 

values. We have already determined the natural response of simple RC and RL 

circuits. 

The forced response has the mathematical form of the forcing function. We 

therefore expect the forced response to be sinusoidal. The term steady-state is 

used synonymously with forced response, and the circuits we are about to 

analyse are commonly said to be in the “sinusoidal steady-state”. 

Unfortunately, steady-state implies “not changing with time”, but this is not 

correct – the sinusoidal forced response definitely changes with time. The 

steady-state simply refers to the condition which is reached after the natural 

response has died out. 

Consider the series RL circuit below: 

 

L

R i  t(  )

cos(     )Vm t

v  t(  )s =

 

 

Figure 11.3 

The sinusoidal source voltage  tVv ms cos  has been switched into the 

circuit at some remote time in the past, and the natural response has died out 

completely. 

The natural 
response is 
determined by the 
circuit 

The forced response 
for a sinusoid is 
termed the 
sinusoidal steady-
state response 
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We seek the forced response, or steady-state response, or particular solution, 

and it must satisfy the differential equation: 

 tVRi
dt

di
L m cos

 

 

(11.8) 

We now invoke the inverse differential operator to find a particular solution to 

the differential equation and write: 

   

 tV
RLD

i

tViRLD

m

m





cos
1

cos






 

 

 

(11.9) 

We only know the effect of the inverse differential operator on exponentials. 

We therefore use Euler’s formula: 

 sincos je j   
(11.10) 

and note also that: 

 sincos je j 
 

(11.11) 

Adding the above two equations, we get: 

2
cos




jj ee 


 

 

(11.12) 

If we subtract the two equations, we get: 

2
sin

j

ee jj 





 

 

(11.13) 

We can now express both cos and sin as complex exponentials. 

Euler’s identity 

A cosinusoid 
expressed as a sum 
of complex 
exponentials 

A sinusoid 
expressed as a sum 
of complex 
exponentials 
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Then Eq. (11.9) can be written: 
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(11.14) 

Now remembering that: 
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(11.15) 

we can use superposition and rewrite Eq. (11.14) as: 
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(11.16) 

Realizing the denominators, we get: 
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(11.17) 

Collecting terms gives: 
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(11.18) 
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Using Euler’s identities for cos  and sin , the forced response is obtained: 
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(11.19) 

This expression is quite unwieldy, and a clearer picture of the response can be 

obtained by expressing the response as a single sinusoid with a phase angle. 

We will therefore let: 

     tAti cos  
(11.20) 

After expanding the function   tcos , we have: 
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(11.21) 

Equating like coefficients of  tcos  and  tsin , we find: 

222
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(11.22) 
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To find A  and  , we square both equations and add the results: 

    222
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(11.23) 

and also divide one equation by the other: 

R

L

A

A 








tan

cos

sin
 

 

(11.24) 

Hence: 

222 LR

V
A m




 

 

(11.25) 

and: 

R

L
 1tan

 

(11.26) 

The alternative form of the forced response therefore becomes: 

  










 

R

L
t

LR

V
ti m 




1

222
tancos

 

 

(11.27) 

We can see that the amplitude of the response is proportional to the amplitude 

of the forcing function – thus linearity between input and output holds (e.g. 

doubling the input leads to a doubling of the output). We can also see that the 

current decreases for any increase in R ,   or L , but not proportionately. 

The forced current 
response for the 
series RL circuit to a 
sinusoidal voltage 
source 
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Also, the current lags the applied voltage by  RL1tan , an angle between 

0  and 90 . When 0  or 0L , the current must be in phase with the 

voltage since the former situation is DC and the inductor appears as a short-

circuit, and the latter situation is a resistive circuit. If 0R  then the current 

lags the voltage by 90 . 

Note also that the frequency of the response is the same as the forcing function. 

The applied voltage and the resultant current are shown below: 

 

2

v  t(  )

t



i  t(  )

v, i

0

 

 

Figure 11.4 

The fact that current lags the voltage in this simple RL circuit is now visually 

apparent. 

The method by which we found the sinusoidal steady-state response for the 

simple RL circuit is quite intricate. It would be impractical to analyse every 

circuit by this method. We shall see in the next section that there is a way to 

simplify the analysis. It involves the formulation of complex algebraic 

equations instead of differential equations, but the advantage is that we can 

produce a set of complex algebraic equations for a circuit of any complexity. 

Sinusoidal steady-state analysis becomes almost as easy as the analysis of 

resistive circuits. 

The forced response 
graphed, showing 
only an amplitude 
and phase change 
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12.3 The Complex Forcing Function 

It seems strange at first, but the use of complex quantities in sinusoidal steady-

state analysis leads to methods which are simpler than those involving only real 

quantities. 

Consider a sinusoidal source: 

  tVm cos  
(11.28) 

which is connected to a general, passive, linear, time-invariant (LTI) circuit as 

shown below: 

 

(         )cosVm t+  Im (         )cos t+ 

passive

LTI

circuit

 

 

Figure 11.5 

A current response in some other branch of the circuit is to be determined, and 

we know for a sinusoidal forcing function that the forced response is 

sinusoidal. Let the sinusoidal forced response be represented by: 

  tIm cos  
(11.29) 

Note that the frequency stays the same – only the amplitude and phase are 

unknown. 

Excitation of a 
passive LTI circuit 
by a real sinusoid 
produces a real 
sinusoidal response 
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If we delay the forcing function by 90 , then since the system is time-

invariant, the corresponding forced response must be delayed by 90  also 

(because the frequencies are the same). Thus, the forcing function: 

     tVtV mm sin90cos  
(11.30) 

will produce a response: 

     tItI mm sin90cos  
(11.31) 

Since the circuit is linear, if we double the source, we double the response. In 

fact, if we multiply the source by any constant k, we achieve a response which 

is k times bigger. We now construct an imaginary source – we multiply the 

source by 1j . We thus apply: 

  tjVm sin  
(11.32) 

and the response is: 

  tjIm sin  
(11.33) 

The imaginary source and response are shown below: 

 

passive

LTI

circuit
(         )sinVm t+ j Im (         )sin t+ j

 

 

Figure 11.6 

Excitation of a 
passive LTI circuit 
by an imaginary  
sinusoid produces 
an imaginary 
sinusoidal response 
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We have applied a real source and obtained a real response, and we have 

applied an imaginary source and obtained an imaginary response. We can now 

use the superposition theorem (the circuit is linear) to find the response to a 

complex forcing function which is the sum of the real and imaginary forcing 

functions. Thus, the sum of the forcing functions of Eqs. (11.28) and (11.32) is: 

     tjVtV mm sincos  
(11.34) 

and it produces a response which is the sum of Eqs. (11.29) and (11.33): 

     tjItI mm sincos  
(11.35) 

The complex source and response may be represented more simply by applying 

Euler’s identity. Thus, the forcing function: 

  tj

meV  
(11.36) 

produces: 

  tj

meI  
(11.37) 

The complex source and response are illustrated below: 

 

passive

LTI

circuit
eVm

(         )t+ j
eIm

(         )t+ j

 

 

Figure 11.7 

Excitation of a 
passive LTI circuit 
by a complex source 
produces a complex 
response 
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We are now ready to see how this helps with sinusoidal analysis. We first note 

that the real part of the complex response is produced by the real part of the 

complex forcing function, and the imaginary part of the complex response is 

produced by the imaginary part of the complex forcing function. 

Our strategy for sinusoidal analysis will be to apply a complex forcing function 

whose real part is the given real forcing function – we should then obtain a 

complex response whose real part is the desired real response. 

We will try this strategy on the previous RL circuit: 

 

L

R i  t(  )

cos(     )Vm t

v  t(  )s =

 

 

Figure 11.8 

The real source  tVm cos  is applied, and the real response  ti  is desired. 

We first construct the complex forcing function by adding an appropriate 

imaginary component to the given real forcing function. The necessary 

complex source is: 

    tj

mmm eVtjVtV   sincos  
(11.38) 

The complex response which results is expressed in terms of an unknown 

amplitude mI  and an unknown phase angle  : 

  tj

meI  
(11.39) 

 

We analyse circuits 
in the sinusoidal 
steady-state by 
using a complex 
forcing function 
whose real part is 
the given real 
forcing function 
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Writing the differential equation for this circuit: 

sv
dt

di
LRi 

 

 

(11.40) 

we insert our complex expressions for sv  and i : 

     tj

m

tj

m

tj

m eVeI
dt

d
LeRI   

 

 

(11.41) 

Taking the indicated derivative gives: 

    tj

m

tj

m

tj

m eVeLIjeRI    
 

(11.42) 

which is a complex algebraic equation. This is a considerable advantage – we 

have turned a differential equation into an algebraic equation. The only 

“penalty” is that the algebraic equation uses complex numbers. It will be seen 

later that this is not a significant disadvantage. 

In order to determine the value of mI  and  , we divide through by the common 

factor 
tje 
: 

m

j

m

j

m VeLIjeRI     
(11.43) 

Factoring the left side gives: 

  m

j

m VeILjR    
(11.44) 

Rearranging, we have: 

LjR

V
eI mj

m







 

 

(11.45) 

Using complex 
sources and 
responses reduces 
the original 
differential equation 
to a complex 
algebraic equation 

The complex 
response expressed 
in rectangular form 
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This is the complex response, and it was obtained in a few easy steps. If we 

express the response in exponential or polar form, we have: 

  RLjmj

m e
LR

V
eI 



1tan

222






 

(11.46) 

Thus, by comparison: 

222 LR

V
I m

m




 

(11.47) 

and: 

 RL 1tan  
(11.48) 

We said that the complex response was: 

 
  tjj

m

tj

m eeIeI  
 

(11.49) 

and that the real response was just the real part of the complex response. 

Therefore, the real response  ti  is obtained by multiplying both sides of 

Eq.  (11.46) by 
tje 
 and taking the real part. Thus: 

   


















R

L
t

LR

V

tIti

m

m








1

222
tancos

cos

 

 

 

(11.50) 

This agrees with the response derived before using the D operator. 

Although the analysis was straightforward, we have not yet taken advantage of 

the full power of the complex representation. In order to do so, we must 

introduce the concept of the phasor. 

The complex 
response expressed 
in polar form 

The real sinusoidal 
steady-state 
response 
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12.4 The Phasor 

A sinusoidal voltage or current at a given frequency is characterized by only 

two parameters, an amplitude and a phase. The complex representation of the 

voltage or current is characterized by a magnitude and an angle. For example, 

the assumed sinusoidal form of the current response in the previous example 

was: 

  tIm cos  
(11.51) 

and the corresponding representation of this current in complex form is: 

  tj

meI  
(11.52) 

Once mI  and   are specified, the current is exactly defined. Throughout any 

linear circuit operating in the sinusoidal steady-state at a single frequency  , 

every voltage and current may be characterized completely by a knowledge of 

its amplitude and phase angle. 

All sinusoidal responses in a linear circuit have a frequency of  . 

Therefore, instead of writing   tIm cos , we could just say “amplitude mI ” 

and “phase  ”. 

All complex responses in a linear circuit have the factor 
tje 
. 

Therefore,  instead of writing   tj

meI , we could just say “magnitude mI ” 

and “angle  ”. 

Thus, we can simplify the voltage source and current response of the example 

by representing them concisely as complex numbers: 

0j

meV   and  
j

meI  
(11.53) 

 

A sinusoid of a 
given frequency is 
specified by an 
amplitude and 
phase 

A complex response 
of a given frequency 
is specified by a 
magnitude and 
angle 
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We usually write the complex representation in polar form. Thus, the source 

voltage: 

   tVtv m cos  
(11.54) 

is represented in complex form as: 

 0mVV  
(11.55) 

and the current response: 

     tIti m cos  
(11.56) 

as: 

 mII  
(11.57) 

The abbreviated complex representation is called a phasor. Phasors are printed 

in boldface because they are effectively like a vector, they have a magnitude 

and direction (angle). In hand writing, we normally place a tilde underneath: 

  0
~

mVV  and  mII
~

 
(11.58) 

Capital letters are used to represent phasors because they are constants – they 

are not functions of time. 

In general, we refer to  tx  as a time-domain representation and the 

corresponding phasor X  as a frequency-domain representation. 

A general 
sinusoid… 

…and its phasor 
representation 

Introducing the 
“frequency-domain” 
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We can see that the magnitude of the complex representation is the amplitude 

of the sinusoid and the angle of the complex representation is the phase of the 

sinusoid. 

It is a simple matter to convert a signal from the time-domain to the frequency-

domain – it is achieved by inspection: 

     jAetAtx  Xcos  

magnitudeamplitude   

anglephase   

 

 

 

(11.59)  

EXAMPLE 12.1 Phasor Representation 

If    x t t  3 30sin   then we have to convert to our cos notation: 

   x t t  3 120cos  . Therefore  1203X . 

Note carefully that   120cos3 tX . All we can say is that 

   x t t  3 120cos   is represented by  1203X . 

The convenience of complex numbers extends beyond their compact 

representation of the amplitude and phase. The sum of two phasors corresponds 

to the sinusoid which is the sum of the two component sinusoids represented 

by the phasors. That is, if      x t x t x t3 1 2   where  x t1 ,  x t2  and  x t3  are 

sinusoids with the same frequency, then 213 XXX  . 

EXAMPLE 12.2 Phasor Representation 

If  x t t t3 2sin cos   then  6324.221902013 jX  which 

corresponds to    x t t3 2 24cos 63  .  . 

The time-domain 
and frequency-
domain relationships 
for a sinusoid 

Phasors make 
manipulating 
sinusoids of the 
same frequency 
easy 
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12.4.1 Formalisation of the Relationship between Phasor and Sinusoid 

Using Euler’s identity: 

e jj   cos sin  
(11.60) 

we have: 

     Ae e Ae A t jA tj j t j t           


cos sin  
(11.61) 

We can see that the sinusoid   tAcos  represented by the phasor 

jAeX is equal to the real part of 
tje 

X . Therefore: 

   tjetx XRe  
(11.62) 

This can be visualised as: 

 



complex plane

Re

Im

X
j t

e
A

j t
eA

j
e=

x  t(  )

 

 

Figure 11.9 

Run the Phasor simulation program to see this view of phasors in action! 

The phasor / time-
domain relationship 

Graphical 
interpretation of 
rotating phasor / 
time-domain 
relationship 

http://services.eng.uts.edu.au/pmcl/ec/Downloads/Phasors.exe
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12.4.2 Graphical Illustration of the Relationship between a Phasor 
and its Corresponding Sinusoid 

Consider the representation of a sinusoid by its phasor:    tjetx XRe . 

Graphically,  x t  can be “generated” by taking the projection of the rotating 

phasor formed by multiplying X  by e j t , onto the real axis: 

 

X

complex plane time-domain

 

 

Figure 11.10 

Phasor Representations 

Phasors can be represented in four different ways: 

 mXX  
polar form 

j
meXX  

exponential form 

  sincos jXm X  
trigonometric form 

jba X  
rectangular form 

A sinusoid can be 
generated by taking 
the real part of a 
rotating complex 
number 
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12.5 Phasor Relationships for R, L and C 

Now that we can transform into and out of the frequency-domain, we can 

derive the phasor relationships for each of the three passive circuit elements. 

This will lead to a great simplification of sinusoidal steady-state analysis. 

We will begin with the defining time-domain equation for each of the 

elements, and then let both the voltage and current become complex quantities. 

After dividing throughout the equation by e j t , the desired relationship 

between the phasor voltage and phasor current will become apparent. 

12.5.1 Phasor Relationships for a Resistor 

The resistor provides the simplest case. The defining time-domain equation is: 

   tRitv   
(11.63) 

If we apply a complex voltage   tj

meV  and assume a complex current 

  tj

meI , we obtain: 

      tj

m

tj

m eRIeV  
(11.64) 

By dividing throughout by e j t , we find: 

 j

m

j

m eRIeV   
(11.65) 

or in polar form: 

  mm RIV  
(11.66) 

But mV  and mI  are just the voltage and current phasors V  and I . Thus: 

IV R  
(11.67) 

Phasor relationships 
for the passive 
elements 

Phasor V-I 
relationship for a 
resistor 
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Equality of the angles   and   is apparent, and the current and voltage are 

thus in phase. 

The voltage-current relationship in phasor form for a resistor has the same form 

as the relationship between the time-domain voltage and current as illustrated 

below: 

 

R

i

v=Ri R

I

time-domain frequency-domain

=RV I

 

 

Figure 11.11 

EXAMPLE 12.3 Phasor Analysis with a Resistor 

Assume a voltage of  50100cos8 t  across a  4  resistor. Working in the 

time-domain, the current is: 

 
 

  50100cos2 t
R

tv
ti  

The phasor form of the same voltage is  508 , and therefore: 

 502
R

V
I  

If we transform back to the time-domain, we get the same expression for the 

current. 

No work is saved for a resistor by analysing in the frequency-domain – because 

the resistor has a linear relationship between voltage and current. 
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12.5.2 Phasor Relationships for an Inductor 

The defining time-domain equation is: 

 
 

dt

tdi
Ltv 

 

 

(11.68) 

After applying the complex voltage and current equations, we obtain: 

       tj

m

tj

m eI
dt

d
LeV

 

 

(11.69) 

Taking the indicated derivative: 

       tj

m

tj

m eLIjeV  
(11.70) 

By dividing throughout by e j t , we find: 

  j

m

j

m eLIjeV   
(11.71) 

Thus the desired phasor relationship is: 

IV Lj  
(11.72) 

The time-domain equation Eq. (11.68) has become an algebraic equation in the 

frequency-domain. The angle of Lj  is exactly 90  and you can see from 

Eq. (11.71) that   90 . I  must therefore lag V  by 90  in an inductor. 

Phasor V-I 
relationship for an 
inductor 
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The phasor relationship for an inductor is indicated below: 

 

V

i

v=L

I

time-domain frequency-domain

=j   LIL di
dt

L

 

 

Figure 11.12 

EXAMPLE 12.4 Phasor Analysis with an Inductor 

Assume a voltage of  50100cos8 t  across a H 4  inductor. Working in the 

time-domain, the current is: 

 
 

 

 
 











140100cos02.0

50100sin02.0

50100cos2

t

t

dtt

dt
L

tv
ti

 

The phasor form of the same voltage is  508 , and therefore: 

 





 14002.0

904100

508

Lj

V
I  

If we transform back to the time-domain, we get the same expression for the 

current. 
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12.5.3 Phasor Relationships for a Capacitor 

The defining time-domain equation is: 

 
 

dt

tdv
Cti 

 

 

(11.73) 

After applying the complex voltage and current equations, we obtain: 

       tj

m

tj

m eV
dt

d
CeI

 

 

(11.74) 

Taking the indicated derivative: 

       tj

m

tj

m eCVjeI  
(11.75) 

By dividing throughout by e j t , we find: 

  j

m

j

m eCVjeI   
(11.76) 

Thus the desired phasor relationship is: 

VI Cj  
(11.77) 

Thus I  leads V  by 90  in a capacitor. 

Phasor V-I 
relationship for a 
capacitor 



12.28 

Index Phasor Relationships for R, L and C PMcL   

12 - The Phasor Concept  2017 

The time-domain and frequency-domain representations are compared below: 

 

v

time-domain frequency-domain

V

C C

i=C
dv
dt I=j   CV

 

 

Figure 11.13 

EXAMPLE 12.5 Phasor Analysis with a Capacitor 

Assume a voltage of  50100cos8 t  across a F 4  capacitor. Working in the 

time-domain, the current is: 

 
 

 

 
 







40100cos3200

50100sin3200

50100cos84

t

t

t
dt

d

dt

tdv
Cti

 

The phasor form of the same voltage is  508 , and therefore: 

   403200508904100VI Cj  

If we transform back to the time-domain, we get the same expression for the 

current. 
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12.5.4 Summary of Phasor Relationships for R, L and C 

We have now obtained the phasor IV   relationships for the three passive 

elements. These results are summarized in the table below: 

Time-domain Frequency-domain 

v
i

R  

 

Riv   

 

IV R  

V
I

R  

v
i

L  

 

dt

di
Lv   

 

IV Lj  

V
I

j   L  

i
v

C  

 

 idt
C

v
1

 

 

IV
Cj

1
  

I
V

j   C1  

All the phasor equations are algebraic. Each is also linear, and the equations 

relating to inductance and capacitance bear a great similarity to Ohm’s Law. 

Before we embark on using the phasor relationships in circuit analysis, we 

need to verify that KVL and KCL work for phasors. KVL in the time-domain 

is: 

      021  tvtvtv n  
(11.78) 

If all voltages are sinusoidal, we can now use Euler’s identity to replace each 

real sinusoidal voltage by the complex voltage having the same real part, 

divide by e j t  throughout, and obtain: 

021  nVVV   
(11.79) 

Thus KVL holds. KCL also holds by a similar argument. 

Summary of phasor 
V-I relationships for 
the passive 
elements 

KVL and KCL are 
obeyed by phasors 
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12.5.5 Analysis Using Phasor Relationships 

We now return to the series RL circuit that we considered several times before, 

shown as (a) in the figure below. We draw the circuit in the frequency-domain, 

as shown in (b): 

 

(a)

L

R i  t(  )

cos(     )Vm t

v  t(  )s =

R I

Vs

(b)

j   L

VR

VL

 

 

Figure 11.14 

From KVL in the frequency-domain: 

sLR VVV   
(11.80) 

We now insert the recently obtained IV   relationships for the elements: 

sLjR VII    
(11.81) 

The phasor current is then found: 

LjR

s




V
I

 

 

(11.82) 

The source has a magnitude of mV  and a phase of 0  (it is the reference by 

which all other phase angles are measured). Thus: 

LjR

Vm






0
I

 

 

(11.83) 

A circuit and its 
frequency-domain 
equivalent 

The response of the 
circuit in the 
frequency-domain 
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The current may be transformed to the time-domain by first writing it in polar 

form: 

 











 

m

m

I

RL
LR

V 1

222
tanI

 

 

 

(11.84) 

Transforming back to the time-domain we get: 

   


















R

L
t

LR

V

tIti

m

m








1

222
tancos

cos

 

 

 

(11.85) 

which is the same result as we obtained before the “hard way”. 

12.6 Impedance 

The voltage-current relationships for the three passive elements in the 

frequency-domain are: 

Cj
LjR




I
VIVIV 

 

 

(11.86) 

If these equations are written as phasor-voltage phasor-current ratios, we get: 

Cj
LjR




1


I

V

I

V

I

V
 

 

(11.87)  

These ratios are simple functions of the element values, and in the case of the 

inductor and capacitor, frequency. We treat these ratios in the same manner we 

treat resistances, with the exception that they are complex quantities and all 

algebraic manipulations must be those appropriate for complex numbers. 

The response of the 
circuit in the time-
domain 

Phasor V-I 
relationships for the 
passive elements 
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We define the ratio of the phasor voltage to the phasor current as impedance, 

symbolized by the letter Z : 

I

V
Z 

 

 

(11.88)  

The impedance is a complex quantity having the dimensions of ohms. 

Impedance is not a phasor and cannot be transformed to the time-domain by 

multiplying by 
tje 
 and taking the real part. 

In the table below, we show how we can represent a resistor, inductor or 

capacitor in the time-domain with its frequency-domain impedance: 

Time-domain Frequency-domain 

R
 

R
 

L

 

j   L

 

C

 

j   C1

 

Impedances may be combined in series and parallel by the same rules we use 

for resistances. 

In a circuit diagram, a general impedance is represented by a rectangle: 

 

I

V= ZI

Z

 

 

Figure 11.15 

Impedance defined 

Impedances of the 
three passive 
elements 
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EXAMPLE 12.6 Impedance of an Inductor and Capacitor in Series 

We have an inductor and capacitor in series: 

5 mH
100   F

 

At 
-14 rads 10 , the impedance of the inductor is   50jLjL Z  and the 

impedance of the capacitor is   11 jCjC Z . Thus the series 

combination is equivalent to   49150 jjjCLeq ZZZ : 

49 j

 

The impedance of inductors and capacitors is a function of frequency, and this 

equivalent impedance is only valid at 
-14 rads 10 . For example, if 

-1rads 5000 , then the impedance would be   23jeqZ . 

Impedance may be expressed in either polar or rectangular form. 

In polar form an impedance is represented by: 

 ZZ  
 

(11.89) 

No special names or symbols are assigned to the magnitude and angle. For 

example, an impedance of   60100  is described as having an impedance 

magnitude of  100  and an angle of 60 . 
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In rectangular form an impedance is represented by: 

jXR Z  
(11.90)  

The real part, R, is termed the resistive component, or resistance. The 

imaginary component, X, including sign, but excluding j, is termed the reactive 

component, or reactance. The impedance   60100  in rectangular form is 

  6.8650 j . Thus, its resistance is  50  and its reactance is   6.86 . 

It is important to note that the resistive component of the impedance is not 

necessarily equal to the resistance of the resistor which is present in the circuit. 

EXAMPLE 12.7 Impedance of a Resistor and Inductor in Series 

Consider a resistor and an inductor in series: 

5 H20

 

At 
-1rads 4 , the equivalent impedance is   2020 jeqZ . In this case the 

resistive component of the impedance is equal to the resistance of the resistor 

because the network is a simple series network. Now consider the same 

elements placed in parallel: 

5 H20

 

The equivalent impedance is: 

 



  j1010

2020

2020

j

j
eqZ  

The resistive component of the impedance is now  10 . 

 

Impedance is 
composed of a 
resistance (real part) 
and a reactance 
(imaginary part) 
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EXAMPLE 12.8 Circuit Analysis using Impedance 

We will use the impedance concept to analyse the RLC circuit shown below: 

sin(         )40 t3000 V

i  t(  ) 1.5 k

H
1
3

1 k

1
6 F

 

The circuit is shown in the time-domain, and a time-domain response is 

required. However, analysis should be carried out in the frequency-domain. We 

therefore begin by drawing the frequency-domain circuit – the source is 

transformed to the frequency-domain, becoming  9040 , the response is 

transformed to the frequency-domain, being represented as I , and the 

impedances of the inductor and capacitor, determined at 
-1rads 3000 , are 

k 1j  and  k 2j  respectively. The frequency-domain circuit is shown 

below: 

I 1.5 k 1 k

j1 k -j2 k40 -90° V

 

The equivalent impedance offered to the source is: 

  

























k   9.365.25.12

2

31
5.1

1

1

1

2
5.1

1

2
5.1

211

211
5.1

j

j

j

j

j

j

j

j

jj

jj
eqZ
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The phasor current is thus: 

mA   9.12616
9.365.2

9040







eq

s

Z

V
I  

Upon transforming the current to the time-domain, the desired response is 

obtained: 

    mA   9.1263000cos16  tti  

 

12.7 Admittance 

The reciprocal of impedance can offer some convenience in the sinusoidal 

steady-state analysis of circuits. We define admittance as the ratio of phasor 

current to phasor voltage: 

V

I
Y 

 

 

(11.91)  

and thus: 

Z
Y

1


 

 

(11.92)  

The real part of the admittance is the conductance G , and the imaginary part 

of the admittance is the susceptance B . Thus: 

jXR
jBG




11

Z
Y

 

 

(11.93)  

This formula should be scrutinized carefully. It does not mean that RG 1  

(unless RZ , a pure resistance), nor does it mean XB 1 . 

Admittance, conductance and susceptance are all measured in siemens (S). 

Admittance defined 

Admittance is the 
reciprocal of 
impedance 

Admittance is 
composed of a 
conductance (real 
part) and a 
susceptance 
(imaginary part) 
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EXAMPLE 12.9 Admittance of a Resistor and Capacitor in Series 

Consider a resistor and a capacitor in series: 

1
0.1F

 

At 
-1Mrads 5 , the equivalent impedance is   21 jeqZ . Its admittance 

is: 

S  4.02.0

21

21

21

1

21

11

j

j

j

jj













Z
Y

 

It should be apparent that the equivalent admittance of a circuit consisting of  a 

number of parallel branches is the sum of the admittances of the individual 

branches. Thus, the admittance obtained above is equivalent to: 

5 0.8 F

 

only at 
-1Mrads 5 . As a check , the equivalent impedance of the parallel 

network at 
-1Mrads 5  is: 

 





   21

5.25

5.25
j

j

j
eqZ  

as before. 
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12.8 Summary 

 Sinusoids are important theoretically and practically. A sinusoidal source 

yields a sinusoidal response. 

 The sinusoidal forced response is also known as the sinusoidal steady-state 

– the condition which is reached after the natural response has died out. 

 A complex forcing function produces a complex response – the real part of 

the forcing function creates the real part of the response. 

 The application of a complex forcing function to a linear circuit turns the 

describing differential equation into a complex algebraic equation. 

 The phasor representation of a sinusoid captures the amplitude and phase 

information in a complex number – amplitude corresponds to magnitude, 

and phase corresponds to angle. 

 The phasor corresponding to      tAtx cos  is   AAe jX . 

 Phasor IV   relationships for the three passive elements lead to the 

concept of frequency-domain impedance. The impedances of the three 

passive elements are: RR Z , LjL Z , CjC 1Z . Impedances can 

be combined and manipulated like resistors except we use complex algebra. 

 Impedance consists of a real resistive component and an imaginary reactive 

component: jXR Z . 

 Admittance is defined as the inverse of impedance: jBG ZY 1 . 

12.9 References 
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Exercises 

1. 

A sinusoidal voltage is zero and increasing at ms 6.1t . The next zero 

crossing occurs at ms 65.4t . 

(a) Calculate T , f  and  . 

(b) If   V 200 v , find  tv . 

(c) By what angle does  tv  lead the current  A 110cos5  ti  ? 

2. 

For the sinusoidal waveform shown below: 

t (ms)

f  t(  )

-5

-8

8

0 1.2

 

Find: 

(a) A  and   if      tAtf sin  (b) T   (c) f  (d)   

(e) A  and   if      tAtf cos  (f)  0014.0f  
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3. 

Consider the circuit shown below: 

i  t(  )

v  t(  )s 0.1 H

200

 

Let  A 40500sin2  ti . Determine the source voltage  tvs . 

4. 

Consider the circuit shown below: 

150 mH

300

i  t( )

600cos(         )60 t2000 V

200

L

 

Find  tiL . 

5. 

Consider the circuit shown below: 

i  t(  )

v  t(  )s 2 H

10

 

Let V 10cos305cos20 ttvs  . Find  ti . 
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6. 

Give in polar form: 

(a)  40811020   (b)    541.017.182.31.6 jj   

Give in rectangular form: 

 (c)  71.93.6 jj    (d) 
521.2je  

7. 

A box contains a voltage source 1sv  and a current source 2si . The voltage 

between an available pair of terminals is labelled ABv . 

If   V  401000cos51  tvs  and   A  20500cos1.02  tis , then 

    30500cos3101000cos2 ttvAB
 V. 

However, if   40500cos51 tvs  V while   201000cos1.02 tis  A, then 

    10500cos2201000cos3 ttvAB  V. 

Find ABv  if    ttvs 500cos101000cos201   V and 

    A  500sin2.01000sin3.02 ttis  . 

8. 

Assume that only three currents, 
1i , 

2i  and 3i , enter a certain node. 

(a) Find  ti1  if mA  110652 I  and mA  50453 I  

(b) Find 2I  if     mA  40400cos551  tti  and     mA  70400sin353  tti . 
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9. 

At the input of an RLC circuit it is found that V  1841 jV  and 

A  5.75.3 jI . Assuming V  and I  satisfy the passive sign convention, 

determine the power entering the network at: 

(a) 0t   (b) 2 t  

10. 

In the figure below, the voltage v  is given as the phasor, V  2560 jV . 

v

i

circuit

element

 

If 
-1rads  2000 , find the power being delivered to the element at 

ms  1.0 t  if the element is: 

(a) a   100  resistor  (b) a 50 mH inductor  (c) a μF  5  capacitor 

11. 

The circuit below is operated at 
-1rads  100 . 

i1

1 H 400F40

iR

 

(a) If A  2001.0 RI , find 1I . 

(b) If A  3021 I , find RI . 
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12. 

Using a 1 H inductor and a μF  1  capacitor, at what frequency (in hertz) may an 

impedance be obtained having a magnitude of   2000  if the two elements are 

combined in: 

(a) series  (b) parallel 

13. 

A μF  10  capacitor and a   25  resistor are in parallel. What size inductor 

should be placed in series with this parallel combination so that the impedance 

of the final series network has zero reactance at 
-1krads  8 ? 

14. 

What size capacitor should be placed in series with the series combination of 

  800  and 20 mH to give an admittance whose magnitude is 1 mS at 

-1krads  10 ? 

15. 

If the input admittance and impedance of the network shown below are equal at 

every frequency, find R and L. 

R 1 F

R

L

Yin

Zin
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Joseph Fourier (1768-1830) (Jo´ sef Foor´ yay) 

Fourier is famous for his study of the flow of heat in metallic plates and rods. 

The theory that he developed now has applications in industry and in the study 

of the temperature of the Earth’s interior. He is also famous for the discovery 

that many functions could be expressed as infinite sums of sine and cosine 

terms, now called a trigonometric series, or Fourier series. 

Fourier first showed talent in literature, but by the age of thirteen, mathematics 

became his real interest. By fourteen, he had completed a study of six volumes 

of a course on mathematics. Fourier studied for the priesthood but did not end 

up taking his vows. Instead he became a teacher of mathematics. In 1793 he 

became involved in politics and joined the local Revolutionary Committee. As 

he wrote:-  

As the natural ideas of equality developed it was possible to conceive the 

sublime hope of establishing among us a free government exempt from kings 

and priests, and to free from this double yoke the long-usurped soil of 

Europe. I readily became enamoured of this cause, in my opinion the 

greatest and most beautiful which any nation has ever undertaken. 

Fourier became entangled in the French Revolution, and in 1794 he was 

arrested and imprisoned. He feared he would go to the guillotine but political 

changes allowed him to be freed. In 1795, he attended the Ecole Normal and 

was taught by, among others, Lagrange and Laplace. He started teaching again, 

and began further mathematical research. In 1797, after another brief period in 

prison, he succeeded Lagrange in being appointed to the chair of analysis and 

mechanics. He was renowned as an outstanding lecturer but did not undertake 

original research at this time. 

In 1798 Fourier joined Napoleon on his invasion of Egypt as scientific adviser. 

The expedition was a great success (from the French point of view) until 

August 1798 when Nelson’s fleet completely destroyed the French fleet in the 

Battle of the Nile, so that Napoleon found himself confined to the land he was 

occupying. Fourier acted as an administrator as French type political 

institutions and administrations were set up. In particular he helped establish 

educational facilities in Egypt and carried out archaeological explorations. 
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While in Cairo, Fourier helped found the Institute d'Égypte and was put in 

charge of collating the scientific and literary discoveries made during the time 

in Egypt. Napoleon abandoned his army and returned to Paris in 1799 and soon 

held absolute power in France. Fourier returned to France in 1801 with the 

remains of the expeditionary force and resumed his post as Professor of 

Analysis at the Ecole Polytechnique. 

Napoleon appointed Fourier to be Prefect at Grenoble where his duties were 

many and varied – they included draining swamps and building highways. It 

was during his time in Grenoble that Fourier did his important mathematical 

work on the theory of heat. His work on the topic began around 1804 and by 

1807 he had completed his important memoir On the Propagation of Heat in 

Solid Bodies. It caused controversy – both Lagrange and Laplace objected to 

Fourier’s expansion of functions as trigonometric series. 

…it was in attempting to verify a third theorem that I employed the 

procedure which consists of multiplying by dxx cos  the two sides of the 

equation 

  ...2coscos 210  xaxaax  

and integrating between 0x  and x . I am sorry not to have known the 

name of the mathematician who first made use of this method because I 

would have cited him. Regarding the researches of d’Alembert and Euler 

could one not add that if they knew this expansion they made but a very 

imperfect use of it. They were both persuaded that an arbitrary…function 

could never be resolved in a series of this kind, and it does not seem that 

any one had developed a constant in cosines of multiple arcs 

[i.e. found 1a , 2a ,…, with ...2coscos1 21  xaxa  for 22   x ] 

the first problem which I had to solve in the theory of heat. 

Other people before Fourier had used expansions of the form 

   


r r irtaxf exp~  but Fourier’s work extended this idea in two totally 

new ways. One was the “Fourier integral” (the formula for the Fourier series 

coefficients) and the other marked the birth of Sturm-Liouville theory (Sturm 

and Liouville were nineteenth century mathematicians who found solutions to 

many classes of partial differential equations arising in physics that were 

analogous to Fourier series). 

The Institute 
d'Égypte was 
responsible for the 
completely 
serendipitous 
discovery of the 
Rosetta Stone in 
1799. The three 
inscriptions on this 
stone in two 
languages and three 
scripts (hieroglyphic, 
demotic and Greek) 
enabled Thomas 
Young and Jean-
François 
Champollion, a 
protégé of Fourier, 
to invent a method 
of translating 
hieroglyphic writings 
of ancient Egypt in 
1822. 

This extract is from 
a letter found among 
Fourier’s papers, 
and unfortunately 
lacks the name of 
the addressee, but 
was probably 
intended for 
Lagrange. 
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Napoleon was defeated in 1815 and Fourier returned to Paris. Fourier was 

elected to the Académie des Sciences in 1817 and became Secretary in 1822. 

Shortly after, the Academy published his prize winning essay Théorie 

analytique de la chaleur (Analytical Theory of Heat). In this he obtains for the 

first time the equation of heat conduction, which is a partial differential 

equation in three dimensions. As an application he considered the temperature 

of the ground at a certain depth due to the sun’s heating. The solution consists 

of a yearly component and a daily component. Both effects die off 

exponentially with depth but the high frequency daily effect dies off much 

more rapidly than the low frequency yearly effect. There is also a phase lag for 

the daily and yearly effects so that at certain depths the temperature will be 

completely out of step with the surface temperature. 

All these predictions are confirmed by measurements which show that annual 

variations in temperature are imperceptible at quite small depths (this accounts 

for the permafrost, i.e. permanently frozen subsoil, at high latitudes) and that 

daily variations are imperceptible at depths measured in tenths of metres. A 

reasonable value of soil thermal conductivity leads to a prediction that annual 

temperature changes will lag by six months at about 2–3 metres depth. Again 

this is confirmed by observation and, as Fourier remarked, gives a good depth 

for the construction of cellars. 

As Fourier grew older, he developed at least one peculiar notion. Whether 

influenced by his stay in the heat of Egypt or by his own studies of the flow of 

heat in metals, he became obsessed with the idea that extreme heat was the 

natural condition for the human body. He was always bundled in woollen 

clothing, and kept his rooms at high temperatures. He died in his sixty-third 

year, “thoroughly cooked”. 

References 

Körner, T.W.: Fourier Analysis, Cambridge University Press, 1988. 
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13 Circuit Simulation 
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Introduction 

The most popular circuit simulation “package” is known as PSpice®. SPICE is 

an acronym for Simulation Program with Integrated Circuit Emphasis – a 

program developed at the University of California, Berkeley in the 1970’s that 

was used to simulate analog electronic circuits. It quickly became an industry 

standard – versions became available in the public domain and large companies 

developed their own versions – and continue to do so. The “P” prefix came 

about in 1984 when the first version for a PC became available. Most 

professional computer-aided electronic design tools now incorporate PSpice® 

compatible simulators. 

There are many software packages which use PSpice® (or PSpice® compatible) 

simulators, and they are updated frequently. It is not the purpose of this 

document to outline how each version of the various software packages are 

used. There are many other resources that are available that do this – online 

tutorials, textbook appendices, student and demo versions of software, etc. 

This document will give an overview of the procedure of circuit simulation, 

and then highlight particular topics that are important for us in generating time-

domain and frequency-domain analyses of simple analog circuits. 

This document will be based on OrCAD® – an integrated software package 

used for electronic design automation (EDA). It “captures” schematic designs, 

simulates them, and allows a printed circuit board to be designed for 

manufacture. Demo versions are freely available. 

Australians tend to use Altium Designer – EDA software originally developed 

in Hobart at the University of Tasmania. Altium is now a large international 

company listed on the ASX, and has a large share of the EDA market. 

                                                 

PSpice and OrCAD are registered trademarks of Cadence Design Systems, Inc. 
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13.1 Project Flow 

The basic steps to running a circuit simulation are: 

 Start a new project 

 Draw the schematic 

 Set up and run simulation profiles 

13.1.1 Starting a New Project 

1. Open OrCAD Capture CIS - Demo Edition (freely available). 

2. Go to File New Project…. 

3. Enter a name for the project. 

4. Choose “Analog or Mixed A/D”. 

5. Set the location. You should create a new directory for your project since 

PSpice will generate a lot of project files in this folder.  

6. Click OK. 

7. Choose “Create a blank project” and click OK. 

8. You should see a window where you can draw the schematic (i.e. your 

circuit diagram). 
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13.1.2 Drawing the Schematic 

To add parts for your circuit (i.e. resistors, etc.) 

1. Go to Place Parts. 

2. Click on the library you want to use, or select multiple libraries by 

holding Ctrl or dragging the mouse.  In the part window you should see 

at least the ANALOG, BIPOLAR, EVAL, SOURCE and SPECIAL 

libraries. 

3. Find the part you want to add and press OK. 

4. Click where you want to place the part on your schematic.  Press R to 

rotate the part by 90 degrees. 

5. Use wires to connect the part to complete your circuit. 

13.1.3 Simulation 

Simulations run via “simulation profiles”. You need to set up a simulation 

profile for each type of simulation you want to run. 

1. Go to PSpice New Simulation Profile. 

2. Enter a name for the simulation profile, e.g. “Step Response” or 

“Frequency Response”. 

3. Press Create. 

4. In the “Analysis Type” drop-down list, choose the simulation type, e.g. 

“Time Domain (Transient)” for a step response simulation, “AC Sweep / 

Noise” for a frequency response simulation. 

5. Set up the parameters associated with the type of simulation. 

6. To run the simulation, press F11 or choose PSpice Run. 
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13.2 Schematic Capture 

Here are some tips for laying out the schematic for simulation purposes. 

13.2.1 Ground 

There are many types of grounds (common points in the circuit) and there may 

be more than one common point, e.g. an “analog ground” and a “digital 

ground” in a mixed circuit. PSpice uses nodal analysis for circuit simulation 

and therefore needs a reference node with “zero voltage”. This is provided by a 

special ground symbol called 0/SOURCE. You need to have it in your circuit!  

It looks like a ground symbol with a zero. If you don't have it, PSpice may 

complain of "floating nodes" even if you have a ground. 

 

To place the ground on the circuit Go to Place Ground and choose 0/source 

(if you don't see “source” in the Libraries section, you will need to add the 

source library). Alternatively, click on the ground button  in the schematic 

toolbar and choose 0/source. Or just push “G”. 
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13.2.2 SI Unit Prefixes 

PSpice uses letters to represent the most common SI unit prefixes: 

SI Unit Prefix PSpice letter 

giga G 

mega Meg 

kilo k 

milli m 

micro u 

nano n 

pico p 

femto f 

The two differences are “mega” and “micro”. 

The “mega” prefix is written “Meg” (case does not matter). “M” is NOT 

“mega”, it is “milli”. 

Example:  For 6.5 MHz, enter "6.5 Meg",  for 3 mV, enter "3 m". 

The “micro” prefix is not the Greek letter mu (μ) as in the SI system of units, 

because it is not supported on a standard keyboard. We use the letter “u” 

instead. 

Example:  For μH 680 , enter "680u". 

13.2.3 All Parts Must Have Unique Names 

You can't have two parts named "R1" in your circuit.  If you are copying and 

pasting parts or circuits, OrCAD usually increments the part number 

automatically. However, you may accidentally name two parts the same, which 

will cause a “netlist” error. 
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13.2.4 Labeling Nodes 

You should use aliases to label your input and output nodes.  This makes your 

nodes easier to find when dealing with simulation output.  V(Vout) is simpler 

than finding V(R1:1). 

1. Go to Place Net Alias. 

2. Enter a name, e.g.,  Vout or Vin. 

3. Place the label close to a node. 

The example below shows a simple circuit with aliases:  
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13.3 Simulation 

The following sections detail the procedures used in setting up and running 

simulations. 

13.3.1 DC Bias 

The response of the circuit to DC sources is always calculated. To display DC 

bias voltages, currents and power on your circuit after you run the simulation, 

click on the Enable Bias Display buttons: 

 

13.3.2 Time-Domain (Transient) Simulations 

For sinusoids, use VSIN for your voltage source instead of VAC (VOFF is the 

DC offset,  VAMPL is the amplitude, and FREQ is the frequency). 

For square and triangular waves, use VPULSE: 

t

V1

V2

TR TF

PW

TD TD+PER  

Parameter Meaning 

V1 Initial value (V) 

V2 Pulsed value (V) 

TD Delay time (s) 

TR Rise time (s) 

TF Fall time (s) 

PW Pulse width (s) 

PER Period (s) 

We normally set the delay time, TD, to zero. 
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Square Wave 

A square wave is the VPULSE function in the limit of TR=TF=0 and 

PW=0.5*PER (PER is the period of the wave). This limiting case, however, 

causes numerical difficulties in calculations. In any case, we can never make 

such a square function in practice. In reality, square waves have very small TR 

and TF. Typically, we use a symmetric function, i.e., we set TR=TF and 

PW=0.5*PER-TR. Thus, for a given frequency we can set up the square 

function if we choose TR. If we choose TR too large, the function does not look 

like a square wave. If we choose TR too small, the program will take a long 

time to simulate the circuit and for TR smaller than a certain value, the 

simulation will not converge numerically. A good choice for TR is to set it to 

be 1% of the PER (a period): TR=TF=0.01*PER, PW=0.49*PER. This 

usually results in a nice signal without a huge amount of computational need. 

Note that TR does not have to be exactly 1% of PER. You can choose nice 

round numbers for TR, TF, and PW. 

Triangular Wave  

A triangular wave is the VPULSE function in the limit of TR=TF=0.5*PER 

and PW=0 (convince yourself that this is the case). As before, the limiting case 

of PW=0 causes numerical difficulties in calculations. So we have to choose PW 

to be a reasonably small value. A good choice for PW is to set it at 1% of the 

PER (period): PW=0.01*PER, TR=TF=0.495*PER. This usually results in 

a nice signal without a huge amount of computational need. Again, note that 

PW does not have to be exactly 1% of PER. You can choose nice round 

numbers for TR, TF, and PW. 

Step  

A step can be created by setting up a square wave with a period that is much 

longer than any time constants in the circuit (this is what we do in the lab). 
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Simulation Settings 

1. Go to PSpice Edit Simulation Profile. 

2. Select the "Time Domain (Transient)" Analysis type. 

3. Enter a “Run to time”: so that a few periods will be displayed.  

Remember that the period (seconds) = 1/frequency (Hz). 

Example:  If you are using a 1 kHz sine wave, it has a 1/1 kHz = 1 ms 

period, so use a “Run to time” of 5 ms for 5 periods. 

4. Set the “Maximum step size” to be much smaller than the period. 

Example:  For a 1 kHz sine wave, it has a 1 ms period, so set a 

“Maximum step size” of approximately 0.01ms. This works out to 100 

data points per period. 

5. If you don't set the “Maximum step size”, PSpice may choose one which 

is too big, making your waveforms look angular and ugly (because it 

plots straight lines between data points). 
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13.3.3 AC Sweep / Noise Simulations 

Use VAC for your voltage source. 

Simulation Settings 

1. Go to PSpice Edit Simulation Profile. 

2. Select the "AC Sweep / Noise" Analysis type. 

3. Select the frequency range of interest. Don't start frequency sweeps at 0! 

4. Set the “Points/Decade” to be at least 20. 

Bode Plots 

1. Use a logarithmic x-axis for the frequency. 

2. The magnitude should be measured in decibels. Use the PSpice DB() 

function to convert to decibels. 

Example:  Use DB(V(Vout)/V(Vin)), assuming you have labelled 

your output and input nodes with Vout and Vin aliases. 

3. Remember you also need a phase response (unless instructed otherwise).  

Use the PSpice P() function to get the phase angle. 

Example:  Use P(V(Vout)/V(Vin)), assuming you have labelled 

your output and input nodes with Vout and Vin aliases. 
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4. Be sure to mark the cutoff frequency or other points of interest on your 

Bode plots (on both magnitude AND phase graphs).  Cutoff frequency is 

defined as 3dB below the peak of the magnitude response (NOT always 

at -3dB). 

a. Click the "Toggle Cursor" button  (or go through the menu, 

Trace Cursor Display). You will now be able to move the cursor 

along your plot. 

b. Click the "Cursor Max" button  to find the highest point (or go 

through the menu, Trace Cursor Max). 

c. Click the "Mark Label" button  to label that point (or go 

through the menu, Plot Label Mark). 

d. Click the "Cursor Search" button  (or go through the menu, 

Trace Cursor Search Commands…). 

e. Select 1 for “Cursor To Move” to search along the y-axis of trace 1. 

f. Enter "search forward level (max-3)" (don't enter the quotation 

marks) to move the cursor to the right, to the point which is 3 

below the max. 
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g. Or enter "search back level (max-3)" (don't enter the quotation 

marks) to move the cursor to the left. 

 

h. Click the "Mark Label" button  to label that cutoff point. 

 Unclick the “Toggle Cursor” button to disable the cursor so 

you can move the label. 

 Double-click on the label to edit the text (to add units, or to 

name the point). 

i. It may help to increase the width of the traces in the plot. 

 Right click on a trace. Make sure the selection list has 

Information, Properties, Cursor 1, and Cursor 2 (if it lists 

Settings and Properties, you clicked on the background, not 

on the trace). 

 Select Properties. 

 You can change the width and other properties of that trace. 
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EXAMPLE 13.1 Simulation of a Circuit’s Magnitude Response 

We wish to simulate the following circuit to determine its magnitude response: 

vo

vi

10 nF

5 k

1 k

 

We enter the following schematic into OrCAD. 

 

Note the use of a real op-amp – the LF411. You can search for it in the parts 

library by Place Part… then Part Search…. The op-amp requires DC voltage 

sources on its power pins. 
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In this schematic, we have used the power symbol  which simply “ties” 

nets together with a common name – in this case the name is “+15V”. One 

“tie” is placed on the DC voltage source, the other on the op-amp power pin. 

This avoids cluttering wires on the schematic. 

We set up a frequency response simulation using AC Sweep as shown below: 

 

for which the output is: 
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Exercises 

1. 

Simulate the step response and frequency response of the following circuit: 

vo

2.5 k

6
TL071

2

3

10 k

10 nF

vi

 

 

Use the following axes for graphing: 

Response X Y 

Step 0 s to 1 ms -5 V to 0 V 

Magnitude 10 Hz to 100 kHz -30 dB to 20 dB 

Phase 10 Hz to 100 kHz 90 to 180 
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14 The Sinusoidal Steady-State Response 
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Introduction 

In the analysis of resistive circuits of arbitrary complexity, we are able to 

employ many different circuit analysis techniques to determine the response – 

nodal analysis, mesh analysis, superposition, source transformations, 

Thévenin’s and Norton’s theorems. 

Sometimes one method is sufficient, but more often we find it convenient to 

combine several methods to obtain the response in the most direct manner. 

We now want to extend these techniques to the analysis of circuits in the 

sinusoidal steady-state. We have already seen that impedances combine in the 

same manner as do resistances. We have seen that KVL and KCL are obeyed 

by phasors, and we also have an Ohm-like law for the passive elements, 

ZIV  . We can therefore extend our resistive circuit analysis techniques to 

the frequency-domain to determine the phasor response, and therefore the 

sinusoidal steady-state response. 
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14.1 Analysis using Phasors 

Phasors can only be used for sinusoidal steady-state analysis. They cannot be 

used to determine transients in a circuit. 

Phasor analysis is a transform method of analysis. In phasor analysis we 

transform a problem from the time-domain to the frequency-domain. To find a 

response in the frequency-domain, we solve equations using complex algebra. 

Once the response is found, we transform the solutions back to the time-

domain. This is illustrated conceptually below: 

 

time-domain

problem

time-domain

solution

solution

transformtime-domain

frequency-domain

problem

frequency-
domain

to

complex
algebra

differential
equations

frequency-
domain

transform

to

 

 

Figure 14.1 

Transform methods are a common method of analysis in branches of 

engineering, and you will be introduced to more powerful transform methods 

in more advanced subjects. 
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14.2 Nodal Analysis 

As an example of nodal analysis, consider the circuit shown below: 

 

5 10
2 H

0.5

40 mF

1 H

v1
v2

20 mF

cos(    )t5 A sin (    )t5 A

 

 

Figure 14.2 

Noting from the sources that 
-1rads 5 , we draw the frequency-domain 

circuit and assign nodal voltages 
1V  and 

2V : 

 

5 10
j10

-j10

1 0° A 0.5 -90° A

-j5

j5

V1
V2

 

 

Figure 14.3 

Each passive element is specified by its impedance, which has been determined 

by knowing the frequency of the sources (which are the same) and the element 

values. Two current sources are given as phasors, and phasor node voltages 
1V  

and 2V  are indicated. 

At the left node, we apply KCL and ZVI  : 

01
105105

212111 j
jjj













VVVVVV
 

(14.1) 

Nodal analysis in 
the frequency-
domain 
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At the right node: 

 5.0
105105

221212 j
jjj







 VVVVVV
 

(14.2) 

Combining terms we have the two equations: 

 

  5.01.01.01.0

11.02.02.0

21

21

jjj

jj





VV

VV

 
(14.3) 

Using Cramer’s Rule to solve, we obtain:  

 
 

 

 

V  42
05.0

1.01.01.0

05.0

5.01.0

12.02.0

V  21
05.0

1.005.0

01.002.002.002.002.0

05.01.01.0

1.01.01.0

1.02.02.0

1.01.05.0

1.01

2

1

j
jjjj

j

j
j

jj

j

jj

jj

jj

j































V

V

 

(14.4) 

The time-domain solutions are best obtained by representing the phasors in 

polar form: 

V  6.11652

V  4.635

2

1





V

V

 
(14.5) 

and passing to the time-domain: 

   

    V  6.1165cos52

V  4.635cos5

2

1





ttv

ttv

 
(14.6) 

Note how simple phasor analysis is compared to the work involved if we 

stayed in the time-domain solving differential equations! 
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14.3 Mesh Analysis 

As an example of mesh analysis, consider the circuit shown below: 

 

3
500

4 mH

i1

2cos(       )10 t10 V
3

i1

F

 

 

Figure 14.4 

Noting from the left source that 
-13 rads 10 , we draw the frequency-domain 

circuit and assign mesh currents 
1I  and 

2I : 

 

3

10 0° V

-j2

j4

I 1 I 2
2I 1

 

 

Figure 14.5 

Around mesh 1: 

   01043 211 III j  (14.7) 

while mesh 2 leads to: 

  0224 1212  IIII jj  (14.8) 

Mesh analysis in the 
frequency-domain 
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Combining terms we have the two equations: 

 

  0242

10443

21

21





II

II

jj

jj

 
(14.9) 

Solving: 

 
A  3.56774.2

13

3020

A  7.29240.1
13

814

2

1











j

j

I

I

 

(14.10) 

or: 

   
    A  3.5610cos774.2

A  7.2910cos240.1

3

2

3

1





tti

tti

 
(14.11) 

The solution above could be checked by working entirely in the time-domain, 

but it would be quite an undertaking! 
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14.4 Superposition 

Linear circuits are those that consist of any of the following: idealised linear 

passive circuit elements (R, L and C), ideal independent voltage and current 

sources and linearly dependent voltage and current sources. Such circuits are 

amenable to the superposition principle. 

We can analyse linear circuits with phasors and the principle of superposition. 

(You may remember that linearity and superposition were invoked when we 

combined real and imaginary sources to obtain a complex source). 

Let’s look again at the circuit of Figure 14.3, redrawn below with each pair of 

parallel impedances replaced by a single equivalent impedance (for example, 5 

and 10j  in parallel yield 24 j ): 

 

4 -j2 1 0° A 0.5 -90° A

V1
V2

-j10

2+j4 

 

 

Figure 14.6 

To find 
1V  we first activate only the left source and find the partial response: 

  
22

86

284

421024

421024
011 j

j

j

jjj

jjj
L 









V  (14.12) 

With only the right source active, current division helps us to obtain: 

    1
86

86
24

421024

42
905.01 



















j

j
j

jjj

j
RV  (14.13) 

 

Superposition in the 
frequency-domain 
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Summing, we get: 

 V  211221 jj V  (14.14) 

which agrees with our previous result. 

14.5 Thévenin’s Theorem 

We will use the same circuit to see whether Thévenin’s Theorem can help us: 

 

4 -j2 1 0° A 0.5 -90° A

V1
V2

-j10

2+j4 

 

 

Figure 14.7 

Suppose we determine the Thévenin equivalent faced by the   10j  

impedance. The open circuit voltage (+ reference to the left) is: 

     

361224

42905.02401

jjj

jjoc



V

 
(14.15) 

The impedance of the inactive circuit, as viewed from the load terminals, is 

simply the sum of the two remaining impedances (because the current sources 

are set to zero – open circuits). Hence: 

26 jth Z  (14.16) 

 

Thévenin’s Theorem 
in the frequency-
domain 
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Thus, when we reconnect the circuit, the current directed from node 1 toward 

node 2 through the   10j  load is: 

3.06.0
1026

36
12 j

jj

j





I

 
(14.17) 

Subtracting this from the left source current, the downward current through the 

  24 j  branch is found: 

  3.04.03.06.011 jj I  (14.18) 

and , thus: 

   V 213.04.024111 jjj  IZV  (14.19) 
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14.6 Norton’s Theorem 

Again using the same circuit, if our chief interest is in 
1V  we could use 

Norton’s Theorem on the three right elements: 

 

0.5 -90° A

-j10

2+j4 

 

 

Figure 14.8 

The short circuit current is obtained using current division: 

 

A  
4

1

62

2

905.0
1042

42

j

j

j

jj

j
sc













I

 

(14.20) 

and the Norton impedance (equal to the Thévenin impedance) is simply: 

62 jth Z  (14.21) 

 

Norton’s Theorem in 
the frequency-
domain 
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We thus need to analyse the circuit: 

 

4 -j2 1 A A

V1

2-j6  +j1
4

 

 

Figure 14.9 

The voltage 
1V  is therefore: 

  
 

  

     V  2125.075.02225.075.0
86

284

25.025.01
6224

6224
1

jjjj
j

j

j
jj

jj











V

 

(14.22) 

It should now be clear that all methods available for linear circuit analysis can 

be applied to the frequency-domain. The slight additional complexity that is 

apparent now arises from the necessity of using complex numbers and not from 

any more involved theoretical considerations. 
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14.7 Phasor Diagrams 

The phasor diagram is a sketch in the complex plane of the phasor voltages and 

currents throughout a specific circuit. It provides a graphical method for 

solving problems which may be used to check more exact analytical methods. 

Since phasor voltages and currents are complex numbers, they may be 

identified as points in a complex plane. For example, the phasor voltage 

 1.5310861 jV  is identified on the complex voltage plane shown 

below: 

 

Real axis (V)
6

V18j

10

53.1°

Imaginary
axis (V)

 

 

Figure 14.10 

The axes are the real voltage axis and the imaginary voltage axis. The voltage 

1V  is located by an arrow drawn from the origin. Since addition and 

subtraction are particularly easy to perform and display on a complex plane, it 

is apparent that phasors may be easily added and subtracted in a phasor 

diagram. Multiplication and addition result in a change in magnitude and the 

addition and subtraction of  angles. 

A phasor diagram is 
a graphical sketch of 
phasors in the 
complex plane 

A simple phasor 
diagram 
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Figure 14.11 shows the sum of 
1V  and a second phasor voltage 

 1.535432 jV : 

 

+

V1

V2

V2V1

 

 

Figure 14.11 

Figure 14.12 shows the current 
1I , which is the product of 

1V  and the 

admittance 11 jY : 

 

V1

=I1

V1(1+  1)j
45°

 

 

Figure 14.12 

This last phasor diagram shows both current and voltage phasors on the same 

complex plane – it is understood that each will have its own amplitude scale, 

but a common angle scale. 

Phasor diagram 
showing addition 

Phasor diagram 
showing 
multiplication 



14.15 

PMcL Phasor Diagrams Index    

2017  14 - The Sinusoidal Steady-State Response 

The phasor diagram can also show the connection between the frequency-

domain and the time-domain. For example, let us show the phasor  mVV  

on the phasor diagram, as in (a) below: 

 

Vm 

Vm t+

t+

t



V Vm= 



(a) (b)

Vm

 

 

Figure 14.13 

In order to transform V  to the time-domain, we first need to multiply by 
tje 
. 

We now have the complex voltage   tVeeV m

tjj

mV . This voltage 

may be interpreted as a phasor which possesses a phase angle that increases 

linearly with time. On a phasor diagram it therefore represents a rotating line 

segment, the instantaneous position being rad t  ahead (counterclockwise) of 

mV . Both  mV  and   tVm  are shown on the phasor diagram in (b). 

The transformation to the time-domain is completed by taking the real part of 

  tVm , which is the projection of the phasor onto the real axis. It is helpful 

to think of the arrow representing the phasor V  on the phasor diagram as the 

snapshot, taken at 0t , of a rotating arrow whose projection onto the real axis 

is the instantaneous voltage  tv . 

 

Phasor diagram 
showing 
transformation to the 
time-domain by 
rotating the phasor 
and taking the real 
part 

See the “Phasors” 
PC program 
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EXAMPLE 14.1 Phasor Diagram of a Series RLC Circuit 

The series RLC circuit shown below has several different voltages associated 

with it, but only a single current: 

10Vs

I 3 6j

-j

VR VL

VC

 

The phasor diagram is constructed most easily by employing the single current 

as the reference phasor – all other phasors with have their angles measured 

with respect to the reference. Let us arbitrarily set  0mII  and place it along 

the real axis of the phasor diagram, as shown below: 

Vs

IVR

VL +VR VL

VC

+VR VC

+VR VL + VC=

3

6j

10-j

4-j

5-j

j5
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The resistor, inductor and capacitor voltages may next be calculated and placed 

on the diagram, where the 90  phase relationships stand out clearly. The sum 

of these three voltages is the source voltage for this circuit. The total voltage 

across the resistance and inductance or resistance and capacitance or 

inductance and capacitance is easily obtained from the phasor diagram. 

We can design using the phasor diagram quite easily instead of embarking on 

complex algebraic manipulation. For example, suppose we would like to 

determine a single extra passive element that can be added in series with the 

circuit so that the magnitude of the current does not change. This additional 

circuit element will contribute to an additional voltage drop, but we still must 

have KVL satisfied so that the total voltage drop magnitude equals the source 

voltage magnitude. Therefore, the addition of the voltage drop due to the new 

element must keep the source voltage on a circle of radius 
sV . From the 

phasor diagram, we can see that we can only add an inductor with an 

impedance   8jLnewZ , so that the additional voltage drop still brings us onto 

the circle of radius 
sV : 

VLnew

Vs +VR VL + VC=

3

4-j

5-j

j5

j4
Vsnew +VR VL + VC= + VLnew
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As another example of the use of the phasor diagram, consider the original 

circuit again. We know that an increase in frequency will cause the voltage 

across the inductor to increase, whilst simultaneously decreasing the voltage 

across the capacitor (although not linearly). In fact, if we increase the 

frequency by 29.1%, the inductor voltage and capacitor voltage will exactly 

cancel one another, and we have a condition known as resonance. In this case 

the supply voltage and current are precisely in phase, and the circuit appears 

resistive: 

I

VL

+VR VL

VC

+VR VC

RVVs =

3

7.746j

7.746-j
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EXAMPLE 14.2 Phasor Diagram of a Parallel RC Circuit 

The figure below shows a simple parallel circuit in which it is logical to use the 

single voltage between the two nodes as a reference phasor: 

5

I R

V

I C

I s 10-j

 

Let us arbitrarily set  0mVV  and place it along the real axis of the phasor 

diagram. The resistor current is in phase with this voltage, A 2.0 mR VI , and 

the capacitor current leads the reference voltage by 90 , A 1.0 mC VjI . After 

these two currents are added to the phasor diagram, shown below, they may be 

summed to obtain the source current. The result is   A 1.02.0 ms VjI . 

VmIs = (0.2+       )0.1j

V= Vm 0°IR=0.2Vm

jIC =  0.1Vm
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If the source current were specified initially as, for example, A 01 sI , and 

the node voltage is not initially known, it is still convenient to begin 

construction of the phasor diagram by assuming, say  01V . The source 

current, as a result of the assumed node voltage, is now A 1.02.0 js I . The 

true source current is A 01  , however, and thus the true node voltage is 

greater by the factor  1.02.01 j ; the true node voltage is therefore V 24 j . 

The assumed voltage leads to a phasor diagram which differs from the true 

phasor diagram by a change of scale (the assumed diagram is smaller by a 

factor of 201 ) and an angular rotation (the assumed diagram is rotated 

clockwise through 6.26 ). The true phasor diagram in this case is shown 

below: 

Is = 1

V=
IR

IC

-26.6°20 V

0° A

 

 

Phasor diagrams are usually very simple to construct, and most sinusoidal 

steady-state analyses will be more meaningful if such a diagram is included. 
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14.8 Power in the Sinusoidal Steady-State 

Consider a single sinusoidal source supplying a network as shown below: 

 

i

v
network t

v

i

  

 

Figure 14.14 

If the network contains reactive components, then in general there will be a 

phase shift between the voltage and current. Let: 

 

 







tIi

tVv

m

m

cos

cos

 
(14.23) 

and define: 

   (14.24) 

Thus   is the angle by which the voltage leads the current. 

14.8.1 Instantaneous Power 

The instantaneous power delivered to the network is: 

   

  









t
IV

ttIV

vip

mm

mm

2coscos
2

coscos
 

(14.25) 

Notice that the first term is a constant, and the second term oscillates with time 

at double the supply frequency. 
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14.8.2 Average Power 

Average power is just the average value of the instantaneous power. We define 

this average in the normal way (the “mean value theorem”) as: 

 


2 

2 

1
lim

T

TT
dttp

T
P

 
(14.26) 

If the instantaneous power is periodic with period T0 , we have the special case: 

 
2 

2 
0

0

0

1 T

T
dttp

T
P

 
(14.27) 

That is, for a periodic instantaneous power, we can integrate over one period, 

and divide by the period. A graph of the instantaneous power in a network 

operating in the sinusoidal steady-state, Eq. (14.25), is shown below: 

 

t

p

cos 
V

m
I
m

2

T
0

T
0

2

V
m
I
m
/2

V
m
I
m
/2

 

 

Figure 14.15 

From this graph it is easily seen that the average power is the constant part of 

the instantaneous power (the oscillating part averages to zero) and we have: 

(W)cos
2

mmIV
P 

 
(14.28) 

 

P is the average 
value of p 
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EXAMPLE 14.3 Instantaneous Power and Average Power 

A graph of the instantaneous power is shown below for  04V  and 

 602I : 

 

2

4

6

t
T

0
0

p

v

i
P

-2

  

 

Figure 14.16 

Note that, on occasion, the power delivered to the network is negative, which 

implies that the network is actually sourcing power back to the voltage supply. 

The average power is calculated to be: 

    W260cos24cos
2

2
1  mmIV

P  

Both the 2 W average power and its period, one-half the period of either the 

current or the voltage, are evident in the graph. The zero value of the 

instantaneous power at each instant when either the voltage or current is zero is 

also apparent. 
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14.8.3 Root-Mean-Square (RMS) Values 

It is customary, when dealing with AC power, to refer to voltage and current  

using a root-mean-square, or RMS value. As we shall see, this leads to some 

simplification for many power formulas. The concept of an RMS value for a 

voltage or current comes about by considering the average power dissipated in 

a resistor when it carries a periodic current: 

2
2 

2 

2

0

0

0

 
1

RMS

T

T
RIdtRi

T
P    

(14.29) 

That is, the RMS value of any periodic current is equal to the value of the 

direct current which delivers the same average power. Removing R from the 

above formula, we thus have: 


2 

2 

2

0

0

0

 
1 T

T
RMS dti

T
I

 
(14.30) 

The operation involved in finding this value is the root of the mean of the 

square, hence the name root-mean-square value, or RMS value for short. A 

similar expression is obtained for voltage, RMSV  (or for any other signal for that 

matter). 

RMS value defined 
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14.8.4 RMS Value of a Sinusoid 

A sinusoid is the most important special case of a periodic signal. Consider a  

sinusoidal current given by: 

     tIti m cos  (14.31) 

The easiest way to find its RMS value is by performing the mean-square 

operations in Eq. (14.30) graphically. For the arbitrary sinusoid given, we can 

graph the square of the current,      tIti m

222 cos , as shown below: 

 

2

t
T

0

equal areas

i   t
2
(  )

I
2

m

I
2

m

  

 

Figure 14.17 

Note that in drawing the graph we don’t really need to know the identity 

    22cos1cos2    – all we need to know is that if we start off with a 

sinusoid uniformly oscillating between mI  and mI , then after squaring we 

obtain a sinusoid that oscillates (at twice the frequency) uniformly between 2

mI  

and 0. We can now see that the average value of the resulting waveform is 

22

mI , because there are equal areas above and below this value. This is the 

mean of the square, and so we now just take the root and get: 

2

m
RMS

I
I 

 
(14.32) 

The RMS value of 
an arbitrary sinusoid 
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Note that the RMS value depends on the magnitude of the sinusoid only – the 

frequency and phase is irrelevant! 

In the power industry, it is tacitly assumed that values of voltage and current 

will be measured using their RMS value. For example, in Australia the 

electricity delivered to your home has a frequency of 50 Hz and an RMS value 

of 230 V. This means the voltage available at a general power outlet is a 50 Hz 

sinusoid with a peak value of approximately 325 V. 

It should be noted that this formula can only be applied to a sinusoid – for other 

waveforms, you will obtain a different ratio between the peak and the RMS 

value. For example, the RMS value of a triangle waveform is 3mI  whilst for 

a square wave it is simply mI . 

14.8.5 Phasors and RMS Values 

We defined a phasor corresponding to: 

     tIti m cos  (14.33) 

as: 

 mII  (14.34) 

We could have just as easily defined it to be: 

  RMS
m I

I

2
I

 
(14.35) 

If we use this definition, then all relationships involving phasors, such as 

ZIV  , KCL, KVL, etc. must also use this definition. When working with 

power and machines, it is customary to use the RMS value for the phasor 

magnitude. In other fields, such as telecommunications and electronics, we use 

the amplitude for the phasor magnitude. You need to be aware of this usage. 

Phasor magnitudes 
can be defined as 
RMS values 
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14.8.6 Average Power Using RMS Values 

Returning to the formula for average power, we can now rewrite it using RMS 

values. We have: 

(W)cosRMSRMSIVP   (14.36) 

14.8.7 Apparent Power 

The average power in a DC network is simply VIP  .  In sinusoidal steady-

state analysis, we define: 

(VA)powerapparent RMSRMSIV  (14.37) 

Dimensionally, average power and apparent power have the same units, since 

cos  is dimensionless. However, to avoid confusion, the term volt-amperes, or 

VA, is applied to apparent power. 

14.8.8 Power Factor 

The ratio of average power to the apparent power is called the power factor, 

symbolized by PF: 

RMSRMSIV

P
PF

 
(14.38) 

In the sinusoidal case, the power factor is also equal to: 

cosPF   (14.39) 

We usually refer to leading PF or lagging PF when referring to loads to resolve 

the ambiguity in taking the “cos”. The terms leading and lagging refer to the 

phase of the current with respect to the voltage. Thus, inductive loads have a 

lagging power factor, capacitive loads have a leading power factor. 

The average power 
P using RMS values 
of voltage and 
current 

Apparent power 
defined 

Power factor defined 
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14.8.9 Complex Power 

Using RMS phasors of    tVv m cos  and    tIi m cos : 
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(14.40) 

we know that the average power is: 

   cosRMSRMSIVP  (14.41) 

We can associate the average power with the real part of a complex power: 

  
 



j

RMS

j

RMS

j

RMSRMS

eIeV

eIVP









Re

Re

 
(14.42) 

Thus, we can define average power as: 

 *Re VIP  (14.43) 

Note the use of *
I  because of the way we defined   . It is an accident 

of history that   was defined this way, as it just as easily could have been 

defined as   . 

We therefore define complex power as: 

VA)(complex *VIS   (14.44) 

 

Complex power 
defined 
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In polar form the complex power is: 

 RMSRMSIV*
VIS  (14.45) 

so we can now see that the apparent power is: 

RMSRMSIV IVS  (14.46) 

Written in rectangular form, the complex power is: 

  jQPjIV RMSRMS   sincosS  (14.47) 

14.8.10 Reactive Power 

From the rectangular form, we can see that the average power is also the “real” 

power. It can also be seen that the “imaginary” power, which we call the 

reactive power, is:  

var)(sinRMSRMSIVQ   (14.48) 

It has the same dimensions as the real power P, the complex power S and the 

apparent power S . In order to avoid confusion, the unit of Q is defined as the 

volt-ampere-reactive, or var for short. 

Reactive power is a measure of the energy flow rate into or out of the reactive 

components of a network. It is positive for inductive loads, and negative for 

capacitive loads. 

The physical interpretation of reactive power causes a lot of confusion. Even 

though it is the imaginary component of complex power, it has a physical and 

real interpretation, and must be generated by a power system. (A voltage 

phasor, such as 43 jV , has an imaginary component of 4 which 

contributes to the amplitude and phase of the real voltage sinusoid – so we 

expect Q to also be physically real). 

Reactive power 
defined 
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To see how Q manifests itself in the real world, we return to the formula for 

instantaneous power. Using   BABABA sinsincoscoscos  , and noting 

that   , we get: 

  
  
    
    







22sinsin22cos1cos

sin22sincos22coscos

22coscos

2coscos









tIVtIV

ttIV

tIV

tIVp

RMSRMSRMSRMS

RMSRMS

RMSRMS

RMSRMS

 
(14.49) 

Then: 

     22sin22cos1  tQtPp  (14.50) 

The instantaneous power associated with the real and reactive power 

components is shown below: 

 

p associated with P

p associated with Q

t
0

P

Q

total p

 

 

Figure 14.18 

Note that the instantaneous power associated with P follows a “cos”, and the 

instantaneous power associated with Q follows a “sin”. Thus, the two 

waveforms are 90° apart and are said to be in “quadrature”. You can see that 

reactive power does not transfer energy – instantaneous power is both 

delivered to, and received from, the network in a cyclic fashion, with an 

average of zero. In contrast, real power does transfer energy – instantaneous 

power is always delivered to the network in a cyclic fashion, but it has a non-

zero average. 
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14.8.11 Summary of Power in AC Circuits 

In summary we have: 

jQP SVIS
*

 (14.51) 

where: 

(VA)powerapparent  IVS  

(W)power realcos  SP  

(var)power reactivesin  SQ  

 = angle by which the current I lags the voltage V 

222
QP S  

(14.52) 

These relationships are illustrated below: 

 

V

I




P

jQ

S

|S|

 

 

Figure 14.19 

The diagram on the right is called a “power triangle”. Note that P and Q, are 

the real and imaginary parts of the complex power S. 

It can be shown that the total complex power jQP S  consumed by a 

network is the sum of the complex powers consumed by all the component 

parts of the network. This conservation property is not true of the apparent 

power S . 

Components of 
complex power 

Real power is also 
known as active 
power and average 
power 
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EXAMPLE 14.4 Conservation of Complex Power 

Consider three loads connected in parallel across a 230 V (RMS) 50 Hz line as 

shown below: 

S S S1 2 3V

I

 

Load 1 absorbs 10 kW and 7.5 kvar. Load 2 absorbs 3.84 kW at 0.96 PF 

leading. Load 3 absorbs 5 kW at unity power factor. Find the overall power 

factor. 

The first load is given in rectangular form: 

kVA 5.7101 jS  

The complex power supplied to the second load must have a real part of 

3.84 kW and an angle (refer to the power triangle) of    26.1696.0cos 1 . 

Hence, 

kVA 12.184.326.16426.16
96.0

84.3

cos
2 j

P
 


S  

The third load is simply: 

kVA 053 jS  

The total complex power is: 

kVA 38.684.180512.184.35.710321 jjjjtotal  SSSS  

Thus, the combined load is operating at a power factor equal to: 

9472.0
89.19

84.18
PF 

S

P
 lagging 
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The magnitude of the line current drawn by the combined load is: 

A 48.86
230

19890


V

S
I  RMS 

Electricity supply authorities do all they can to improve the PF of their loads by 

installing capacitors or special machines called synchronous condensers which 

supply vars to the system. They also impose tariffs which encourage consumers 

to correct their PF. 

If we now seek to raise the PF to 0.98 lagging, without affecting the existing 

real power, the total complex power must become: 

  kVA 826.318.8411.4819.220.98cos
98.0

84.18 1- jnew S  

We would therefore need to add a corrective load of: 

kVA 554.24 jtotalnew  SSS  

Now since: 

*

4

2

*

4

*
*

44
Z

V

Z

VV
VIS   

then: 

  71.20
2554

230 2

*

4

2

4 j
jS

V
Z  

Thus, the corrective load is a capacitor of value: 

μF 7.153
71.20502

11





 CX
C  

The magnitude of the line current drawn by the new combined load reduces to: 

A 57.83
230

19220


V

S
I  
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14.9 Summary 

 A linear circuit can be converted to the frequency-domain where we use the 

concept of phasors and impedances, and in particular the branch phasor 

relationship ZIV  . The circuit is then amenable to normal circuit analysis 

techniques: nodal analysis, mesh analysis, superposition, source 

transformations, Thévenin’s theorem, Norton’s theorem, etc. Time-domain 

responses are obtained by transforming phasor responses back to the time-

domain. 

 A phasor diagram is a sketch in the complex plane of the phasor voltages 

and currents throughout a circuit and is a useful graphical tool to illustrate, 

analyse and design the sinusoidal steady-state response of the circuit. 

 The RMS value of a sinusoid   )cos(   tXtx m  is 2mRMS XX  . 

 There are many power terms in AC circuits: 

- instantaneous power,      titvtp   (W) 

- average power, cosRMSRMSIVP   (W) 

- reactive power, sinRMSRMSIVQ  , (var) 

- complex power, jQP *VIS , (VA) 

- apparent power, IVS  , (VA) 

- power factor, cosPF   

 The average power delivered to the resistive component of a load is 

nonzero. The average power delivered to the reactive component of a load 

is zero. 

 Capacitors are commonly used to improve the PF of industrial loads to 

minimize the reactive power and current required from the electricity 

utility. 

14.10 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

Consider the circuit shown below: 

50 0° V

4

-j4 V2

4

-j4

4

-j4

 

(a) Find 2V . 

(b) To what identical value should each of the   4  resistors be changed so 

that 2V  is 180  out of phase with the source voltage? 

2. 

Consider the circuit shown below: 

1

A(       +30°)cos10 t10
4

v3

400F

1

400 H 21
i3

 

(a) Find  tv3  in the steady-state by using nodal analysis. 

(b) Find  ti3  in the steady-state by using mesh analysis 
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3. 

Consider the circuit shown below: 

20

A(       )cos10 t10
4

2 F

1 mH 3v1

4 mH

v2v1

i2

 

(a) Find  ti2
. 

(b) Change the control voltage from 
13v  to 23v  and again find  ti2 . 

4. 

Consider the circuit shown below: 

2

A(       )cos1 t10
6

vLvR

F
1

4
2   H

2 A

 

(a) Find  tvR . 

(b) Find  tvL . 
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5. 

Find the output impedance of the network shown below: 

Vx

20j12

3 -j0.1Vx

1

2  

6. 

Use superposition to find xI  in the circuit below: 

1 0° A

1

1

-j1

j1

1 0° V

1 0° A

1 0° V

I x

 

7. 

For the circuit below, find the phase angles of xV  and yV  graphically if 

V 90xV  and V 150yV . 

120 0° V

Vx Vy

50 80° V
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8. 

If  V 301000cos20  tvs  in the circuit below, find the power being 

absorbed by each passive element at 0t . 

2.5 k

1 H 10 kvs F1

R1

R2

 

9. 

Determine the average power delivered to each resistor in the network shown 

below if:  (a) 0k  (b) 1k  

20

kI1

I1
j60

10

-j50

1000 0° V

 

10. 

The series combination of a  1000  resistor and a 2 H inductor must not 

absorb more than 100 mW of power at any instant. Assuming a sinusoidal 

current with 
-1rads 400 , what is the largest RMS current that can be 

tolerated? 
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11. 

Consider the following circuit: 

R100 0° V RMS 300j 

100j 

 

(a) What value of R will cause the RMS voltages across the inductors to be 

equal? 

(b) What is the value of that RMS voltage? 

12. 

A composite load consists of three loads connected in parallel. 

One draws 100 W at 0.9 lagging PF, another takes 200 W at 0.8 lagging PF, 

and the third requires 150 W at unity PF. The composite load is supplied by a 

source sV  in series with a  10  resistor. If the loads are all to operate at 110 V 

RMS, determine: 

(a) the RMS current through the source 

(b) the PF of the composite load 
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13. 

A load operating at 2300 V RMS draws 25 A RMS at a power factor of 

0.815 lagging. Find: 

(a) the real power taken by the load 

(b) the reactive power 

(c) the complex power 

(d) the apparent power drawn by the load 

(e) the impedance of the load 

14. 

In the circuit shown below, load A receives VA 4080 jA S , while load B 

absorbs VA 200100 jB S . Find the complex power supplied by each 

source. 

100 0° V RMS 2 0° A RMS

A

B
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Oliver Heaviside (1850-1925) 

The mid-Victorian age was a time when the divide between the rich and the 

poor was immense (and almost insurmountable), a time of unimaginable 

disease and lack of sanitation, a time of steam engines belching forth a steady 

rain of coal dust, a time of horses clattering along cobblestoned streets, a time 

when social services were the fantasy of utopian dreamers. It was into this 

smelly, noisy, unhealthy and class-conscious world that Oliver Heaviside was 

born the son of a poor man on 18 May, 1850. 

A lucky marriage made Charles Wheatstone (of Wheatstone Bridge fame) 

Heaviside’s uncle. This enabled Heaviside to be reasonably well educated, and 

at the age of sixteen he obtained his first (and last) job as a telegraph operator 

with the Danish-Norwegian-English Telegraph Company. It was during this 

job that he developed an interest in the physical operation of the telegraph 

cable. At that time, telegraph cable theory was in a state left by Professor 

William Thomson (later Lord Kelvin) – a diffusion theory modelling the 

passage of electricity through a cable with the same mathematics that describes 

heat flow. 

By the early 1870’s, Heaviside was contributing technical papers to various 

publications – he had taught himself calculus, differential equations, solid 

geometry and partial differential equations. But the greatest impact on 

Heaviside was Maxwell’s treatise on electricity and magnetism – Heaviside 

was swept up by its power. 

In 1874 Heaviside resigned from his job as telegraph operator and went back to 

live with his parents. He was to live off his parents, and other relatives, for the 

rest of his life. He dedicated his life to writing technical papers on telegraphy 

and electrical theory – much of his work forms the basis of modern circuit 

theory and field theory. 

In 1876 he published a paper entitled On the extra current which made it clear 

that Heaviside (a 26-year-old unemployed nobody) was a brilliant talent. He 

had extended the mathematical understanding of telegraphy far beyond 

 

I remember my first 
look at the great 
treatise of 
Maxwell’s…I saw 
that it was great, 
greater and 
greatest, with 
prodigious 
possibilities in its 
power.  – Oliver 
Heaviside 
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Thomson’s submarine cable theory. It showed that inductance was needed to 

permit finite-velocity wave propagation, and would be the key to solving the 

problems of long distance telephony. Unfortunately, although Heaviside’s 

paper was correct, it was also unreadable by all except a few – this was a trait 

of Heaviside that would last all his life, and led to his eventual isolation from 

the “academic world”.  In 1878, he wrote a paper On electromagnets, etc. 

which introduced the expressions for the AC impedances of resistors, 

capacitors and inductors. In 1879, his paper On the theory of faults showed that 

by “faulting” a long telegraph line with an inductance, it would actually  

improve the signalling rate of the line – thus was born the idea of “inductive 

loading”, which allowed transcontinental telegraphy and long-distance 

telephony to be developed in the USA. 

When Maxwell died in 1879 he left his electromagnetic theory as twenty 

equations in twenty variables! It was Heaviside (and independently, Hertz) 

who recast the equations in modern form, using a symmetrical vector calculus 

notation (also championed by Josiah Willard Gibbs (1839-1903)). From these 

equations, he was able to solve an enormous amount of problems involving 

field theory, as well as contributing to the ideas behind field theory, such as 

energy being carried by fields, and not electric charges. 

A major portion of Heaviside’s work was devoted to “operational calculus”.1 

This caused a controversy with the mathematicians of the day because although 

it seemed to solve physical problems, it’s mathematical rigor was not at all 

clear. His knowledge of the physics of problems guided him correctly in many 

instances to the development of suitable mathematical processes. In 1887 

Heaviside introduced the concept of a resistance operator, which in modern 

terms would be called impedance, and Heaviside introduced the symbol Z for 

it. He let p be equal to time-differentiation, and thus the resistance operator for 

an inductor would be written as pL. He would then treat p just like an algebraic 

                                                 

1 The Ukrainian Mikhail Egorovich Vashchenko-Zakharchenko published The Symbolic 

Calculus and its Application to the Integration of Linear Differential Equations in 1862. 

Heaviside independently invented (and applied) his own version of the operational calculus. 

Now all has been 
blended into one 
theory, the main 
equations of which 
can be written on a 
page of a pocket 
notebook. That we 
have got so far is 
due in the first place 
to Maxwell, and next 
to him to Heaviside 
and Hertz.  – H.A. 
Lorentz 

Rigorous 
mathematics is 
narrow, physical 
mathematics bold 
and broad.  – Oliver 
Heaviside 
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quantity, and solve for voltage and current in terms of a power series in p. In 

other words, Heaviside’s operators allowed the reduction of the differential 

equations of a physical system to equivalent algebraic equations. 

Heaviside was fond of using the unit-step as an input to electrical circuits, 

especially since it was a very practical matter to send such pulses down a 

telegraph line. The unit-step was even called the Heaviside step, and given the 

symbol  tH , but Heaviside simply used the notation 1. He was tantalizingly 

close to discovering the impulse by stating “… 1p  means a function of t 

which is wholly concentrated at the moment 0t , of total amount 1. It is an 

impulsive function, so to speak…[it] involves only ordinary ideas of 

differentiation and integration pushed to their limit.” 

Heaviside also played a role in the debate raging at the end of the 19th century 

about the age of the Earth, with obvious implications for Darwin’s theory of 

evolution. In 1862 Thomson wrote his famous paper On the secular cooling of 

the Earth, in which he imagined the Earth to be a uniformly heated ball of 

molten rock, modelled as a semi-infinite mass. Based on experimentally 

derived thermal conductivity of rock, sand and sandstone, he then 

mathematically allowed the globe to cool according to the physical law of 

thermodynamics embedded in Fourier’s famous partial differential equation for 

heat flow. The resulting age of the Earth (100 million years) fell short of that 

needed by Darwin’s theory, and also went against geologic and palaeontologic 

evidence. John Perry (a professor of mechanical engineering) redid Thomson’s 

analysis using discontinuous diffusivity, and arrived at approximate results that 

could (based on the conductivity and specific heat of marble and quartz) put 

the age of the Earth into the billions of years. But Heaviside, using his 

operational calculus, was able to solve the diffusion equation for a finite 

spherical Earth. We now know that such a simple model is based on faulty 

premises – radioactive decay within the Earth maintains the thermal gradient 

without a continual cooling of the planet. But the power of Heaviside’s 

methods to solve remarkably complex problems became readily apparent. 

Throughout his “career”, Heaviside released 3 volumes of work entitled 

Electromagnetic Theory, which was really just a collection of his papers. 

Paul Dirac derived 
the modern notion of 
the impulse, when 
he used it in 1927, 
at age 25, in a paper 
on quantum 
mechanics. He did 
his undergraduate 
work in electrical 
engineering and 
was both familiar 
with all of 
Heaviside’s work 
and a great admirer 
of his. 

The practice of 
eliminating the 
physics by reducing 
a problem to a 
purely mathematical 
exercise should be 
avoided as much as 
possible. The 
physics should be 
carried on right 
through, to give life 
and reality to the 
problem, and to 
obtain the great 
assistance which 
the physics gives to 
the mathematics. – 
Oliver Heaviside, 
Collected Works, 
Vol II, p.4 
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Heaviside shunned all honours, brushing aside his honorary doctorate from the 

University of Göttingen and even refusing to accept the medal associated with 

his election as a Fellow of the Royal Society, in 1891. 

In 1902, Heaviside wrote an article for the Encyclopedia Britannica entitled 

The theory of electric telegraphy. Apart from developing the wave propagation 

theory of telegraphy, he extended his essay to include “wireless” telegraphy, 

and explained how the remarkable success of Marconi transmitting from 

Ireland to Newfoundland might be due to the presence of a permanently 

conducting upper layer in the atmosphere. This supposed layer was referred to 

as the “Heaviside layer”, which was directly detected by Edward Appleton and 

M.A.F. Barnett in the mid-1920s. Today we merely call it the “ionosphere”. 

Heaviside spent much of his life being bitter at those who didn’t recognise his 

genius – he had disdain for those that could not accept his mathematics without 

formal proof, and he felt betrayed and cheated by the scientific community 

who often ignored his results or used them later without recognising his prior 

work. It was with much bitterness that he eventually retired and lived out the 

rest of his life in Torquay on a government pension. He withdrew from public 

and private life, and was taunted by “insolently rude imbeciles”. Objects were 

thrown at his windows and doors and numerous practical tricks were played on 

him. 

Today, the historical obscurity of Heaviside’s work is evident in the fact that 

his vector analysis and vector formulation of Maxwell’s theory have become 

“basic knowledge”. His operational calculus was made obsolete with the 1937 

publication of a book by the German mathematician Gustav Doetsch – it 

showed how, with the Laplace transform, Heaviside’s operators could be 

replaced with a mathematically rigorous and systematic method. 

The last five years of Heaviside’s life, with both hearing and sight failing, were 

years of great privation and mystery. He died on 3rd February, 1925. 

References 

Nahin, P.: Oliver Heaviside: Sage in Solitude, IEEE Press, 1988. 

Heaviside should be 
remembered for his 
vectors, his field 
theory analyses, his 
brilliant discovery of 
the distortionless 
circuit, his 
pioneering applied 
mathematics, and 
for his wit and 
humor. – P.J. Nahin 
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15 Amplifier Characteristics 
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Introduction 

Amplifiers are designed to have certain performance characteristics that meet 

the requirements of a specific application. For example, an amplifier may be 

required to amplify a very small voltage from a source that has a relatively 

large internal resistance, such as an antenna. The amplifier would need to have 

a very large input impedance, and a large gain over a wide band of frequencies. 

An audio amplifier may be required to amplify signals in the audio range with 

minimal distortion and provide a low impedance output to drive a speaker. 

Since each amplifier application is different, we need to study the various 

characteristics of amplifiers that will enable us to intelligently design or choose 

a suitable amplifier. The characteristics we will look at are: voltage gain, 

current gain, power gain, power efficiency, input impedance, output 

impedance, frequency response, linear waveform distortion, pulse response and 

harmonic distortion. 
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15.1 Amplifier Performance 

The model of a voltage amplifier is shown below, together with an attached 

source and load: 

 

vi voA vi

Ro

RLRi

Rs

vs

AmplifierSource Load

vo

ii io

 

 

Figure 15.1 

The input resistance, iR , of the amplifier is the equivalent resistance seen when 

looking into the input terminals. Later we will generalise this concept so that 

the amplifier has an input impedance, iZ . 

The open-circuit voltage gain of the amplifier, voA , is the value of the VCCS in 

the amplifier model (if the load is an open circuit, there is no voltage drop 

across the output resistance, and then ivoo vAv  ). 

The output resistance, oR , of the amplifier models the fact that when the load 

draws a current there is a reduction in the voltage at the output terminals. 

A voltage amplifier 
with source and load 
attached 
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15.1.1 Voltage Gain 

The voltage gain of the loaded amplifier is: 

oL

L
vo

i

o
v

RR

R
A

v

v
A




 
(15.1) 

and the overall gain between the load and source is: 
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o
v

RR

R
A
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R

A
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R

v

v
G

 (15.2) 

15.1.2 Current Gain 

The current gain iA  of a loaded amplifier is the ratio of the output current to 

the input current: 

L

i
v

ii

Lo

i

o
i

R

R
A

Rv

Rv

i

i
A 

 
(15.3) 

15.1.3 Power Gain 

The power delivered to the input terminals by the signal source is called the 

input power iP , and the power delivered to the load by the amplifier is the 

output power oP . The power gain 
PA  of an amplifier is the ratio of the output 

power to the input power: 

iv

ii

oo
P AA

iv

iv
A 

 
(15.4) 
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15.2 Cascaded Amplifiers 

When we cascade amplifiers, we need to take into account “loading” effects. 

Loading refers to the fact that the input impedance of the second amplifier in 

the cascade will appear as a load impedance to the first amplifier, thus 

changing the gain. 

 

=

Amplifier
1

ii1

vi1

io1

vo1

Amplifier
2

ii2

vi2

io2

vo2=

 

 

Figure 15.2 

In the figure above, two voltage amplifiers are cascaded. The overall voltage 

gain is determined be considering the gains of each amplifier, under loaded 

conditions. Since 12 oi vv  , we have for the overall gain: 

21

2

2

1

1

1

2

1

1

1

2
vv

i

o

i

o

o

o

i

o

i

o
v AA

v

v

v

v

v

v

v

v

v

v
A 

 
(15.5) 

In this equation 1vA  and 2vA  represent the voltage gains of the individual 

stages of the cascade, the values of which are calculated using the specific 

loading conditions of the cascade. 

Cascade connection 
of two amplifiers 
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EXAMPLE 15.1 Cascaded Amplifiers 

Consider the cascaded amplifiers below: 

1.5 k

vi2 Ri

Second stage

iiRo

First stage

io

vi1 2Avo1

=200vi1 

500
RLA

Ro

vo

io

vi2

2

2

=100vi2

100

100
vo2vi1 Ri

ii

1

1 M

11 1 2 2

 

The voltage gain of the first amplifier, which is loaded by the input resistance 

of the second amplifier, is: 

150
2000

1500
200

12

2
11 




oi

i
vov

RR

R
AA  

The voltage gain of the second amplifier, which has a load resistance attached, 

is: 

50
200

100
100

2

22 



oL

L
vov

RR

R
AA  

Thus, the overall voltage gain of the cascaded amplifiers is: 

75005015021  vvv AAA  

The current gain of the first amplifier is: 

5
6

2

1

11 10
1500

10
150 

i

i

vi
R

R
AA  

and the current gain of the second amplifier is: 

750
100

1500
502

22 
L

i
vi

R

R
AA  

Thus, the overall current gain of the cascaded amplifiers is: 

75

21 105.775010  iii AAA  
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We can derive an equivalent circuit, or model, of the two cascaded amplifiers, 

by considering the input resistance, output resistance, and overall open-circuit 

voltage gain. Looking in from the left, we have: 

 M 11ii RR  

whilst looking in from the right, we have: 

  1002oo RR  

The overall open-circuit voltage gain of the cascaded amplifiers (i.e. with the 

first amplifier being loaded by the input resistance of the second amplifier, but 

with the second amplifier with no load) is: 

4

21 105.1100150  vovvo AAA  

We then have a simplified model for the cascaded amplifiers of: 

vi Ri

ii

A

Ro

vo

io

vi2

=15 000vi2

100

vo

1 M
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15.3 Power Supplies and Efficiency 

Power is supplied to the internal circuitry of amplifiers from power supplies. 

There are two voltage sources to a bipolar amplifier and the total power 

supplied is the sum of the powers supplied by each voltage source. 

 

vi voA vi

Ro

RLRi

Rs

vs vo

ii io

IA IB
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Figure 15.3 

In the figure above, the total power supplied to the amplifier is: 

BBBAAAs IVIVP   (15.6) 

It is quite typical for amplifiers to take power without a zero volt reference or 

common – op-amps are a prime example. In these cases the designer of the 

internal amplifier circuit has arranged for the output to be exactly half way 

between the voltage supplies under zero input conditions. If the bipolar 

supplies are symmetric (i.e. they are equal in magnitude), then the output will 

be 0 V for no input, with respect to the power supply common. Note that for an 

op-amp, which doesn’t have a GND pin, the single-ended voltage output is 

normally taken with respect to the power supply common, and symmetric 

supplies are assumed. 

The power supply 
delivers power to 
the amplifier from 
several DC voltage 
sources 
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Since amplifiers typically provide power gain, this power must be taken from 

the power supplies for conservation of energy to hold. 
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Figure 15.4 

The principle of Conservation of Energy requires that: 




















absorbed

power

supplied

power

dosi PPPP

 

(15.7) 

15.3.1 Efficiency 

The efficiency  of an amplifier is the proportion of power supplied that is 

converted into output power: 

%100
s

o

P

P


 
(15.8) 

Note that iP  is often insignificant compared to the power supply power, so it 

does not appear in the above equation. 

Illustration of power 
flow 
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15.4 Amplifier Models 

As far as the external terminal characteristics are concerned, the type of circuit 

model used to represent the amplifier is irrelevant. We used this idea to convert 

from a practical voltage source to a practical current source via a source 

transformation. For an amplifier, which is modelled with dependent sources, 

there are four types of equivalent model – each with a different dependent 

source. Some models are more suited to particular amplifiers or analysis 

techniques, so it is important to be aware of the different models and be able to 

convert between them. 

15.4.1 Voltage Amplifier 

We have already seen the model for a voltage amplifier – it is a practical model 

for devices such as the op-amp (since the op-amp is designed to amplify 

voltage) as well as for circuits built from op-amps that are designed to amplify 

voltage, such as the inverting and noninverting op-amp configurations. 
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Figure 15.5 

Note that the output side of the amplifier has a series connection – it is like the 

Thévenin equivalent of a linear circuit, except it uses a dependent source to 

model the amplifier behaviour. If we do KVL at the output we get: 

ooivoo iRvAv   (15.9) 
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15.4.2 Current Amplifier 

An alternative but equivalent model of the voltage amplifier is the current 

amplifier, shown below: 
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Figure 15.6 

Note that the output side of the amplifier has a parallel connection – it is like 

the Norton equivalent of a linear circuit, except it uses a dependent source to 

model the amplifier behaviour. If we do KCL at the output we get: 

ooiiso RviAi   (15.10) 

Rearranging in terms of the output voltage, and noting that iii Rvi  , we 

have: 

  ooiioiso iRvRRAv   (15.11) 

Comparison with the voltage amplifier’s output equation, Eq. (15.9), reveals 

that we can convert from one to the other using: 

i

o
isvo

R

R
AA 

 
(15.12) 

The values of the input and output resistors are the same in each model. 

Current amplifier 
model 
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15.4.3 Transconductance Amplifier 

Another model for an amplifier is the transconductance amplifier: 
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Figure 15.7 

Here the controlled source is a voltage-controlled current source. If we do KCL 

at the output we get: 

ooimo RvvGi   (15.13) 

Rearranging in terms of the output voltage, we have: 

ooiomo iRvRGv   (15.14) 

Comparison with the voltage amplifier’s output equation reveals that we can 

convert from one to the other using: 

omvo RGA   (15.15) 

The values of the input and output resistors are the same in each model. 

Transconductance models are often used in the analysis of amplifier circuits 

that use a transistor known as a metal-oxide semiconductor field-effect 

transistor (MOSFET). This type of transistor is controlled by an electric field 

(hence a voltage) and can behave like a voltage-controlled current source. 

Transconductance 
amplifier model 
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15.4.4 Transresistance Amplifier 

The fourth type of model for an amplifier is the transresistance amplifier: 
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Figure 15.8 

Here the controlled source is a current-controlled voltage source. If we do KVL 

at the output we get: 

ooimo iRiRv   (15.16) 

Noting that iii Rvi  , we have: 

  ooiimo iRvRRv   (15.17) 

Comparison with the voltage amplifier’s output equation reveals that we can 

convert from one to the other using: 

i

m
vo

R

R
A 

 
(15.18) 

The values of the input and output resistors are the same in each model. 

Transresistance amplifiers are often used to convert a current into a voltage, 

such as when amplifying the output of photo multiplier tubes, accelerometers, 

photo detectors and other types of sensors. 

Transresistance 
amplifier model 
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15.5 Amplifier Impedances 

Amplifiers are designed for specific applications which place demands on their 

characteristics. For example, suppose we wish to build a voltage amplifier for a 

very weak signal source, such as the output of an electret microphone or a TV 

antenna: 
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Figure 15.9 

In the figure above, the source has been modelled using a Thévenin equivalent 

circuit. Since the application calls for the source voltage to be amplified, we 

want to minimise the voltage drop occurring in the source due to the current 

drawn by the input of the amplifier. The voltage amplifier therefore needs to 

present a very high impedance to the source. 

Since the overall gain between the load and source is: 
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(15.19) 

we can see that the ideal case would be for the amplifier input impedance to be 

infinite, and for the output impedance to be zero – we would then achieve the 

maximum gain vov AG  . 

Conversely, applications that call for the internal current produced by the 

source to be amplified need to present a low impedance to the source, and as 

large an impedance as possible to the load. 
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EXAMPLE 15.2 Transresistance Amplifier 

Consider a current source connected to a transresistance amplifier. A model of 

such a situation is shown below: 

vi vo
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ii io

R iimRs

 

The expression for the overall gain is: 
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To maximise the gain: 

 the input resistance of the amplifier, iR , should be as small as possible 

(ideally zero). 

 the output resistance of the amplifier, oR , should be as small as possible 

(ideally zero). 
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A practical transresistance amplifier that achieves these goals is shown below. 

vo

D1

R f

transresistance
amplifier

IP

photodiode

 

In this example the source is a photodiode (which acts like a current source), 

and the requirement of the amplifier is to convert the low-level current to a 

voltage. Photodiodes are often used for accurate measurement of light intensity 

in science and industry. They are also widely used in various medical 

applications, such as detectors for computed tomography, instruments to 

analyze medical samples (immunoassay), and pulse oximeters. The photodiode 

is designed to operate in reverse bias, where the current is almost linearly 

proportional to the light intensity. 

Assuming an ideal op-amp, the output voltage is given by: 

Pfo IRv   

Due to the virtual short-circuit across the op-amp input terminals, the input 

resistance of the amplifier is effectively zero. Since the output is taken from the 

op-amp output, the output resistance of the amplifier is effectively zero. 

Thus, the circuit satisfies the criteria to make a good transresistance amplifier. 

It is also known as a current-to-voltage converter. 
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15.6 Frequency Response 

If we apply a variable-frequency sinusoidal input signal to an amplifier, we 

will find that gain is a function of frequency. Moreover, the amplifier affects 

the phase as well as the amplitude of the sinusoid. For a voltage amplifier, we 

define the (complex) gain to be the ratio of the output voltage phasor to the 

input voltage phasor: 

i

o
v

V

V
A 

 
(15.20) 

EXAMPLE 15.3 Complex Gain 

The input voltage to a certain amplifier is: 

    302000cos1.0 ttvi   

and the output voltage is: 

    152000cos10 ttvo   

To find the gain as a complex number, we convert the voltages into their 

respective phasors: 

 1510and301.0 oi VV  

The complex gain is then: 





 45100

301.0

1510

i

o
v

V

V
A  

The meaning of this complex voltage gain is that the output signal is 100 times 

larger in amplitude than the input signal. Furthermore, the output signal is 

phase shifted by 45 relative to the input signal. 

Frequency response 
of an amplifier is the 
output phasor over 
the input phasor 
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15.6.1 AC Coupling and Direct Coupling 

Some amplifier stages are “coupled” together using capacitors which block 

DC. Thus, only AC signals are amplified. Such amplifiers are known as AC 

coupled amplifiers. Examples include audio amplifiers and electro-

cardiographs. 

 

Input
coupling
capacitor

Interstage
coupling
capacitor

vi vo RL

Second
amplifier

stage

Output
coupling
capacitor

First
amplifier

stageSignal source
may include a
DC component

 

 

Figure 14.1 

The capacitors used to couple the stages together are known as coupling 

capacitors or DC blocking capacitors. These coupling capacitors may be 

external to the amplifier or may be internal to the amplifier. The most common 

reason why amplifiers are AC coupled is so that the internal DC biasing 

arrangements of the transistors in the amplifier are undisturbed by any DC 

component of the input signal, and because the output AC signal is usually 

superimposed upon an unwanted DC bias signal. 

Amplifiers that provide gain all the way down to DC are known as DC coupled 

or direct coupled amplifiers. Examples are op-amps and other integrated circuit 

amplifiers where the coupling capacitors cannot be fabricated in integrated 

form. 

An AC coupled 
amplifier 
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If we plot the magnitude of the gain of a typical amplifier versus frequency, a 

plot such as the one shown below results: 
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Figure 14.2 

The gain magnitude is constant over a wide range of frequencies known as the 

midband region. At high frequencies the gain of an amplifier inevitably falls 

off due to the intrinsic capacitances of the internal transistors, which appear 

more and more like short-circuits. For AC coupled amplifiers the gain drops 

off at low frequencies and is eventually zero at DC due to the coupling 

capacitors. 

Gain magnitude 
versus frequency for 
AC and DC coupled 
amplifiers 
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15.6.2  Half-Power Frequencies and Bandwidth 

We usually specify the approximate useful frequency range of an amplifier by 

giving the frequencies for which the voltage (or current) gain magnitude is 

21  times the midband gain magnitude. These are known as the half-power 

frequencies because the output power level is half the value of the midband 

region. In decibels, the half-power frequencies occur when the gain drops by 

  dB 01.321log20 10   compared to the midband gain. 

The bandwidth B of an amplifier is the difference between the upper and lower 

half-power frequencies. 
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Figure 14.3 

In the figure above Lf  and Hf  are the lower and upper half-power frequencies, 

respectively. The half-power bandwidth of the amplifier is then given by: 

LH ffB   (15.21) 

 

 

 

 

Bandwidth of an 
amplifier defined 
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15.7 Linear Waveform Distortion 

Linear waveform distortion will arise in an amplifier if the magnitude response 

is not perfectly flat (amplitude distortion) or if the phase response is not 

proportional to frequency (phase distortion). It is termed linear waveform 

distortion because the amplifier is still being a linear device (i.e. obeys the 

principle of superposition). 

15.7.1 Amplitude Distortion 

If the gain of an amplifier has a different magnitude for the various frequency 

components of the input signal, then amplitude distortion occurs. Audio 

systems tend to suffer from amplitude distortion due to the frequency response 

of the speakers (not the audio amplifier). 

15.7.2 Phase Distortion 

If the phase shift of an amplifier is not proportional to frequency, phase 

distortion occurs, and the output waveform shape is different to the input. On 

the other hand, if the phase shift of the amplifier is proportional to frequency, 

the output waveform is a time-shifted version of the input – in this case we do 

not say that distortion has occurred because the shape of the waveform is 

unchanged. 
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EXAMPLE 15.4 Amplitude Distortion 

The input voltage to a certain amplifier consists of two frequency components 

and is given by: 

     tttvi  6000cos22000cos3   

The magnitude response of the amplifier is shown below, and the phase 

response is zero (an ideal case that never occurs in practice): 

0
0 f

Av

10

1 kHz 3 kHz

2.5

 

The first term of the input signal (a 1 kHz sinusoid) experiences a gain of 10, 

whilst the second term of the input signal (a 3 kHz sinusoid) experiences a gain 

of 2.5. The output signal is then: 

     tttvo  6000cos52000cos30   

Plots of the input and output waveform are shown below: 

(a) Input waveform (b) Output waveform  

Notice that the output waveform has a different shape than the input waveform 

because of amplitude distortion. 
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EXAMPLE 15.5 Phase Distortion 

Suppose that the input signal given by: 

     tttvi  6000cos2000cos3   

is applied to the inputs of three amplifiers having the phase responses shown 

below: 

0°
0

f
1 kHz 3 kHz

0°
0

f

-45°

1 kHz 3 kHz

-135°

0°
0

f

-45°

1 kHz 3 kHz

Av

Av

Av

(a)

(b)

(c)

 

The amplifiers can be categorised as: 

(a) No phase shift 

(b) Linear phase versus frequency 

(c) Constant phase shift 

The magnitude response of all three amplifiers is assumed to be 10 for all 

frequencies. 
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Applying the gain and phase shifts of the individual amplifiers, we find the 

output signals for the amplifiers to be: 
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Plots of the output waveforms are shown below: 

(a) No phase shift

(b) Linear phase versus frequency

(c) Constant phase shift  

Amplifier (a) produces an output waveform identical to the input (just 

amplified), and amplifier (b) produces an output waveform identical to the 

input, except for a time delay. Amplifier (c) produces a distorted output 

waveform. 
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15.7.3 Distortionless Amplification 

To avoid linear waveform distortion, an amplifier should have constant gain 

magnitude and a phase response that is linear versus frequency for the range of 

frequencies expected from the input signal. Departure from these requirements 

outside the frequency range of the input signal does not result in distortion. 

These requirement for distortionless amplification are shown below: 

 

0
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of input signal

 

 

Figure 14.4 

The criteria for distortionless amplification can be generalised to any system 

that possesses a frequency response. For example, a twisted pair (as commonly 

found in Cat 5 or  Cat 6 Ethernet cabling) can be modelled as a passive lowpass 

RC circuit.  With a time constant around ns 1 RCT , the  twisted pair is 

distortionless for frequencies from DC up to around 100 MHz. In this 

frequency range waveforms will appear at the output undistorted but delayed 

by about ns 1 . At higher frequencies, we get distortion – this fundamentally 

limits the rate of “signalling” in digital transmission systems. 

Requirements on an 
amplifier’s frequency 
response for 
distortionless 
amplification 
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15.8 Step Response 

Often we need to specify the performance of an amplifier in the time domain. 

In such cases it is usual to look at the step response of an amplifier. A typical 

step response is shown below, from which we can define certain quantities: 
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Figure 14.5 

The step response displays overshoot and ringing, and the leading edge is 

gradual rather than abrupt due to slew rate limiting. The error band is defined 

as a given percentage of the final value, and the settling time is the time it takes 

for the output to fall within the error band. 

If the amplifier is AC coupled, a final value will never be reached and the 

output response will gradually decay to zero. 

Time-domain 
specifications of an 
amplifier’s step 
response 
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15.9 Harmonic Distortion 

Real amplifiers have transfer characteristics that depart from straight lines, 

particularly at large amplitudes. This is shown in the figure below: 
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vo
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Actual
amplifier

 

 

Figure 14.6 

Curvature of the transfer characteristic results in an undesirable effect known 

as nonlinear distortion. 

The input-output relationship of a nonlinear amplifier can be written as: 

4

4

3

3

2

21 iiiio vAvAvAvAv   (15.22) 

where 1A , 2A , 3A , 4A , and so on, are constants selected so that the equation 

matches the curvature of the nonlinear transfer characteristic. Usually, the even 

powered terms in the expression are negligible since most transfer 

characteristics possess odd symmetry. 

Consider the case where the input signal is a sinusoid given by: 

   tVtv omi cos  (15.23) 

Transfer 
characteristic of a 
real amplifier 
showing deviation 
from the ideal 



15.28 

Index Harmonic Distortion PMcL   

15 - Amplifier Characteristics  2017 

Substituting into Eq. (15.22), applying trigonometric identities for   nt0cos , 

collecting terms, and defining 0V  to be equal to the sum of all the constant 

terms, 
1V  to be the sum of the coefficients of the terms with frequency 0 , and 

so on, we find that: 

         tVtVtVVtv oooo  3cos2coscos 3210  (15.24) 

The desired output is the  tV 01 cos   term, which we call the fundamental 

component. The 0V  term represents a shift in the DC level (which does not 

appear at the load if it is AC coupled). In addition, terms at multiples of the 

input frequency have resulted from the second and higher power terms of the 

transfer characteristic. These terms are called harmonic distortion.  The 02  

term is called the second harmonic, the 03  term is called the third harmonic, 

and so on. 

Harmonic distortion is objectionable in an audio amplifier because  it degrades 

the aesthetic qualities of the sound produced by the loudspeakers. 

The nth-harmonic distortion factor nD  is defined as the ratio of the amplitude 

of the nth harmonic to the amplitude of the fundamental: 

1V

V
D n

n   
(15.25) 

The total harmonic distortion (THD), denoted by D, is the ratio of the RMS 

value of the sum of all the harmonic distortion terms to the RMS value of the 

fundamental: 

 2
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2

4

2

3

2

2 DDDDD  
(15.26) 

We will often find THD expressed as a percentage. A well-designed audio 

amplifier might have a THD specification of 0.01% at rated power output. 

Total harmonic 
distortion defined 
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15.10 Summary 

 Amplifier performance measures the voltage gain, current gain and power 

gain under certain source and load conditions. 

 In a cascade connection, the output of each amplifier is connected to the 

input of the next amplifier. Each amplifier presents a load to the preceding 

stage which must be taken into account when calculating gain. 

 Amplifiers are active devices that require power. The efficiency of an 

amplifier is the percentage of the supply power that is converted into output 

signal power. 

 Several models are useful in characterising amplifiers. They are the voltage 

amplifier model, the current amplifier model, the transconductance 

amplifier model and the transresistance amplifier model. The different 

models are suited to particular amplifiers or configurations. 

 The requirements for the input impedance of an amplifier are: 

- To sense the open-circuit voltage of a source, an amplifier needs as 

large a iZ  as possible (ideally ∞). 

- To sense the short-circuit current of a source, an amplifier needs as 

small a iZ  as possible (ideally 0). 

 The requirements for the output impedance of an amplifier are: 

- If the load requires constant voltage, an amplifier needs as small a 

oZ  as possible (ideally 0). 

- If the load requires constant current, an amplifier needs as large a 

oZ  as possible (ideally ∞). 

 The gain of an amplifier is a function of frequency, i.e. the magnitude of 

the gain and amount of phase shift applied to a single input sinusoid 

depends on the frequency. Amplifiers can be AC or DC coupled. The 

bandwidth of an amplifier is a measure of the frequency range for which 

the gain is greater than half the power of the midband gain. 
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 Linear distortion can be either amplitude or phase distortion. Amplitude 

distortion occurs if the gain magnitude is different for various components 

of the input signal. Phase distortion occurs is the amplifier phase shift is not 

proportional to frequency. Distortionless amplification requires the 

amplifier to have constant gain magnitude and a phase response that is 

linear versus frequency for the range of frequencies expected from the 

input signal. 

 Amplifier step response is characterised by slew time, overshoot, ringing 

and settling time. 

 Nonlinear distortion arises in an amplifier when its transfer characteristic 

deviates from a straight line. Assuming a sinusoidal input signal, nonlinear 

distortion causes harmonics to appear in the output. The total harmonic 

distortion (THD) rating of an amplifier indicates the degree of nonlinear 

distortion. 

15.11 References 

Hambley, A.R..: Electrical Engineering – Principles and Applications, 5th Ed., 

Pearson, 2011. 
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16 Frequency Response 
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Introduction 

The frequency response of a circuit, by definition, is the sinusoidal steady-state 

response of the circuit, as a function of frequency. The frequency response is 

therefore a description of a circuit’s behaviour in the frequency-domain – we 

will use the concepts of voltage and current phasors, and impedance, to 

facilitate this view. 

It turns out that the frequency response of a circuit gives us enough information 

to completely characterise1 a circuit. Thus, if we know the frequency response 

of a circuit, then we can determine the circuit’s response to any input, not just 

individual sinusoids. 

The frequency-domain view of a circuit turns out to be not only a very 

powerful mathematical tool, but also a concept that aids engineers to design 

real systems with real benefits – the fields of telecommunications and 

automated control rely heavily on ‘thinking’ and designing in the frequency-

domain. 

For example, in telecommunications the frequency-domain view leads us to the 

concept of information being carried by sinusoids – the circuits that generate 

and receive telecommunication signals can then be said to carry out 

‘information processing’ on these signals. This leads us to the notion of a filter 

– something which retains or rejects a signal based on its frequency. A familiar 

everyday example of a filter is the circuit that controls the treble and bass in an 

audio system. The use of circuits to filter signals is one that is fundamental to 

electrical engineering. 

                                                 

1 A formal link between the frequency response of a circuit and it’s time-domain description 

will be given in later subjects, where the ideas and mathematics related to the Fourier and 

Laplace transforms are elucidated. 
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16.1 Frequency Response Function 

If a linear time-invariant (LTI) circuit has a sinusoidal input    tAtx 0cos  , 

then the steady-state response is also a sinusoid of the same frequency, but with 

different amplitude and phase, and is given by      tBty 0cos . Using 

phasors, the sinusoidal input can be represented by 
00 AX  and the output 

response by  BY : 

 

LTI

circuit
input

= A 0X = B Y

output

 

 

Figure 16.1 

We now introduce the frequency response function, denoted by  jT , which 

is defined to be the ratio of the output phasor to the input phasor of the circuit: 

 
X

Y
T j

 
(16.1) 

Note that  jT  is, in general, a complex function of the complex variable 

j . Thus, like all complex numbers,  jT  has both a magnitude and an 

angle – both of which are functions of j . 

We call  jT  the magnitude response of the circuit, and we call  jT  the 

phase response of the circuit. Thus, the system is completely specified if we 

know both the magnitude response and the phase response. 

The definition above is precisely how we determine the frequency response 

experimentally – we input a sinusoid and, in the steady-state, measure the 

magnitude and phase change at the output. 
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16.2 Frequency Response Representation 

The complex function  jT  can be written using a complex exponential in 

terms of magnitude and phase: 

      jejj TT   (16.2) 

which is normally written in polar coordinates: 

       jj TT  (16.3) 

We plot the magnitude and phase of  jT  as a function of   or f . We use 

both linear and logarithmic scales. The phase function is usually plotted in 

degrees. 

If the logarithm (base 10) of the magnitude is multiplied by 20, then we have 

the gain of the frequency response in decibels (dB): 

    dB log20 10  jA T  (16.4) 

A negative gain in decibels is referred to as attenuation. For example, -3 dB 

gain is the same as 3 dB attenuation. 

The frequency 
response in terms of 
magnitude and 
phase 

The magnitude of 
the frequency 
response in dB 
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16.3 Determining the Frequency Response from Circuit Analysis 

We can get the frequency response of a circuit by undertaking frequency-

domain analysis using phasors. In this case, the input sinusoid has a general 

frequency   and we are interested in how the output varies as a function of the 

frequency. 

Let us analyse the following simple circuit: 

 

(a)

C

R

cos(     )Vm t

v  t(  )i =

R

Vi

(b)

Vo
j   C

1
vo

 

 

Figure 16.2 

The circuit shown in (a) is the real physical circuit, whilst that shown in (b) is 

its frequency-domain representation. The forcing function is regarded as the 

input to the circuit, and the voltage across the capacitor is regarded as the 

output response. We can find the forced response of this circuit using the 

voltage divider rule: 
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io
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V

VV
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1
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(16.5) 

The frequency response is then the ratio: 
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(16.6) 
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EXAMPLE 16.1 Frequency Response of an RC Circuit 

For the RC circuit, let RC10   so that the frequency response can be written 

as: 

 
01

1




j
j


T  

The magnitude function is found directly as: 

 
 201

1





jT  

The phase is: 

  



 











tan 1

0

 

These are graphed below, using a normalised log scale for  : 
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16.4 Magnitude Responses 

A magnitude response is the magnitude of the frequency response, plotted 

against the frequency of the input. Magnitude responses can be classified 

according to their particular properties. To look at these properties, we will use 

linear magnitude versus linear frequency plots. For the simple first-order RC 

circuit that you are so familiar with, the magnitude function has three 

frequencies of special interest corresponding to these values of  jT : 
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(16.7) 

The frequency  0  is known as the half-power frequency. The plot below 

shows the complete magnitude response,  jT , as a function of  , and the 

circuit that produces it: 

 

vi

R

voC



|T|

1

21

0
0 0 02  

 

Figure 16.3 

The magnitude 
response is the 
magnitude of the 
transfer function in 
the sinusoidal 
steady state 

A simple lowpass 
filter 
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An idealisation of the response in Figure 16.3, known as a brick wall, and the 

circuit that produces it are shown below: 

 

vi vo



|T|

1

0
0 0

ideal

filter

Cutoff

Pass Stop

 

 

Figure 16.4 

For the ideal filter, the output voltage remains fixed in amplitude until a critical 

frequency is reached, called the cutoff frequency,  0 . At that frequency, and 

for all higher frequencies, the output is zero. The range of frequencies with 

output is called the passband; the range with no output is called the stopband. 

The obvious classification of the filter is a lowpass filter. 

Even though the response shown in the plot of Figure 16.3 differs from the 

ideal, it is still known as a lowpass filter, and, by convention, the half-power 

frequency is taken as the cutoff frequency. 

An ideal lowpass 
filter 

Pass and stop 
bands defined 
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If the positions of the resistor and capacitor in the circuit of Figure 16.2 are 

interchanged, then the resulting circuit is: 

 

(a)

C

R
cos(     )Vm t

v  t(  )i = RVi

(b)

Vo

j   C

1

vo

 

 

Figure 16.5 

Show that the frequency response is: 

 





jRC

j
j




1
T

 
(16.8) 

Letting RC10   again, we can write it in the standard form: 

 
0

0

1 




j

j
j


T

 
(16.9) 

The magnitude function of this equation, at the three frequencies of special 

interest, is: 
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(16.10) 
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The plot below shows the complete magnitude response,  jT , as a function 

of  , and the circuit that produces it: 
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Figure 16.6 

This filter is classified as a highpass filter. The ideal brick wall highpass filter 

is shown below: 

 

vi vo



|T|

1

0
0 0

ideal

filter

Cutoff

PassStop

 

 

Figure 16.7 

The cutoff frequency is  0 , as it was for the lowpass filter. 

A simple highpass 
filter 

An ideal highpass 
filter 
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16.5 Phase Responses 

Like magnitude responses, phase responses are only meaningful when we look 

at sinusoidal steady-state signals. From Eq. (16.1), a frequency response can be 

expressed in polar form as: 

  


 



 T

V

V

V

V
T

0i

o

i

oj
 

(16.11) 

where the input is taken as reference (zero phase). 

We use the sign of the phase angle to classify circuits. Those giving positive   

are known as lead circuits, those giving negative   as lag circuits. 

EXAMPLE 16.2 Lagging Phase Response 

For the simple RC circuit of Figure 16.3, we have already seen that: 

 0

1tan    

Since   is negative for all  , the circuit is a lag circuit. When   0 , 

      tan 1 1 45 . A complete plot of the phase response is shown below: 





0 0 02
0 º

-45 º

-90 º

 

Phase response is 
obtained in the 
sinusoidal steady-
state 

Lead and lag circuits 
defined 
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EXAMPLE 16.3 Leading Phase Response 

For the simple RC circuit of , we can show that the phase is given by: 

 0

1tan90    

The phase response is shown below: 



0 0 02
0 º

45 º

90 º

 

The angle   is positive for all  , and so the circuit is a lead circuit. 
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16.6  Determining the Frequency Response Experimentally 

Experimentally, we can apply a sinusoid of a certain frequency to a circuit, and 

measure the steady-state output. The output will be a sinusoid of the same 

frequency, but with a different amplitude and phase. If we graph the magnitude 

change versus frequency and the phase change versus frequency, we have an 

experimentally derived frequency response. For example, the frequency 

response for an op-amp circuit derived experimentally is shown below: 
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Figure 16.8 
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16.7 Bode Plots 

Bode* plots are plots of the magnitude function     jA Tlog20  and the 

phase function   , where the scale of the frequency variable (usually  ) is 

logarithmic. The use of logarithmic scales has several desirable properties: 

 we can approximate a frequency response with straight lines. This is called 

an approximate Bode plot. 

 the shape of a Bode plot is preserved if we decide to scale the frequency – 

this makes design easy. 

 we add and subtract individual factors in a frequency response, rather than 

multiplying and dividing. 

 the slope of all asymptotic lines is dB/decade 20n  in a magnitude plot, 

and /decade45n  in a phase plot, where n is any integer. 

 by examining a few features of a Bode plot, we can readily determine the 

frequency response function (for simple systems). 

We normally don’t deal with equations when drawing Bode plots – we rely on 

our knowledge of the asymptotic approximations for the handful of factors that 

go to make up a frequency response. 

                                                 

* Dr. Hendrik Bode grew up in Urbana, Illinois, USA, where his name is pronounced boh-dee. 

Purists insist on the original Dutch boh-dah. No one uses bohd. 

The advantages of 
using Bode plots 
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EXAMPLE 16.4 Bode Plot of an RC Circuit’s Frequency Response 

For the simple lowpass RC circuit, let RC10   so that the frequency 

response can be written as: 

 
01

1




j
j


T  

The magnitude function is found directly as: 
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1log10
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The phase is: 

  



 











tan 1

0

 

The Bode plots are graphed below, using a normalised log scale for  : 
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16.7.1  Bode Plot Factors 

The primary advantage of a logarithmic scale for Bode magnitude plots is the 

conversion of multiplicative factors into additive factors by virtue of the 

definition of the logarithm. The phase plots are additive by definition of the 

multiplication of complex numbers. For example, if we have a frequency 

response function of the form: 

 
43

21

TT

TT
T j

 
(16.12) 

then clearly: 
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410310
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log20log20
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(16.13) 

and: 

 

4321

4321







 TTTT

 
(16.14) 

 

Bode plot factors 
are additive if the 
magnitude scale is 
logarithmic 
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There are four different kinds of factors that may occur in a frequency response 

function: 

Name Factor 

Constant gain K 

Pole (or zero) at the origin j  

Pole (or zero) on the real axis 
01 j  

Complex conjugate poles (or zeros)    200011  jjQ   

We can determine the logarithmic magnitude plot and phase plot for these four 

factors and then utilize them to obtain a Bode plot for any general form of a 

frequency response function. Typically, the curves for each factor are obtained 

and then added together graphically to obtain the curve for the complete 

frequency response function. 

The four factors that 
can occur in a 
frequency response 
function 
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16.7.2 Approximating Bode Plots 

The hand drawing of the individual Bode plot frequency response factors can 

be simplified by using linear approximations to the exact curves. 

Approximate Magnitude Response 

Consider a frequency response factor  011 j . The exact magnitude 

response is given by: 

    2

010 1log10  A  (16.15) 

For very small frequencies, such that 0  , we can say: 

    dB 01log10 10 A  (16.16) 

For very large frequencies, such that 0  , we can say: 

   dB log20 010  A  (16.17) 

Thus, on a set of axes where the horizontal axis is 10log , the “asymptotic” 

curves for the magnitude response are straight lines as shown below: 

 

 

 

Figure 16.9 

Approximate 
responses can be 
easily drawn for the 
individual frequency 
response factors 

Exact and 
approximate 
magnitude response 
for a “real pole” 
factor 
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The low and high frequency asymptotes meet at the frequency 0 , which is 

often called the break frequency or corner frequency. The slope of the high 

frequency asymptote can be ascertained from Eq. (16.17). 

An interval of two frequencies with a ratio equal to ten, such as from 
1  to 

12 10  , is called a decade. The difference between the logarithmic gains 

for 0  , over a decade of frequency is approximated by: 

     

  

 

 

dB 20
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(16.18) 

That is, the slope of the high frequency asymptotic line for this frequency 

response factor is -20 dB/decade. 

A frequency interval from 1  to 12 2   is often used and is called an 

octave. The difference between the logarithmic gains for 0  , over an 

octave is approximated by: 

     

 

dB 021.6

2log20

log20

10

121012





  AA

 
(16.19) 

Therefore, the slope of the high frequency asymptote can be specified as either 

-6 dB/octave or -20 dB/decade. 

Note that the actual gain at the break frequency 0   is -3 dB, so 0  is also 

sometimes referred to as “the -3 dB frequency”. 

Break frequency 
and corner 
frequency defined 

The slope of all 
asymptotic lines on 
a magnitude plot is 
a multiple of 
±20 dB/decade… 

…or ±6 dB/octave 
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Approximate Phase Response 

Consider a frequency response factor  011 j . The exact phase response 

is given by: 

  



 











tan 1

0
 

(16.20) 

Instead of graphing this nonlinear function, we often resort to a piece-wise 

linear approximation, as shown below: 

 

 

 

Figure 16.10 

The piece-wise linear approximation passes through the correct phase of -45° 

at the break frequency, and is within 6° of the actual phase curve for all 

frequencies. As can be seen from the graph, the slope of the line passing 

through the -45° point is -45°/decade. This line only continues a decade above 

and a decade below the break frequency. For 0   the approximating line 

is flat at 0°, whilst for 0   the approximating line is flat at -90°. 

Exact and 
approximate phase 
response for a “real 
pole” factor 

The slope of all 
asymptotic lines on 
a phase plot is a 
multiple of 
±45°/decade 
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16.8 Approximate Bode Plot Frequency Response Factors 

The table below gives the four frequency response factors and their 

corresponding magnitude asymptotic plots and phase linear approximations: 
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The corresponding numerator factors are obtained by “mirroring” the above 

plots about the 0 dB line and 0° line. 
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16.9 Summary 

 The frequency response  jT  is a complex function and can be written 

using a complex exponential in terms of magnitude and phase: 

      jejj TT   

 The magnitude response is a graph of  jT  versus frequency. 

 The phase response is a graph of   j  versus frequency. 

 A Bode plot is a graph of the magnitude response,     jA T10log20 , 

in dB, and the phase response,   j , on a logarithmic frequency scale. 

The advantage of such a representation is that when circuits are cascaded 

their Bode plots are simply added. 

 Approximate Bode plot factors can be used to analyse and design simple 

circuits. 

16.10 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB®, Prentice-Hall, 1997. 
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Exercises 

1. 

With respect to a reference frequency Hz 200 f , find the frequency which is 

(a) 2 decades above 0f  and (b) 3 octaves below 0f . 

2. 

Express the following magnitude ratios in dB: (a) 1, (b) 40, (c) 0.5 
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17 First-Order Op-Amp Filters 
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Introduction 

Filters are essential to electrical engineering. They are used in all modern 

electronic systems. In communications, filters are essential for the generation 

and detection of analog and digital signals, whether via cable, optic fibre, air or 

satellite. In instrumentation, filters are essential in “cleaning up” noisy signals, 

or to recover some “special” part of a complicated signal. In control, feedback 

through a filter is used to achieve a desired response. In power, filters are used 

to inject high frequency signals on the power line for control purposes, or for 

removing harmonic components of a current. In machines, filters are used to 

suppress the generation of harmonics, or for controlling switching transients. 

The design of filters is therefore a useful skill to possess. 

Filters can be of two types: analog and digital. In this subject, we will 

concentrate on analog filters. There are two reasons for this: analog filters are 

necessary components in “digital” systems, and analog filter theory serves as a 

precursor to digital filter design. The analog filters we will be looking at will 

also be of two types: passive and active. Active filters represent the most 

common, and use electronic components (such as op-amps) for their 

implementation. This is opposed to passive filters, which use the ordinary 

circuit elements: resistors, capacitors, inductors. 

Filter has the commonly accepted meaning of something retained, something 

rejected. For us, a filter is very simple: it is an electric circuit designed to 

implement a specific frequency response. Given a filter, obtaining the 

frequency response is just a matter of applying circuit theory. This is analysis. 

The choice of a frequency response and the choice of an implementation for a 

filter, however, are never unique. This is called design. 

Filters are essential 
to all modern 
electronic systems 

A filter is a circuit 
that implements a 
specific frequency 
response 
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17.1 Bilinear Frequency Responses 

Filter design and analysis is predominantly carried out in the frequency-

domain. The circuits we design and analyse will be assumed to be operating 

with sinusoidal sources and be in the steady-state. This means we can use 

phasors and complex numbers to describe a circuit’s response. 

Recall that we define a circuit’s frequency response as the ratio of the output 

voltage phasor to the input voltage phasor, as a function of frequency: 
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oj
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V
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(17.1) 

EXAMPLE 17.1 Frequency Response of an RC Circuit 

Consider a simple RC circuit: 
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The frequency response is: 
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This particular frequency response is one member of a larger class of frequency 

response functions. 

Frequency response 
defined 
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The variable of the frequency response,  jT , is j . A first-order 

polynomial in this variable would be written as   21 aajj  P  since the 

power of j  is one. A first-order polynomial in real numbers could be written 

as bmxy  , which is the equation of a straight line. Thus a first-order 

polynomial such as 
21 aaj   is also known as a linear polynomial. When a 

frequency response is the quotient of two linear polynomials it is said to be 

bilinear. Thus a bilinear frequency response is of the form: 
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(17.2) 

where the a and b constants are real numbers. If Eq. (17.2) is written in a 

“standard form”: 
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(17.3) 

then “-z” is the zero of  jT  and “-p” is the pole of  jT  (the reason for 

these names will become apparent later). For real circuits, p will always be a 

positive real number, while z may be either a positive or negative real number. 

The constant K depends on the circuit used to create the bilinear frequency 

response – for active circuits (e.g. those with op-amps) it can be positive or 

negative. 

Thus for the RC circuit in the example, if we were to write the frequency 

response in the standard form, we would identify: 

RCp

z

K

1

1
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(17.4) 

 

Bilinear frequency 
response defined 

and rewritten in 
terms of poles and 
zeros 
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17.1.1 Bilinear Magnitude Response 

For the bilinear frequency response function: 
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(17.5) 

the magnitude response is: 
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(17.6) 

Thus, the magnitude response is made up of the following three factors: 

KTk   

zjTz  1  

pj
Tp




1

1
 

(17.7) 

The first factor, K , is flat with frequency – it is just a real number. 

The magnitude 
response is the 
magnitude of the 
frequency response 



17.6 

Index Bilinear Frequency Responses PMcL   

17 - First-Order Op-Amp Filters  2018 

The second and third factors look like:  
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Figure 17.1 

If all three factors are combined then the magnitude response takes on one of 

two shapes, depending on whether zp   or not: 

 

0

T|    |

10 log
p z  

0

T|    |

10 log
z p  

 

Figure 17.2 

Thus, we can use the bilinear frequency response to create either a lowpass 

response ( zp  ) or a highpass response ( zp  ). 
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17.1.2 Bilinear Phase Response 

For the bilinear frequency response function: 
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(17.8) 

the phase is: 
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(17.9) 

Thus, the phase response is made up of the following three factors: 

Kk   
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(17.10) 

The first factor, K , is flat with frequency – it is just a real number. If K is 

positive, its phase is 0 , and if negative it is 180 .  

The phase of the 
bilinear frequency 
response 



17.8 

Index Bilinear Frequency Responses PMcL   

17 - First-Order Op-Amp Filters  2018 

The second and third factors look like:  
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Figure 17.3 

Assuming  0K , If all three factors are combined then the phase response 

takes on one of two shapes, depending on whether zp   or not:  
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Figure 17.4 

Thus, we can use the bilinear frequency response to create either a lag circuit 

( zp  ) or a lead circuit ( zp  ). 
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EXAMPLE 17.2 Phase Response of an RL Circuit 

Consider the RL circuit shown below: 
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Using the voltage divider rule, we obtain: 
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If we write this in the standard form: 
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The magnitude response is: 

1

0
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R+

RL

RL

10log
z p  

This does not approximate an ideal brickwall filter very well, but it is still 

known as a highpass filter. 

From Eq. (17.9) we see that   is characterized by the sum of three angles, the 

first due to the constant  0K , the second a function of the zero numerator 

term, z , and the third a function of the pole denominator term, p . For zp    

the phase function z  reaches  45  at a low frequency, while p  reaches 

 45  for a higher frequency. Therefore, the phase response looks like: 

0° 10 log
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 z  p+

 

Thus, the circuit provides phase lead. 
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17.1.3 Summary of Bilinear Frequency Responses 

We can summarize the magnitude and phase responses of  jT  for various 

values of z  and p , where K  is assumed to be positive, in the table below:  

 jT  Magnitude Response Phase Response 

1 

 

0jK  
0

T|    |

10 log

K

0  
10 log

0°

90°



 

2 

0j

K
 

0

T|    |

10 log

K

0  

10 log
0°

-90°



 

3 

 

 zjK 1  
0

T|    |

10 log
z

K

K2

 
10 log

z0°

90°



45°

 

4 

pj
K

1

1
 

0

T|    |

10 log
p

K

K 2/

 

10 log
p

0°

-90°



-45°

 

5 

pj

pj
K





1
 

0

T|    |

10 log
p

K

K 2/

 
10 log

p0°

90°



45°

 

6 

pj

zj
K









1

1
 

pz   

0

T|    |

10 log
p z  

10 log
p z

0°

90°



 

7 

pj

zj
K









1

1
 

zp   

0

T|    |

10 log
z p  

10 log
z p0°

90°



 

Table 17.1 – Summary of Bilinear Frequency Responses 



17.12 

Index Frequency and Magnitude Scaling PMcL   

17 - First-Order Op-Amp Filters  2018 

17.2 Frequency and Magnitude Scaling 

In filter design, it is common practice to normalise equations so that they have 

the same form. For example, we have seen the bilinear frequency response: 

 



jRC

RC
j




1

1
T

 
(17.11) 

expressed as:  

 
01

1




j
j


T

 
(17.12) 

We normalise the equation by setting  0 1 : 

 



j

j



1

1
T

 
(17.13) 

Every equation in filter design will be normalised so that  0 1 . This is 

helpful, since every equation will be able to be compared on the same base. 

The difficulty that now arises is denormalising the resulting equations, values 

or circuit designs. 

Normalising the 
cutoff frequency 
means setting it to 1 
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17.2.1 Frequency Scaling (Denormalising) 

Frequency scaling, or denormalising, means we want to change  0  from 1 

back to its original value. To do this, we must change all frequency dependent 

terms in the frequency response, which also means frequency dependent 

elements in a circuit. Furthermore, the frequency scaling should not affect the 

magnitude of any impedance in the frequency response. 

To scale the frequency by a factor k f , for a capacitor, we must have: 

     new

1

1

11

CkCkkC fff

C


Z
 

(17.14) 

We must decrease the capacitance by the amount 1 k f , while increasing the 

frequency by the amount k f  if the magnitude of the impedance is to remain the 

same. 

For an inductor, we must have: 

   
new

1
LkL

k
kL f

f

fL  Z
 

(17.15) 

Therefore, new element values may be expressed in terms of old values as 

follows: 

R Rnew old  

L
k

L
f

new old
1

 

C
k

C
f

new old
1

 

(17.16) 

 

(17.17) 

 

(17.18) 

and denormalising 
means setting the 
frequency back to its 
original value 

Frequency scaling 
must keep the 
magnitude of the 
impedance the 
same 

The frequency 
scaling equations 
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17.2.2 Magnitude Scaling 

Since a frequency response is always a ratio, if we increase the impedances in 

the numerator and denominator by the same amount, it changes nothing. We do 

this to obtain realistic values for the circuit elements in the implementation. 

If the impedance magnitudes are normally: 

C
LR CLR




1
,,  ZZZ

 
(17.19) 

then after magnitude scaling with a constant km  they will be: 

m

Cm

mLm

mRm

kC
k

Lkk

Rkk





1

,

,







Z

Z

Z

 

(17.20) 

Therefore, new element values may be expressed in terms of old values as 

follows: 

R k Rmnew old  

L k Lmnew old  

C
k

C
m

new old
1

 

(17.21) 

 

(17.22) 

 

(17.23) 

An easy-to-remember rule in scaling R’s and C’s in electronic circuits is that 

RC products should stay the same. For example, for the lowpass RC filter, the 

cutoff frequency is given by RC10  . Therefore, if the resistor value goes 

up, then the capacitor value goes down by the same factor – and vice versa. 

Magnitude scale to 
get realistic element 
values 

The magnitude 
scaling equations 
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17.3 Cascading Circuits 

How can we create circuits with higher than first-order frequency responses by 

“cascading” first-order circuits? Consider the following circuit: 

 

vi

R

voC

R

C

 

 

Figure 17.5 

Show that the frequency response for the above circuit is: 

 
   RCjRC

RC

i

o

31

1
22

2

 


V

V
 

(17.24) 

Compare with the following circuit: 

 

vi

R

C vo

R

C

 

 

Figure 17.6 
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which has the frequency response: 

 
   RCjRC

RC

jRC

RC

jRC

RC

i

o

21

1

1

1

1

1

22

2





























V

V

 

(17.25) 

Therefore, when we cascade circuits, if the “output” of each circuit presents a 

low impedance to the next stage, so that each successive circuit does not “load” 

the previous circuit, then we can simply multiply the frequency responses of 

the individual circuits to achieve an overall frequency response. Op-amp 

circuits of both the inverting and non-inverting type are ideal for cascading. 

17.4 Inverting Bilinear Op-Amp Circuit 

We seek an implementation of the bilinear frequency response that can be 

cascaded. The frequency response of the inverting op-amp circuit is: 

 
1

2

Z

Z
T j

 
(17.26) 

Therefore, we would like to have: 

pj

zj
K










1

1

1

2

Z

Z
T

 
(17.27) 

The specifications of the design problem are the values K, z and p. These may 

be found from a Bode plot – the break frequencies and the gain at some 

frequency – or obtained in any other way. The solution to the design problem 

involves finding a circuit and the values of the elements in that circuit. Since 

we are using an active device – the op-amp – inductors are excluded from our 

circuits. Therefore, we want to find values for the R’s and the C’s. Once found, 

Cascading buffered 
circuits is highly 
desirable from a 
design perspective 

The inverting op-
amp circuit is one 
way to implement a 
bilinear frequency 
response 
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these values can be adjusted by any necessary frequency scaling, and then by 

magnitude scaling to obtain convenient element values. 

For the general bilinear frequency response, we can make the following 

identification: 

 
  1

2

11

1

1

1

Z

Z











zj

pjK

pj

zj
K








 

(17.28) 

Therefore: 

11

1

22

2

1

1

1

1

1

1

1

1

CjRzj

CjRpKjK

















Z

Z

 

(17.29) 

 

(17.30) 

The design equations become: 

pK
CKR

z
CR

1
,,

1
,1 2211 

 
(17.31) 

One realisation of the bilinear frequency response is then: 

 

K

1

vo

v i

pK

1

z1
 

 

Figure 17.7 

The impedances for 
the inverting op-amp 
circuit to implement 
a bilinear frequency 
response 

Element values for 
the inverting op-amp 
circuit in terms of 
the pole, zero and 
gain 

An inverting op-amp 
circuit that 
implements a 
bilinear frequency 
response 
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17.5 Inverting Op-Amp Circuits 

The approach we took in obtaining a circuit to implement the bilinear 

frequency response can be applied to other forms of  jT  to give the entries 

in the table below: 

Frequency  Response 

 jT  

Circuit 

1 

 

 zjK  1  

1

vo

v i

z1

K

 

2 

 

pj
K




1

1
 1

vo

v i

K

pK

1

 

3 

 

pj

pj
K








1
 

1

vo

v i

K

p1

 

4 

 

pj

zj
K










1

1
 

K

1

vo

v i

pK

1

z1
 

5 

 

  21

21

11 pjpj

ppj
K








 

1

vo

v i

K1

pK
2

p1
1

 

Table 17.2 – Inverting Op-Amp Circuits 
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The last entry in the table illustrates an important point. If we use a series RC 

connection for 
1Z  but a parallel RC connection for 

2Z , then the frequency 

response becomes one of second-order. So the manner in which the capacitors 

are connected in the circuit determines the order of the circuit. 

17.6 Cascade Design 

We can make use of cascaded modules, each of first-order, to satisfy 

specifications that are more complicated than the bilinear function. 

EXAMPLE 17.3 Cascade Design of a Bandstop Filter 

The asymptotic Bode plot shown below is for a bandstop filter: 

A , dB 0 dB
2

10
3

10
4

10
5

10

-20 dB

 rad/s (log scale)

 

The gain at low and high frequencies is unchanged, but 20 dB of attenuation is 

provided in an intermediate frequency range. We wish to design a filter to these 

specifications and the additional requirement that all capacitors have the value 

C  10 nF . 

A bandstop filter 
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The composite plot may be decomposed into four first-order factors as shown 

below: 

A , dB

 rad/s (log scale)

1

2 3

4

A , dB 0 dB
2

10
3

10
4

10
5

10

-20 dB

 rad/s (log scale)

 

Those marked (1) and (4) represent pole factors, while those marked (2) and 

(3) are zero factors. 

From the break frequencies given, we have: 

 
  
  

  
  52

43

101101

101101

41

32






jj

jj
j




T  

We next write  jT  as a product of bilinear functions: 

      jjj 21 TTT   

For a circuit realisation of 1T  and 2T  we decide to use the inverting op-amp 

circuit 4 in Table 17.2. Since one of the design requirements was that all 

capacitor values are equal, we need to choose pzK   in each circuit. This 

leads to: 

     

5

4

2

3

21

101

101
1.0

101

101
10











j

j

j

j

jjj











 TTT

 

Decomposing a 
Bode plot into first-
order factors 

The frequency 
response as a 
cascade of bilinear 
functions 
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Note that, in this design, the DC gains pzK   of each circuit multiply to give 

us the overall DC gain we required (of 1). In general though, we might need to 

add an additional gain / attenuation stage to the cascade to “meet spec”. 

Using the formulas for element values given in Table 17.2, we obtain the 

realisation shown below: 

vovi

1 1

10
-3

10
-1

10
-4

10

10
-3

10
-4

 

Frequency scaling is not required since we have worked directly with specified 

frequencies (we did not normalize the initial Bode plot). The magnitude scaling 

of the circuit is accomplished with the equations: 

C
k

C R k R
m

mnew old new oldand 
1

 

Since the capacitors are to have the value 10 nF, this means 510mk  for the 

first circuit and 410mk  for the second circuit. The element values that result 

are shown below and the design is complete: 

vovi

10 nF 10 nF 10 nF 10 nF

1 M100 k 1 k10 k

 

A realisation of the 
specifications 

Magnitude scaling is 
required to get 
realistic element 
values 

A realistic 
implementation of 
the specifications 
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EXAMPLE 17.4 Cascade Design of a Band-Enhancement Filter 

The asymptotic Bode plot shown below describes a band-enhancement filter: 

A , dB

0 dB

100

6 dB

 rad/s (log scale)
a


b

 

We wish to provide additional gain over a narrow band of frequencies, leaving 

the gain at higher and lower frequencies unchanged. We wish to design a filter 

to these specifications and the additional requirement that all capacitors have 

the value C  10 nF . 

The maximum gain of the asymptotic plot is 6 dB. An asymptotic plot 

increases at 20 dB/decade, or equivalently, at 6 dB/octave, so that 

-1rads 200a . Since the plot returns to 0 dB, b  must be one octave greater 

than a , or 
-1rads 400 . 

A band-
enhancement filter 
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 The four first-order factors, which make up the composite Bode plot, are 

shown below: 

A , dB

0 dB 100

6 dB

 rad/s (log scale)

A , dB

 rad/s (log scale)

1

2

3

200

400

 

As frequency increases, the first break frequency identifies a zero factor (1), 

then a double pole factor (2), followed by another zero factor (3). 

From this information, we construct: 

 
  
 

  

 2
2001

40011001

2

31






j

jj
j




T  

If we make use of the same strategy that was used in the previous example, we 

write  jT  as the product of two bilinear functions: 

     

2001

4001
2

2001

1001
5.0

21











j

j

j

j

jjj











 TTT

 

Decomposing a 
Bode plot into first-
order factors 
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and then obtain the practical realisation shown below: 

vovi

10 nF 10 nF 10 nF 10 nF

1 M 500 k 250 k 500 k

 

In design there are always many possibilities. Suppose that we decide to try a 

design for this frequency response using non-inverting op-amp configurations. 

Two circuits, and their frequency responses, are shown below: 

vo

1

v i

(a)

vo

v i

(b)

p1/

1

p1/

p-z
z

(     )

(     )z-p
1

 

 
pj

zj
ja











1

1
T , zp                      

pj

zj
Kjb











1

1
T , pzK  , pz   

You should derive these frequency responses to confirm this. 
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The sequence of design steps to accomplish our specification is shown in the 

table below:  

Item Module 1 Module 2 

Frequency 

response 2001

1001





j

j




  

2001

4001





j

j




 

Choice of 

circuit 

(a) (b) 

2Z  

element 

values 

1/200

1  

1/200

1  

1Z  

element 

value 

1

 

1/200

 

These circuits are good choices for this particular design because all R’s have 

the same value and all C’s the value of 1. Frequency scaling is not required and 

magnitude scaling is done to obtain the required C values of 10 nF by the 

choice of 810mk . Note that module 2, by virtue of pzK  , produces a DC 

gain of 2. Therefore, a voltage divider is needed to reduce the gain by ½ to 

meet specifications exactly. 
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The final circuit is shown below: 

v i

10 nF

500 k

vo

(a) (b)

500 k

500 k

500 k

10 nF 10 nF

500 k

 

Now the problem remaining for the designer is to decide whether to use the 

inverting implementation or the non-inverting implementation, or whether to 

find other designs before a final selection is made. One advantage that the 

circuit above has over the inverting implementation is that it effectively has an 

infinite input impedance (which may or may not be important – it depends on 

the application). 
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17.7 Summary 

 A bilinear frequency response can be put in the “standard form”: 

 
pj

zj
Kj











1

1
T  

where z is termed a zero, and p is a pole. Zeros make the magnitude 

response increase with frequency, whereas poles make the magnitude 

response decrease with frequency. Zeros provide phase lead, whereas poles 

provide phase lag. 

 It is common in both the algebraic description of a system, and in its circuit 

representation, to normalise 0  to 1. We can then frequency scale 

inductors and capacitors to set a new 0 . We magnitude scale circuit 

elements to get realistic values. 

 A circuit can be cascaded when it does not “load” the output of the 

previous stage. Circuits in which the output is taken from an op-amp output 

terminal are ideal for cascading, since the op-amp effectively acts as an 

ideal source. 

 Simple op-amp circuits, of both the inverting and non-inverting variety, can 

be used to implement bilinear frequency responses. 

17.8 References 

Van Valkenburg, M. E.: Analog Filter Design, Holt-Saunders, Tokyo, 1982. 
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Exercises 

1. 

For the circuit shown below, prepare the asymptotic Bode plot for the 

magnitude of  jT . Carefully identify all slopes and low and high frequency 

asymptotes. 

vo

vi

1 nF 10 pF

10 k

10 k

10 k

10 k

 

2. 

Design an RC op-amp filter to realise the bandpass response shown below. 

A, dB

0 dB

10 410

20 dB

 rad/s (log scale)

+20 dB/decade -20 dB/decade

 

Use a minimum number of op-amps in your design, and scale so that the 

elements are in a practical range. 
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3. 

The asymptotic Bode plot shown below represents a lowpass filter-amplifier 

with a break frequency of -1

0 rads 1000 . 

A, dB

20 dB

1000  rad/s

-40 dB/decade

 

Design a circuit to be connected in cascade with the amplifier such that the 

break frequency is extended to -1

0 rads 5000 : 

A, dB

20 dB

5000  rad/s

-40 dB/decade

 

4. 

An asymptotic Bode plot is shown below for a desired magnitude response. 

Design an amplifier-filter using a minimum number of op-amps. 

A , dB

0

2

10
3

10
4

10

5

10

 rad/s (log scale)

6

10

-20

40
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18 The Second-Order Step Response 
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Introduction 

Circuits that contain resistors, inductors and capacitors are known as RLC 

circuits. We will examine the simplest RLC circuits – the parallel RLC circuit 

where the resistor, inductor and capacitor are in parallel, and the series RLC 

circuit in which they are connected in series. 

Many circuits can be reduced to one of these equivalent circuits. For example, 

transistor amplifiers in analog radios, crystal oscillators driving the clocks of 

digital circuits and microprocessors, and power system “power factor 

correction” circuits, can each be reduced to a parallel RLC circuit. 

The inclusion of both inductance and capacitance in a circuit leads to at least a 

second-order system – that is, one that is characterized by a linear differential 

equation including a second-order derivative, or by a set of two first-order 

differential equations. We shall see that such systems are much more 

complicated than first-order systems – there will be two arbitrary constants to 

find, we will need initial conditions for variables and their derivatives, and 

there are three different functional forms of the natural response that depend 

upon element values. 

However, there is a side benefit to studying second-order systems: we will see 

a unifying underlying structure emerge for all linear circuits, regardless of their 

complexity. We will also discover a way to exploit this underlying structure. 
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18.1 Solution of the Homogeneous Linear Differential Equation 

We have seen that any linear homogeneous differential equation with constant 

coefficients of order n is an equation that can be written: 

0011

1

1 




 ya
dt

dy
a

dt

yd
a

dt

yd
a

n

n

nn

n

n 
 

(18.1) 

or more simply using the D operator as: 

  0yDf  (18.2) 

We have seen that the solution to such an equation was found by using the 

property that: 

    stst esfeDf   (18.3) 

then letting: 

  0sf  (18.4) 

which leads to stey   as a solution. To find the general solution, we find the n 

roots of the nth-order characteristic equation   0sf , and then form a linear 

sum of each individual solution. 
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18.1.1 Distinct Real Roots 

The characteristic equation is of degree n. Let its roots be 
1s , 

2s , …, ns . If 

these roots are all real and distinct, then the n solutions:  

ts
ey 1

1  , 
ts

ey 2

2  , …, 
ts

n
ney   (18.5) 

are linearly independent and the general solution can be written at once. It is: 

ts

n

tsts necececy  21

21  (18.6) 

in which 
1c , 

2c , …, nc  are arbitrary constants. 

EXAMPLE 18.1 Solution of a Second-Order ODE with Distinct Real Roots 

Solve the equation: 

067
2

2

 y
dt

dy

dt

yd
 

First write the characteristic equation: 

   061

0672





ss

ss
 

whose roots are 6 ,1 s . Then the general solution is seen to be: 

tt ececy 6

21
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18.1.2 Repeated Real Roots 

Suppose that   0sf  has repeated roots. Then Eq. (18.6) does not yield the 

general solution. To see this, let the characteristic equation have three equal 

roots bs 1
, bs 2

 and bs 3 . The corresponding part of the solution yielded 

by Eq. (18.6) is: 

 
bt

bt

btbtbt

ec

eccc

ecececy

4

321

321







 

(18.7) 

Thus, corresponding to the three roots under consideration, this method yields 

only one solution. 

What is needed is a method for obtaining m linearly independent solutions 

corresponding to m equal roots of the characteristic equation. Suppose that the 

characteristic equation   0sf  has the m equal roots: 

bsss m  21  (18.8) 

Then the operator  Df  must have a factor  mbD  . We wish to find m 

linearly independent y’s for which: 

  0 ybD
m

 (18.9) 

Turning to Eq. (8.16) in Topic 8, and writing bs  , we find that: 

     1 ..., 1, ,0,0  mketbD btkm

 (18.10) 

The functions 
btk

k ety   where  1 ..., 1, ,0  mk  are linearly independent 

because, aside from the common factor 
bte , they contain only the respective 

powers 1210  ..., , , , mtttt . 
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The general solution of Eq. (18.9) is therefore: 

btm

m

btbt etctececy 1

21

   (18.11) 

Furthermore, if  Df  contains the factor  mbD  , then the equation 

  0yDf  can be written    0 ybDDg
m

 where  Dg  contains all the 

factors of  Df  except  mbD  . Then any solution of   0 ybD
m

 is also a 

solution of    0 ybDDg
m

 and therefore of   0yDf . 

18.1.3 Only Real Roots 

Now we are in a position to write the solution of   0yDf  whenever the 

characteristic equation has only real roots. Each root of the characteristic 

equation is either distinct from all the other roots or it is one of a set of equal 

roots. 

Corresponding to a root is  distinct from all others, there is the solution: 

ts

ii
iecy   (18.12) 

and corresponding to m  equal roots 
1s , 

2s , …, ms , each equal to b, there are 

solutions: 

btec1 , 
bttec2 , …, 

btm

m etc 1
 (18.13) 
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EXAMPLE 18.2 Solution of an ODE with Repeated Real Roots 

Solve the equation: 

  0820187 234  yDDDD  

The characteristic equation: 

0820187 234  ssss  

has the roots 2 ,2 ,2 ,1 s . Then the general solution is: 

tttt etctecececy 22

4

2

3

2

21

   

or: 

  tt etctccecy 22

4321

   

EXAMPLE 18.3 Solution of an ODE with Repeated Real Roots 

Solve the equation: 

02
2

2

3

3

4

4


dt

yd

dt

yd

dt

yd
 

The characteristic equation is: 

02 234  sss  

with roots 1 ,1 ,0 ,0 s . Hence the desired solution is: 

tt tecectccy   4321  
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18.1.4 Distinct Complex Roots 

In all real systems, the describing differential equation   0yDf  has a 

characteristic equation   0sf  that has real coefficients. We know from 

algebra that if the characteristic equation has any complex roots then those 

roots must occur in conjugate pairs. Thus, if: 

jbas 1  (18.14) 

is a root of the equation   0sf  with a and b real and 0b , then: 

jbas 2  (18.15) 

is also a root of   0sf . According to the preceding section,   0yDf  is 

satisfied by: 

   tjbatjba ececy   21  (18.16) 

where for y to be real, we must have *

21 cc  . Since t is real along with a and b, 

Euler’s identity gives us the result: 

   btjbtecbtjbtecy atat sincossincos 21   (18.17) 

This may be written: 

    bteccjbteccy atat sincos 2121   (18.18) 

Finally, let   3121 Re2 cccc  , and     4121 Im2 ccccj  , where 3c  and 

4c  are real arbitrary constants. Then   0yDf  is seen to have the solution: 

btecbtecy atat sincos 43   (18.19) 

corresponding to the two roots jbas 1  and jbas 2
 ( 0b ) of the 

characteristic equation. 
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EXAMPLE 18.4 Solution of an ODE with Distinct Complex Roots 

Solve the equation: 

  013175 23  yDDD  

For the characteristic equation: 

013175 23  sss  

one root, 11 s , is easily found. When the factor  1s  is removed, it is seen 

that the other two roots are solutions of the quadratic equation: 

01342  ss  

Those roots are found to be 322 js   and 323 js  . The characteristic 

equation has the roots 32 ,1 js  . Hence the general solution of the 

differential equation is: 

tectececy ttt 3sin3cos 2

3

2

21
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18.1.5 Repeated Complex Roots 

Repeated complex roots lead to solutions analogous to those brought in by 

repeated real roots. For instance, if the roots jbas   occur three times, then 

the corresponding six linearly independent solutions of the differential equation 

are those appearing in the expression: 

    btetctccbtetctcc atat sincos 2

654

2

321   (18.20) 

 

EXAMPLE 18.5 Solution of an ODE with Repeated Complex Roots 

Solve the equation: 

  0168 24  yDD  

The characteristic equation 0168 24  ss  may be written: 

  04
22 s  

so its roots are seen to be 2 ,2 jjs  . The roots, 21 js   and 22 js   

occur twice each. Thinking of 2j  as 20 j  and recalling that 10 te , we write 

the solution of the differential equation as: 

    ttccttccy 2sin2cos 4321   
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18.2 The Source-Free Parallel RLC Circuit 

A suitable model for portions of many practical circuits is given by the parallel 

RLC circuit: 

 

R L

iL

Cv

 

 

Figure 18.1 

We will assume that energy may be stored initially in both the inductor and the 

capacitor, and thus nonzero values of both inductor current and capacitor 

voltage are initially present. With reference to the circuit above, we may then 

write the single nodal equation: 

  0
1

0

 

 0

  dt

dv
Ctivdt

LR

v
L

t

t  
(18.21) 

When both sides are differentiated once with respect to time and divided by C 

the result is the linear second-order homogeneous differential equation: 

0
11

2

2

 v
LCdt

dv

RCdt

vd
 

(18.22) 

We must solve this equation subject to the initial conditions: 

 
  0

0

0

0

Vv

IiL









 
(18.23) 
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With our theory of the D operator behind us, we now embark on solving 

Eq. (18.22). We write the characteristic equation: 

  0
112 

LC
s

RC
ssf

 
(18.24) 

and identify the two roots: 

LCRCRC
s

LCRCRC
s

1

2

1

2

1

1

2

1

2

1

2

2

2

1





















 

(18.25) 

These roots can be either real and distinct, real and repeated, or complex and 

distinct depending on the values of R, L and C. 

Case Graph of  sfy   Solution of   0sf  

Real and distinct y

s

 s -plane

sRe

sIm

 

Real and repeated y

s

 s -plane

sRe

sIm

 

Complex and distinct y

s

 s -plane

sRe

sIm

 

Table 18.1 – Three types of roots to the 2nd-order characteristic equation 
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Therefore, there will be three different forms of the natural response, 

corresponding to each of the cases in Table 18.1. 

It will be helpful to make some simplifying substitutions into Eq. (18.25) for 

the sake of conceptual clarity. Let us define the undamped natural frequency: 

LC

1
0 

 
(18.26) 

We will also define the exponential damping coefficient: 

RC2

1


 (parallel) 
(18.27) 

This description is used because   is a measure of how rapidly the natural 

response decays or damps out to its steady final value (usually zero). 

Finally, s , 
1s  and 

2s  are called complex frequencies and will form the basis for 

some of our later work. 

Thus, our characteristic equation becomes: 

02 2

0

2  ss  (18.28) 

and has the two roots: 

2

0

2

2

2

0

2

1









s

s

 
(18.29) 

It is now apparent that the nature of the response depends upon the relative 

magnitudes of   and 0 . The square root appearing in the expressions for 1s  

and 2s  will be real when 0  , zero when 0  , and imaginary when 

0  . Each of these cases will be considered separately. 
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18.3 The Overdamped Parallel RLC Circuit 

When 0  , both 
1s  and 

2s  will be real and distinct: 

2

0

2

2

2

0

2

1









s

s

 
(18.30) 

Thus, the natural response is of the form: 

tsts

n eKeKv 21

21   (18.31) 

We also know that: 

2

0

2    
(18.32) 

and therefore: 

   
0

0

12

2

0

22

0

2





ss


 

(18.33) 

This shows that both 
1s  and 

2s  are negative real numbers. Thus, the response 

 tv  is the algebraic sum of two decreasing exponential terms, both of which 

approach zero as time increases without limit. In fact, since the absolute value 

of 2s  is larger than that of 1s , the term containing 2s  has the more rapid rate of 

decrease. 

It only remains to find the arbitrary constants 1K  and 
2K  using the initial 

conditions, and we have the solution. 
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EXAMPLE 18.6 The Overdamped Parallel RLC Circuit 

Consider the circuit: 



iL

v 10 mF

iCiR

2 H
4

9

 

in which   00 v  and   80 Li . We may easily determine the values of the 

several parameters: 

455

1525

21

0





ss


 

and since 0   immediately write the general form of the natural response: 

  tt eKeKtv 45

2

5

1

   

Only evaluation of the two constants 
1K  and 

2K  remains. Using the initial 

value of  tv : 

  00 v  

and therefore: 

210 KK   

A second relation between 1K  and 
2K  must be obtained by taking the 

derivative of  tv  with respect to time, determining the initial condition of this 

derivative through the use of the remaining initial condition   80 Li , and 

equating the results. 
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Taking the derivative of both sides of the response, we get: 

tt eKeK
dt

dv 45

2

5

1 455    

Evaluating the derivative at 0t : 

21

0

455 KK
dt

dv

t




 

We next pause to consider how the initial value of the derivative can be found 

numerically. This next step is always suggested by the derivative itself, dtdv  

suggests capacitor current, for: 

dt

dv
CiC   

Thus: 

          1-

0

Vs 800
00000








 C

Rvi

C

ii

C

i

dt

dv LRLC

t

 

We thus have our second equation: 

 21 455800 KK   

and we can solve our two equations in 
1K  and 

2K  simultaneously to get 

201 K  and 202 K . Thus, the final numerical solution for the natural 

response is: 

   tt eetv 45520    

We can interpret this result. We note that  tv  is zero at 0t , as required. We 

also interpret the first exponential term as having a time constant of s 51  and 

the other exponential, a time constant of s 451 . Each starts with unity 

amplitude, but the second decays more rapidly –  tv  is thus never negative. 

We thus have a response curve which is zero at 0t , zero at t , and is 
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never negative. Since it is not everywhere zero, it must have at least one 

maximum, and this can be found easily. 

We differentiate the response: 

 tt ee
dt

dv 455 45520    

Then set the derivative to zero to determine the time pt  at which the voltage 

reaches its peak: 

ms 93.54

40

9ln

545

4550

40

455










p

t

tt

t

e

ee

p

pp

 

and obtain: 

  V 51.13ptv  

A reasonable sketch of the response may be obtained by plotting the two 

exponential terms 
te 520 
and 

te 4520 
, taking their difference, and noting the 

peak value obtained above: 

16

8

12

0.20 0.4 0.6 1
t (s)

(V)

v  t(  )

0.8

4

20

e
t-5

20

e
-45 t

20

 

You can see that the dominant term is 
te 520 
 for large t since the other term 

has effectively decayed to zero. 
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18.4 The Critically Damped Parallel RLC Circuit 

The very special case of 0   is known as critical damping. Any one of the 

three elements R, L or C may be changed to obtain critical damping – however 

it is usual to select R to obtain critical damping in a circuit, and thus leave 0  

unchanged. 

For critical damping, we have real repeated roots : 

02

01









s

s

 
(18.34) 

Thus, the natural response is of the form: 

  t

n etKKv  21  (18.35) 

In a real physical system it is impossible to obtain the exact conditions 

necessary for critical damping, since even an infinitesimally small change in 

the circuit’s conditions will cause   to differ from 0 . However, it can always 

be a design goal to obtain a critically damped response. 
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EXAMPLE 18.7 The Critically Damped Parallel RLC Circuit 

We will use the same circuit as before as an example, but this time set 

  3
3
1R  to obtain critical damping: 



iL

v 10 mF

iCiR

H
4

9
3

1

3

 

The initial conditions are again   00 v  and   80 Li . In this case: 

15

15

21

0





ss


 

and since 0   immediately write the general form of the natural response: 

    tetKKtv 15

21

  

We establish the values of 
1K  and 

2K  by first imposing the initial condition on 

 tv  itself,   00 v . Thus, 01 K . This simple result occurs in this example 

because the initial value of the response was selected as zero. 

The second initial condition must be applied to the derivative dtdv  just as in 

the overdamped case. We therefore differentiate, remembering that 01 K : 

  tt eKetK
dt

dv 15

2

15

2 15    

Evaluating the derivative at 0t : 

2

0

K
dt

dv

t
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We next express the derivative in terms of the initial capacitor current: 

          1-

0

Vs 800
00000








 C

Rvi

C

ii

C

i

dt

dv LRLC

t

 

and thus: 

 8002 K  

The natural response is therefore: 

  ttetv 15800   

Before plotting the response, we try to anticipate its form by qualitative 

reasoning. We note that  tv  is zero at 0t , as required. It is not immediately 

apparent that the response also approaches zero as t becomes infinitely large. 

Using l’Hôpital’s rule: 

  0
15

1
lim800lim800lim

1515


 ttttt ee

t
tv  

and once again we have a response which begins and ends at zero and has 

positive values at all other times. 

A maximum value pv  again occurs at time pt : 

s  151pt   and V 62.19pv  

This maximum is larger than that obtained in the overdamped case and is a 

result of the smaller losses that occur in the larger resistor. The time of the 

maximum response is slightly larger than it was with overdamping.  
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The natural response curve for critical damping is shown below: 

20

0.20

15

10

5

0.4 0.6 0.8
t (s)

(V)v  t(  )

1.0  
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18.5 The Underdamped Parallel RLC Circuit 

If we further increase the resistance R from the value we had at critical 

damping, whilst leaving L and C unchanged, the damping coefficient   

decreases while 0  remains constant. We thus have 0  , and the roots of 

the characteristic equation become: 

22

0

2

0

2

2

22

0

2

0

2

1









js

js

 
(18.36) 

We now take the new square root, which is real for the underdamped case, and 

call it d , the damped natural frequency: 

22

0  d  
(18.37) 

Thus, the roots are distinct complex conjugates and are located at: 

d

d

js

js









2

1

 
(18.38) 

Thus, the natural response is of the form: 

 tKtKev dd

t

n  sincos 21  
 (18.39) 
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EXAMPLE 18.8 The Underdamped Parallel RLC Circuit 

We will use the same circuit as before as an example, but this time set 

  5
9
5R , L and C are unchanged: 



iL

v 10 mF

iCiR

H
4

9
5

5

9

 

Again we have   00 v  and   80 Li . In this case: 

15
1

9
2

1

0 



LC

RC





 

and since 0   we identify: 

1222

0  d  

and immediately write the general form of the natural response: 

   tKtKetv t 12sin12cos 21

9    

The determination of the two constants proceeds as before. Again, if   00 v  

then 01 K . Hence: 

  teKtv t 12sin9

2

  

The derivative is: 

teKteK
dt

dv tt 12sin912cos12 9

2

9

2

   



18.24 

Index The Underdamped Parallel RLC Circuit PMcL   

18 - The Second-Order Step Response  2017 

and at 0t : 

 
800

0
12 2

0





 C

i
K

dt

dv L

t

 

The natural response is therefore: 

  tetv t 12sin3200 9  

Notice that, as before,  tv  is zero at 0t , as required. The response also has a 

final value of zero because the exponential term vanishes for large values of t. 

As t increases from zero through small positive values,  tv  increases because 

the exponential term remains unable to damp the increase due to the sinusoidal 

term. But at a time pt , the exponential function begins to decrease more 

rapidly than t12sin  is increasing, so  tv  reaches a maximum pv  and begins to 

decrease. We should note that pt  is not the value of t for which t12sin  is a 

maximum, but must occur before t12sin  reaches its maximum value. 

When 12  dt ,   0tv . For the interval dd t  2 , the 

response is negative, becoming zero again at dt 2 . 

Thus  tv  is an oscillatory function of time and crosses the time axis an infinite 

number of times at dnt   where n is any positive integer.  

The oscillatory nature of the response becomes more noticeable as   

decreases. If 0 , which corresponds to an infinitely large resistance, then 

 tv  is an undamped sinusoid which oscillates with constant amplitude. We 

have merely assumed an initial energy in the circuit and have not provided any 

means to dissipate this energy. It is transferred from its initial location in the 

inductor to the capacitor, then returns to the inductor, and so on, forever. 
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Differentiation of the natural response locates the first maximum of  tv , 

ms 27.771 pt  and V 60.261 pv  

the succeeding minimum, 

ms 1.3392 pt  and V 522.22 pv  

and so on. 

The natural response curve for the underdamped case is shown below: 

25

20

15

0.20

10

5

0.6 0.8
t (s)

(V)v  t(  )

1.0

-5

-10

-15

-20

200 t
e

-9

3

200 t
e

-9

3
-

 

Notice that the “envelope” of the damped sinusoid is given by 
tKe 
. 
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18.6 Response Comparison 

The overdamped, critically damped and underdamped responses for the 

example circuit are shown on the same graph below: 

25

20

15

0.20

10

5

0.6 0.8
t (s)

(V)v  t(  )

1.0

Overdamped

Critically damped

Underdamped iL
vR H

4

9
10 mF

 

The table below shows the possibilities and names associated with the 

second-order natural response. 

Condition Criteria Natural Response Example 

Overdamped 
0   tsts

n eKeKf 21

21   

2

0

2

2,1  s  

25

20

15

0.20

10

5

0.6 0.8
t (s)

(V)v  t(  )

1.0

 

Critically 

damped 

0     t

n etKKf  21  

2,1s  

25

20

15

0.20

10

5

0.6 0.8
t (s)

(V)v  t(  )

1.0

 

Underdamped 
0    tKtKef dd

t

n  sincos 21  
 

22

0

2,1









d

djs
 

25

20

15

0.20

10

5

0.6 0.8
t (s)

(V)v  t(  )

1.0

 

Table 18.2 – Second-Order Natural Responses 
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18.7 The Source-Free Series RLC Circuit 

The series RLC circuit is the dual of the parallel RLC circuit, and this makes 

the analysis fairly simple. The figure below shows the source-free series RLC 

circuit: 

 

R

L

C

i

vC

 

 

Figure 18.2 

KVL around the circuit gives: 

  0 
1

0

 

 0

  tvidt
Cdt

di
LRi C

t

t  
(18.40) 

When both sides are differentiated once with respect to time and divided by L 

the result is the linear second-order homogeneous differential equation: 

0
1

2

2

 i
LCdt

di

L

R

dt

id
 

(18.41) 

This is the dual of Eq. (18.22). Thus, if we define: 

L

R

2


 (series) 
(18.42) 

then we get the same characteristic equation as for the parallel RLC circuit, 

Eq. (18.28). It is now apparent that our discussion of the parallel RLC circuit is 

directly applicable to the series RLC circuit. 
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18.8 Complete Response of the RLC Circuit 

Consider a series RLC circuit with a DC source that is connected by a switch 

that closes at 0t : 

 

t=0

1 V

i t(  ) R L

C v t(  )

1.1F

1.3 mH

Vs

 

 

Figure 18.3 

Assuming zero initial conditions, we would like to calculate the capacitor 

voltage  tv  at μs 120t  for the following values of resistance R: 

1.   330R  

2.   7552.68R  

3.   33R  
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18.8.1 Forced Response 

First, we find the forced response. Since we have a DC source, we can find this 

part of the solution by replacing the inductance by a short circuit and the 

capacitance by an open circuit, i.e. we analyse the circuit under DC conditions. 

This is shown below: 

 

1 V

i f
R

vVs f

 

 

Figure 18.4 

The current is zero, the voltage drop across the resistance is zero, and the 

voltage across the capacitance (an open circuit) is equal to the DC source 

voltage. Therefore, the forced response is: 

V 1 sf Vv  (18.43) 

Notice that in this circuit the forced response for  tv  is the same for all three 

values of resistance. 
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18.8.2 Natural Response 

First, we can write an expression for the current in terms of the voltage across 

the capacitance: 

dt

dv
Ci 

 
(18.44) 

Then, we write a KVL equation for the circuit: 

 tuVvRi
dt

di
L s

 
(18.45) 

Using Eq. (18.44) to substitute for i , we get, for 0t : 

sVv
dt

dv
RC

dt

vd
LC 

2

2

 
(18.46) 

Dividing through by LC, we have: 

sV
LC

v
LCdt

dv

L

R

dt

vd 11
2

2


 

(18.47) 

In D operator notation, the equation is: 

sV
LC

v
LC

D
L

R
D

112 









 
(18.48) 

Therefore, the characteristic equation is: 

0
12 

LC
s

L

R
s

 
(18.49) 
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If we let: 

LCL

R 1
and

2
0  

 
(18.50) 

then the characteristic equation can be written as: 

02 2

0

2  ss  (18.51) 

which has general solutions: 

2

0

2

2

2

0

2

1









s

s

 
(18.52) 

Next, we find the natural response and complete response for each value of R. 

For all three cases we have:  

26444
1

0 
LC


 

(18.53) 
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Case I – Overdamped ) 330( R  

In this case, we get: 

126923
2


L

R


 
(18.54) 

Since we have 0  , this is the overdamped case. The roots of the 

characteristic equation are given by: 

2785

26444126923126923 22

2

0

2

1





 s

 

(18.55) 

and 

251060

2

0

2

2



 s
 

(18.56) 

For the overdamped case, the natural response has the form:  

tsts

n eKeKv 21

21   (18.57) 

Adding the forced response given by Eq. (18.43) to the natural response, we 

obtain the complete response: 

  tsts
eKeKtv 21

211   (18.58) 
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Now, we must find values of 
1K  and 

2K  so the solution matches the known 

initial conditions in the circuit. It was given that the initial voltage on the 

capacitance is zero, hence   00 v . Evaluating Eq. (18.58) at 0t , we obtain:  

2110 KK   (18.59) 

Furthermore, the initial current was given as   00 i . Since the current through 

the capacitance is given by: 

dt

dv
Ci 

 
(18.60) 

we conclude that: 

0
dt

dv
 

(18.61) 

Taking the derivative of Eq. (18.58) and evaluating at 0t , we have:  

02211  KsKs  (18.62) 

Now, we can solve Eqs. (18.59) and (18.62) for the values of 1K  and 
2K . The 

results are 0112.11 K  and 01122.02 K . Substituting these values into 

Eq. (18.58), we have the solution: 

  tt eetv 2510602785 01122.00112.11    (18.63) 

Evaluating this expression at μs 120t , we get: 

  V  27607.0μs120 v  (18.64) 
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Case II – Critically Damped ) 7552.68( R  

In this case, we get: 

26444
2


L

R


 (18.65) 

Since 0  , this is the critically damped case. The roots of the characteristic 

equation are given by: 

264442

0

2

21  ss  
(18.66) 

The natural response has the form of: 

  ts

n etKKv 1

21   (18.67) 

Adding the forced response to the natural response, we find that: 

    ts
etKKtv 1

211   (18.68) 

As in Case I, the initial conditions require   00 v  and   00 dtdv . Thus, 

substituting 0t  into Eq. (18.68), we get: 

110 K  (18.69) 

Differentiating Eq. (18.68) and substituting 0t  yields: 

0211 KKs  (18.70) 

Solving Eqs. (18.69) and (18.70) yields 11 K  and 264442 K . Thus the 

complete response is:  

  tt teetv 2644426444 264441    (18.71) 

Evaluating this expression at μs 120t , we get: 

  V  82528.0μs120 v  (18.72) 
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Case III – Underdamped ) 33( R  

For this value of resistance, we have: 

12692
2


L

R


 
(18.73) 

Since 0  , this is the underdamped case. Using: 

22

0  d  
(18.74) 

we compute the damped natural frequency: 

23199d  (18.75) 

The natural response has the form: 

 tKtKev dd

t

n  sincos 21  
 (18.76) 

Adding the forced response found earlier to the natural response, we obtain the 

complete response: 

   tKtKetv dd

t  sincos1 21  
 (18.77) 

As in the previous cases, the initial conditions are   00 v  and   00 dtdv . 

Evaluating Eq. (18.77) at 0t , we obtain: 

110 K  (18.78) 

Differentiating Eq. (18.77), we get: 

 
 

 tKtKe

tKtKe
dt

tdv

dd

t

dddd

t









sincos

cossin

21

21









 (18.79) 
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Evaluating at 0t , we have: 

012  KKd   (18.80) 

Solving Eqs. (18.78) and (18.80), we obtain 11 K  and 5471.02 K . Thus, 

the complete solution is: 

 

te

tetv

t

t

23199sin5471.0

23199cos1

12692

12692








 

(18.81) 

Evaluating this expression at μs 120t , we get: 

  V  16248.1μs120 v  (18.82) 

For this underdamped case, the response will look like: 

 

t
0

1.00

tp

v  t(  )

vp

 

 

Figure 18.5 
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18.8.3 Maximum Value and Peak Time 

We can evaluate the maximum value, and the time to reach the maximum value 

(called the peak time), by observing that the derivative of  tv  is zero at 

relative maxima and minima. 

We already found the derivative of  tv : 

 

teKteK

teKteK
dt

tdv

d

t

dd

t

d

t

dd

t









cossin

sincos

22

11









 (18.83) 

Grouping terms, this can be written: 

 
    tKKtKKe

dt

tdv
dddd

t  sincos 2112  
 (18.84) 

By applying the   00 dtdv  initial condition, we can see that: 

012  KKd   (18.85) 

Therefore, the derivative is: 

 
  tKKe

dt

tdv
dd

t  sin21  

 
(18.86) 

Equating this to zero, we get: 

0sin td  (18.87) 

Therefore, the times of relative maxima and minima are: 

d

m

n
t






 
(18.88) 
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The case of 1n  corresponds to the peak time. Thus: 

d

pt





 
(18.89) 

Substituting this value into the output expression: 

   tKtKetv dd

t  sincos1 21  
 (18.90) 

we get: 

  deKtvv pp


 11  (18.91) 

Putting values of this particular case into Eqs. (18.89) and (18.91), we get: 

ms 13542.0
23199




pt
 

(18.92) 

and: 

V  17929.11 23199

12692






evp  
(18.93) 

Thus, the output exhibits a “peak overshoot” of about 18%. 

It is important to note that the formula obtained for the peak time, Eq. (18.89), 

is only valid for this particular case of zero initial conditions. In the general 

case it can be shown that the times of relative maxima and minima for an 

underdamped response are given by: 















 

21

121tan
1

KK

KK
t

d

d

d

m




  
(18.94) 

from which Eq. (18.89) is a special case. Derive this general formula. 
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18.9 Summary 

 For the RLC circuit, we define the undamped natural frequency: 

LC

1
0   

 For the RLC circuit, we define the exponential damping coefficient: 

RC2

1
  parallel 

L

R

2
  series 

 The RLC circuit exhibits three different forms for the natural response: 

Overdamped ( 0  ) 

The natural response is of the form: 

tsts

n eKeKf 21

21   

Critically Damped ( 0  ) 

The natural response is of the form: 

  t

n etKKf  21  

Underdamped ( 0  ) 

The natural response is of the form: 

  22

021 ,sincos   

ddd

t

n tKtKef  

 The complete response is the sum of the forced response and the natural 

response. 
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Exercises 

1. 

Consider the circuit shown below: 

2 L

iL

v F
1

20

iCiR

 

Let H  25.1L  and determine  tv  if   V  1000 v  and: 

(a)   A  200 

Ci   (b)   A  200 

Li  

2. 

Consider the circuit shown below: 

50

v8 F

125 mH

200 50

120 V 6 V  

Both switches close at 0t  after having been open for a very long time. 

(a) Find  tv . 

(b) Determine the maximum and minimum values of  tv . 
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3. 

The capacitor voltage in a parallel RLC circuit that is critically damped is given 

by     V  01.01000 500   tetv t . If the energy stored in the capacitor is 2 mJ at 

0t , find: 

(a) R . 

(b) The initial energy stored in the inductor. 

4. 

Consider the circuit shown below: 

L Cv5

 

The voltage is given by     V  24sin524cos207 ttetv t    for 0t . Find: 

(a) L  and C . 

(b) The initial energy stored in the circuit. 

5. 

Consider the circuit shown below: 

50 k1 nFH
10

101

t=0

1.5 V

1

 

What is the maximum voltage magnitude present across the switch after 0t ? 

(Note that it is much safer to solve this problem analytically than to do so 

experimentally.) 
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6. 

Consider the circuit shown below: 

2 mH

100 V

10
F

20

3


40t=0 vR

 

The switch closes at 0t . Find  tvR . 

7. 

Consider the circuit shown below: 

0.5 10 nF

2.5 mHt=0

10 V v

 

The switch has been closed for hours. It is opened at 0t . Show that a 10 V 

battery can create a high voltage by finding v  at μs 5.2 t . 

8. 

A 2.5 H inductor, a  4  resistor, and a 25 mF capacitor are in parallel. 

An 80 V battery is then placed in series with the inductor. 

(a) After a long time has passed, find the energy stored in the inductor and in 

the capacitor. 

(b) The battery voltage drops suddenly to 40 V at 0t . Find the energy 

stored in the inductor and in the capacitor 0.25 s later. 
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9. 

Consider the circuit shown below: 

1.2 k20 H

20 V vC

iC

50 u  t(  ) VF
10

3


 

Find  tvC  and  tiC . 

10. 

Consider the circuit shown below: 

25

2.5 mH

iL

3-5u  t(  ) A

vC25 F

 

Find: 

(a)  tvC  

(b)  tiL  

11. 

A 5 mH inductor, a μF 50  capacitor, and a  25  resistor are in series with a 

voltage source  tvs . The source voltage is zero prior to 0t . At 0t  it 

jumps to 75 V, at ms 1t  it drops to zero, at ms 2t  it again jumps to 75 V, 

and it continues in this periodic manner thereafter. Find the source current at: 

(a) 0t   (b) ms 1t  (c) ms 2t  
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William Thomson (Lord Kelvin) (1824-1907) 

William Thomson was probably the first true electrical engineer. His 

engineering was firmly founded on a solid bedrock of mathematics. He 

invented, experimented, advanced the state-of-the-art, was entrepreneurial, was 

a businessman, had a multi-disciplinary approach to problems, held office in 

the professional body of his day (the Royal Society), published papers, gave 

lectures to lay people, strived for an understanding of basic physical principles 

and exploited that knowledge for the benefit of mankind. 

William Thomson was born in Belfast, Ireland. His father was a professor of 

engineering. When Thomson was 8 years old his father was appointed to the 

chair of mathematics at the University of Glasgow. By age 10, William 

Thomson was attending Glasgow University. He studied astronomy, chemistry 

and natural philosophy (physics, heat, electricity and magnetism). Prizes in 

Greek, logic (philosophy), mathematics, astronomy and physics marked his 

progress. In 1840 he read Fourier’s The Analytical Theory of Heat and wrote: 

…I had become filled with the utmost admiration for the splendour and 

poetry of Fourier… I took Fourier out of the University Library; and in a 

fortnight I had mastered it - gone right through it. 

At the time, lecturers at Glasgow University took a strong interest in the 

approach of the French mathematicians towards physical science, such as 

Lagrange, Laplace, Legendre, Fresnel and Fourier. In 1840 Thomson also read 

Laplace’s Mécanique Céleste and visited Paris. 

In 1841 Thomson entered Cambridge and in the same year he published a 

paper on Fourier's expansions of functions in trigonometrical series. A more 

important paper On the uniform motion of heat and its connection with the 

mathematical theory of electricity was published in 1842. 

The examinations in Cambridge were fiercely competitive exercises in problem 

solving against the clock. The best candidates were trained as for an athletics 

contest. Thomson (like Maxwell later) came second. A day before he left 

Cambridge, his coach gave him two copies of Green’s Essay on the 
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Application of Mathematical Analysis to the Theories of Electricity and 

Magnetism. 

After graduating, he moved to Paris on the advice of his father and because of 

his interest in the French approach to mathematical physics. Thomson began 

trying to bring together the ideas of Faraday, Coulomb and Poisson on 

electrical theory. He began to try and unify the ideas of “action-at-a-distance”, 

the properties of the “ether” and ideas behind an “electrical fluid”. He also 

became aware of Carnot’s view of heat. 

In 1846, at the age of twenty two, he returned to Glasgow on a wave of 

testimonials from, among others, De Morgan, Cayley, Hamilton, Boole, 

Sylvester, Stokes and Liouville, to take up the post of professor of natural 

philosophy. In 1847-49 he collaborated with Stokes on hydrodynamic studies, 

which Thomson applied to electrical and atomic theory. In electricity Thomson 

provided the link between Faraday and Maxwell. He was able to mathematise 

Faraday’s laws and to show the formal analogy between problems in heat and 

electricity. Thus the work of Fourier on heat immediately gave rise to theorems 

on electricity and the work of Green on potential theory immediately gave rise 

to theorems on heat flow. Similarly, methods used to deal with linear and 

rotational displacements in elastic solids could be applied to give results on 

electricity and magnetism. The ideas developed by Thomson were later taken 

up by Maxwell in his new theory of electromagnetism. 

Thomson’s other major contribution to fundamental physics was his 

combination of the almost forgotten work of Carnot with the work of Joule on 

the conservation of energy to lay the foundations of thermodynamics. The 

thermodynamical studies of Thomson led him to propose an absolute 

temperature scale in 1848 (The Kelvin absolute temperature scale, as it is now 

known, was defined much later after conservation of energy was better 

understood). 
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The Age of the Earth 

In the first decades of the nineteenth century geological evidence for great 

changes in the past began to build up. Large areas of land had once been under 

water, mountain ranges had been thrown up from lowlands and the evidence of 

fossils showed the past existence of species with no living counterparts. Lyell, 

in his Principles of Geology, sought to explain these changes “by causes now 

in operation”. According to his theory, processes – such as slow erosion by 

wind and water; gradual deposition of sediment by rivers; and the cumulative 

effect of earthquakes and volcanic action – combined over very long periods of 

time to produce the vast changes recorded in the Earth’s surface. Lyell’s so-

called ‘uniformitarian’ theory demanded that the age of the Earth be measured 

in terms of hundreds of millions and probably in terms of billions of years. 

Lyell was able to account for the disappearance of species in the geological 

record but not for the appearance of new species. A solution to this problem 

was provided by Charles Darwin (and Wallace) with his theory of evolution by 

natural selection. Darwin’s theory also required vast periods of time for 

operation. For natural selection to operate, the age of the Earth had to be 

measured in many hundreds of millions of years. 

Such demands for vast amounts of time run counter to the laws of 

thermodynamics. Every day the sun radiates immense amounts of energy. By 

the law of conservation of energy there must be some source of this energy. 

Thomson, as one of the founders of thermodynamics, was fascinated by this 

problem. Chemical processes (such as the burning of coal) are totally 

insufficient as a source of energy and Thomson was forced to conclude that 

gravitational potential energy was turned into heat as the sun contracted. On 

this assumption his calculations showed that the Sun (and therefore the Earth) 

was around 100 million years old. 
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However, Thomson’s most compelling argument concerned the Earth rather 

than the Sun. It is well known that the temperature of the Earth  increases with 

depth and 

this implies a continual loss of heat from the interior, by conduction 

outwards through or into the upper crust. Hence, since the upper crust does 

not become hotter from year to year there must be a…loss of heat from the 

whole earth. It is possible that no cooling may result from this loss of heat 

but only an exhaustion of potential energy which in this case could scarcely 

be other than chemical. 

Since there is no reasonable mechanism to keep a chemical reaction going at a 

steady pace for millions of years, Thomson concluded “…that the earth is 

merely a warm chemically inert body cooling”. Thomson was led to believe 

that the Earth was a solid body and that it had solidified at a more or less 

uniform temperature. Taking the best available measurements of the 

conductivity of the Earth and the rate of temperature change near the surface, 

he arrived at an estimate of 100 million years as the age of the Earth 

(confirming his calculations of the Sun’s age). 

The problems posed to Darwin’s theory of evolution became serious as 

Thomson’s arguments sank in. In the fifth edition of The Origin of Species, 

Darwin attempted to adjust to the new time scale by allowing greater scope for 

evolution by processes other than natural selection. Darwin was forced to ask 

for a suspension of judgment of his theory and in the final chapter he added 

With respect to the lapse of time not having been sufficient since our planet 

was consolidated for the assumed amount of organic change, and this 

objection, as argued by [Thomson], is probably one of the gravest yet 

advanced, I can only say, firstly that we do not know at what rate species 

change as measured by years, and secondly, that many philosophers are not 

yet willing to admit that we know enough of the constitution of the universe 

and of the interior of our globe to speculate with safety on its past duration. 

(Darwin, The Origin of Species, Sixth Edition, p.409) 
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The chief weakness of Thomson’s arguments was exposed by Huxley 

…this seems to be one of the many cases in which the admitted accuracy of 

mathematical processes is allowed to throw a wholly inadmissible 

appearance of authority over the results obtained by them. Mathematics 

may be compared to a mill of exquisite workmanship, which grinds you stuff 

of any degree of fineness; but nevertheless, what you get out depends on 

what you put in; and as the grandest mill in the world will not extract 

wheat-flour from peascods, so pages of formulae will not get a definite 

result out of loose data. 

(Quarterly Journal of the Geological Society of London, Vol. 25, 1869) 

However, Thomson’s estimates were the best available and for the next thirty 

years geology took its time from physics, and biology took its time from 

geology. But Thomson and his followers began to adjust his first estimate 

down until at the end of the nineteenth century the best physical estimates of 

the age of the Earth and Sun were about 20 million years whilst the minimum 

the geologists could allow was closer to Thomson’s original 100 million years. 

Then in 1904 Rutherford announced that the radioactive decay of radium was 

accompanied by the release of immense amounts of energy and speculated that 

this could replace the heat lost from the surface of the Earth. 

The discovery of the radioactive elements…thus increases the possible limit 

of the duration of life on this planet, and allows the time claimed by the 

geologist and biologist for the process of evolution. 

(Rutherford quoted in Burchfield, p.164) 

A problem for the geologists was now replaced by a problem for the physicists. 

The answer was provided by a theory which was just beginning to be gossiped 

about. Einstein’s theory of relativity extended the principle of conservation of 

energy by taking matter as a form of energy. It is the conversion of matter to 

heat which maintains the Earth’s internal temperature and supplies the energy 

radiated by the sun. The ratios of lead isotopes in the Earth compared to 

meteorites now leads geologists to give the Earth an age of about 4.55 billion 

years. 

A variant of the 
adage: 
“Garbage in equals 
garbage out”. 
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The Transatlantic Cable 

The invention of the electric telegraph in the 1830s led to a network of 

telegraph wires covering England, western Europe and the more settled parts of 

the USA. The railroads, spawned by the dual inventions of steam and steel, 

were also beginning to crisscross those same regions. It was vital for the 

smooth and safe running of the railroads, as well as the running of empires, to 

have speedy communication. 

Attempts were made to provide underwater links between the various separate 

systems. The first cable between Britain and France was laid in 1850. The 

operators found the greatest difficulty in transmitting even a few words. After 

12 hours a trawler accidentally caught and cut the cable. A second, more 

heavily armoured cable was laid and it was a complete success. The short lines 

worked, but the operators found that signals could not be transmitted along 

submarine cables as fast as along land lines without becoming confused. 

In spite of the record of the longer lines, the American Cyrus J. Fields proposed 

a telegraph line linking Europe and America. Oceanographic surveys showed 

that the bottom of the Atlantic was suitable for cable laying. The connection of 

existing land telegraph lines had produced a telegraph line of the length of the 

proposed cable through which signals had been passed extremely rapidly. The 

British government offered a subsidy and money was rapidly raised. 

Faraday had predicted signal retardation but he and others like Morse had in 

mind a model of a submarine cable as a hosepipe which took longer to fill with 

water (signal) as it got longer. The remedy was thus to use a thin wire (so that 

less electricity was needed to charge it) and high voltages to push the signal 

through. Faraday’s opinion was shared  by the electrical adviser to the project, 

Dr Whitehouse (a medical doctor). 

Thomson’s researches had given him a clearer mathematical picture of the 

problem. The current in a telegraph wire in air is approximately governed by 

the wave equation. A pulse on such a wire travels at a well defined speed with 

no change of shape or magnitude with time. Signals can be sent as close 

together as the transmitter can make them and the receiver distinguish them. 
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In undersea cables of the type proposed, capacitive effects dominate and the 

current is approximately governed by the diffusion (i.e. heat) equation. This 

equation predicts that electric pulses will last for a time that is proportional to 

the length of the cable squared. If two or more signals are transmitted within 

this time, the signals will be jumbled at the receiver. In going from submarine 

cables of 50 km length to cables of length 2400 km, retardation effects are 

2500 times worse. Also, increasing the voltage makes this jumbling (called 

intersymbol interference) worse. Finally, the diffusion equation shows that the 

wire should have as large a diameter as possible (small resistance). 

Whitehouse, whose professional reputation was now involved, denied these 

conclusions. Even though Thomson was on the board of directors of Field’s 

company, he had no authority over the technical advisers. Moreover the 

production of the cable was already underway on principles contrary to 

Thomson’s. Testing the cable, Thomson was astonished to find that some 

sections conducted only half as well as others, even though the manufacturers 

were supplying copper to the then highest standards of purity. 

Realising that the success of the enterprise would depend on a fast, sensitive 

detector, Thomson set about to invent one. The problem with an ordinary 

galvanometer is the high inertia of the needle. Thomson came up with the 

mirror galvanometer in which the pointer is replaced by a beam of light. 

In a first attempt in 1857 the cable snapped after 540 km had been laid. In 

1858, Europe and America were finally linked by cable. On 16 August it 

carried a 99-word message of greeting from Queen Victoria to President 

Buchanan. But that 99-word message took 16½ hours to get through. In vain, 

Whitehouse tried to get his receiver to work. Only Thomson’s galvanometer 

was sensitive enough to interpret the minute and blurred messages coming 

through. Whitehouse ordered that a series of huge two thousand volt induction 

coils be used to try to push the message through faster – after four weeks of 

this treatment the insulation finally failed; 2500 tons of cable and £350 000 of 

capital lay useless on the ocean floor. 
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In 1859 eighteen thousand kilometres of undersea cable had been laid in other 

parts of the world, and only five thousand kilometres were operating. In 1861 

civil war broke out in the United States. By 1864 Field had raised enough 

capital for a second attempt. The cable was designed in accordance with 

Thomson’s theories. Strict quality control was exercised: the copper was so 

pure that for the next 50 years ‘telegraphist’s copper’ was the purest available. 

Once again the British Government supported the project – the importance of 

quick communication in controlling an empire was evident to everybody. The 

new cable was mechanically much stronger but also heavier. Only one ship 

was large enough to handle it and that was Brunel’s Great Eastern. She was 

fives time larger than any other existing ship. 

This time there was a competitor. The Western Union Company had decided to 

build a cable along the overland route across America, Alaska, the Bering 

Straits, Siberia and Russia to reach Europe the long way round. The 

commercial success of the cable would therefore depend on the rate at which 

messages could be transmitted. Thomson had promised the company a rate of 

8 or even 12 words a minute. Half a million pounds was being staked on the 

correctness of the solution of a partial differential equation. 

In 1865 the Great Eastern laid cable for nine days, but after 2000 km the cable 

parted. After two weeks of unsuccessfully trying to recover the cable, the 

expedition left a buoy to mark the spot and sailed for home. Since 

communication had been perfect up until the final break, Thomson was 

confident that the cable would do all that was required. The company decided 

to build and lay a new cable and then go back and complete the old one. 

Cable laying for the third attempt started on 12 July 1866 and the cable was 

landed on the morning of the 27th. On the 28th the cable was open for business 

and earned £1000. Western Union ordered all work on their project to be 

stopped at a loss of $3 000 000. 
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On 1 September after three weeks of effort the old cable was recovered and on 

8 September a second perfect cable linked America and Europe. A wave of 

knighthoods swept over the engineers and directors. The patents which 

Thomson held made him a wealthy man. 

For his work on the transatlantic cable Thomson was created Baron Kelvin of 

Largs in 1892. The Kelvin is the river which runs through the grounds of 

Glasgow University and Largs is the town on the Scottish coast where 

Thomson built his house. 

Other Achievements 

Thomson worked on several problems associated with navigation – sounding 

machines, lighthouse lights, compasses and the prediction of tides. Tides are 

primarily due to the gravitational effects of the Moon, Sun and Earth on the 

oceans but their theoretical investigation, even in the simplest case of a single 

ocean covering a rigid Earth to a uniform depth, is very hard. Even today, the 

study of only slightly more realistic models is only possible by numerical 

computer modelling. Thomson recognised that the forces affecting the tides 

change periodically. He then approximated the height of the tide by a 

trigonometric polynomial – a Fourier series with a finite number of terms. The 

coefficients of the polynomial required calculation of the Fourier series 

coefficients by numerical integration – a task that “…required not less than 

twenty hours of calculation by skilled arithmeticians.” To reduce this labour 

Thomson designed and built a machine which would trace out the predicted 

height of the tides for a year in a few minutes, given the Fourier series 

coefficients. 

Thomson also built another machine, called the harmonic analyser, to perform 

the task “which seemed to the Astronomer Royal so complicated and difficult 

that no machine could master it’ of computing the Fourier series coefficients 

from the record of past heights. This was the first major victory in the struggle 

“to substitute brass for brain” in calculation. 

There are many 
other factors 
influencing local 
tides – such as 
channel width – 
which produce 
phenomena akin to 
resonance in the 
tides. One example 
of this is the narrow 
Bay of Fundy, 
between Nova 
Scotia and New 
Brunswick, where 
the tide can be as 
high as 21m. In 
contrast, the 
Mediterranean Sea 
is almost tideless 
because it is a 
broad body of water 
with a narrow 
entrance. 

Michelson (of 
Michelson-Morley 
fame) was to build a 
better machine that 
used up to 80 
Fourier series 
coefficients. The 
production of ‘blips’ 
at discontinuities by 
this machine was 
explained by Gibbs 
in two letters to 
Nature. These ‘blips’ 
are now referred to 
as the “Gibbs 
phenomenon”. 
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Thomson introduced many teaching innovations to Glasgow University. He 

introduced laboratory work into the degree courses, keeping this part of the 

work distinct from the mathematical side. He encouraged the best students by 

offering prizes. There were also prizes which Thomson gave to the student that 

he considered most deserving. 

Thomson worked in collaboration with Tait to produce the now famous text 

Treatise on Natural Philosophy which they began working on in the early 

1860s. Many volumes were intended but only two were ever written which 

cover kinematics and dynamics. These became standard texts for many 

generations of scientists. 

In later life he developed a complete range of measurement instruments for 

physics and electricity. He also established standards for all the quantities in 

use in physics. In all he published over 300 major technical papers during the 

53 years that he held the chair of Natural Philosophy at the University of 

Glasgow. 

During the first half of Thomson's career he seemed incapable of being wrong 

while during the second half of his career he seemed incapable of being right. 

This seems too extreme a view, but Thomson's refusal to accept atoms, his 

opposition to Darwin's theories, his incorrect speculations as to the age of the 

Earth and the Sun, and his opposition to Rutherford's ideas of radioactivity, 

certainly put him on the losing side of many arguments later in his career. 

William Thomson, Lord Kelvin, died in 1907 at the age of 83. He was buried 

in Westminster Abbey in London where he lies today, adjacent to Isaac 

Newton. 
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Introduction 

A comparator uses the op-amp in an open-loop mode. For a very small input 

voltage, the output will saturate close to one of the power supply voltages due 

to the very large gain of the op-amp. 

Positive feedback can be applied to a comparator to create hysteresis. This can 

be used to “clean-up” noisy digital waveforms, amongst other applications, and 

is an example of a bistable circuit (it has two stable states). It can also be used 

to make an astable multivibrator. The output will oscillate at a rate which can 

be set by a few passive components. 

A comparator with hysteresis can also be used to generate simple waveforms 

such as square waves and triangle waves. With proper filtering, sinusoids can 

also be generated. 
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19.1 Open-Loop Comparator 

A comparator is an example of a non-linear op-amp circuit. It is a switching 

device that produces a high or low output, depending on which of the two 

inputs is larger. A simple comparator can be made from an op-amp with no 

feedback connection (open-loop) as shown in the figure below: 

 

ov
vi

vi

ov

(a) circuit (b) transfer characteristic

positive saturation

negative saturation

 

 

Figure 19.1 

Since the open-loop voltage gain of an op-amp is very large, when there is no 

feedback an input voltage difference of only a few microvolts is sufficient to 

drive the output voltage to either its maximum ( OHV ) or to its minimum value 

( OLV ). These values are determined by the op-amp supply voltages and its 

internal structure; their magnitudes are always slightly lower than that of their 

respective supply values ( CCOH VV  , EEOL VV  ). 

This feature is used in comparator circuits, when one wishes to know whether a 

given input is larger or smaller than a reference value. It is especially useful in 

digital applications, such as in analog to digital converters (ADCs). 

In practical applications that require a comparator, an op-amp should not be 

used. Semiconductor manufacturers produce specific integrated circuit 

comparators that have a different output stage to op-amps and are specifically 

designed to optimise operation in “saturation”. 
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19.2 Comparator with Hysteresis (Schmitt Trigger) 

The Schmitt trigger shown in Figure 19.2 is an extension of the comparator. 

The positive feedback and absence of negative feedback ensures that the output 

will always be at either its highest ( OHV ) or its lowest ( OLV ) possible value. 

The voltage divider formed by 
1R  and 

2R  sets 
V  at a fraction of the output. 

 

v i
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(a) circuit (b) transfer characteristic
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Figure 19.2 

If Vvi , the output is negative, if Vvi  the output is positive. Each time the 

difference Vvi  changes sign, the polarity of the output, and consequently of 

V , changes. No further change is possible until iv  reaches the new reference 

value V . The result is that the output may be at either extreme value ( OHV  or 

OLV ) for the same value of the input; whether the output is positive or negative 

is determined by its previous state. The circuit therefore possesses memory. 

The consequence of this is that the voltage transfer characteristic of a Schmitt 

trigger follows a different curve, depending on whether the independent 

variable is increasing or decreasing. This property is called hysteresis and is 

depicted in Figure 19.2. Since the circuit has two stable states, it is also called a 

bistable circuit. 
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The thresholds for a change of an output state can be calculated as: 

21

1

21

1

RR

R
VV

RR

R
VV

OHTH

OLTL







  

(19.1) 

It is important to note that in order for the output to change state all that is 

needed is a short departure of the input voltage above or below the respective 

threshold. This initiates the regenerative process that results in changing the 

state. 

The figure below shows a noninverting Schmitt trigger with an adjustable 

reference voltage. 
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Figure 19.3 

Using superposition, we can write the expression for v : 
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(19.2) 

Let’s assume that the circuit is in the positive stable state with OHo Vv  . Then, 

in order to change this state to negative output, we must make REFVVv   . 
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This means we need to apply: 
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(19.3) 

Similarly, to change the state from low to high, the input voltage must satisfy 

(even for a brief moment) the following inequality: 

2

1

2

1
REF 1

R

R
V

R

R
VVv OLTHi 










 
(19.4) 

19.3 Astable Multivibrator (Schmitt Trigger Clock) 

When a negative feedback path consisting of a resistor R and a capacitor C is 

added to the Schmitt trigger in Figure 19.2, the new circuit has no stable state. 

The output will continuously switch between its two extremes at a rate 

determined by the time constant RCT  . The circuit is shown below: 

 

vo

R

R

2

1

R

C

 

 

Figure 19.4 

Immediately after a transition of the output to either its positive extreme ( OHV ) 

or its negative extreme ( OLV ), the RC network will begin an exponential 

transition; the capacitor will begin to charge or discharge, depending on its 
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previous state, with its voltage approaching the new value of ov . When the 

capacitor voltage 
v  passes the value of 

v , which is determined by 
1R  and 

2R , the op-amp output will suddenly switch to its opposite extreme. The 

capacitor voltage will then begin to charge in the opposite direction until 

switching occurs again. The process will be repeated indefinitely, giving a 

square-wave output without the need for an input voltage source. 
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t
t1 t20
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VOH R1
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VOL R1
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Figure 19.5 

Suppose that at 0t  the output voltage is OLV , and the capacitor voltage v  

has just fallen below  211 RRRVv OL  . The output will switch from OLV  to 

OHV  because   vv  has just become positive. The capacitor voltage begins to 

increase, and is given by: 

  0
 

21

1 














teV
RR

R
VVtv RC

t

OHOLOHC  (19.5) 

Substitution of 0t  shows that the above equation indeed satisfies the initial 

condition    2110 RRRVv OLC  . When t , we obtain   OHC
t

Vtv 


lim . 

So, the capacitor voltage begins to increase toward OHV , reaching 

 211 RRRVv OH   at time 1t . 
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Solving the above equation for this condition, one gets: 
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(19.6) 

At this point 
  vv  changes sign and Cv   begins to decrease, now governed 

by the equation: 

  1

 

21

1
1

tteV
RR

R
VVtv RC

tt

OLOHOLC 
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At time 2t , Cv  reaches    2112 RRRVtv OLC  . Solving the above equation for 

this condition, one gets: 
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(19.8) 

The period of the output waveform is just 20 tT  . Therefore we have: 
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(19.9) 

In the special case of 21 RR   and OHOL VV  , the above equation simplifies to 

a function of only R and C: 

RCRCT 2.29ln0   (19.10) 
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19.4 Waveform Generator 

The exponential waveform (across the capacitor) generated in the astable 

circuit of Figure 19.4 can be changed to triangular by replacing the lowpass RC 

circuit with an integrator (the integrator is, after all, a lowpass circuit with a 

corner frequency at DC). The integrator causes linear charging and discharging 

of the capacitor, thus producing a triangular waveform. The resulting circuit is 

shown below: 

 

R2

R1

R

C

vo1

vo2  

 

Figure 19.6 

This circuit oscillates and generates a square waveform at the output of the 

noninverting Schmitt trigger, 1ov , and a triangular waveform at the output of 

the inverting integrator, 2ov . 

Triangular and 
square waveform 
generator 
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Let the output of the bistable circuit be at OHV . A current equal to RVOH  will 

go into the resistor R and then on to the capacitor C, causing the output of the 

integrator to linearly decrease with the slope RCVOH , as shown in the figure 

below. This will continue until the integrator output reaches the lower 

threshold, 
TLV , of the bistable circuit. 
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Figure 19.7 

At this point the bistable circuit will switch states, its output becoming negative 

and equal to OLV . At this moment the current through R will reverse direction 

and its value will become equal to RVOL . The output of the integrator will 

therefore linearly increase with time. This will continue until the integrator 

output voltage reaches the positive threshold of the Schmitt trigger, THV . The 

Schmitt trigger switches states again, starting the new cycle. 
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From Figure 19.7 it is relatively easy to derive an expression for the period 0T  

of the square and triangular waveforms.  During the interval 
1T  we have: 

OH

TLTHOHTLTH
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VV 
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(19.11) 

Similarly, during 
2T  we have: 
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(19.12) 

Thus, to obtain symmetrical waveforms we need a bistable circuit with 

OHOL VV  . The oscillation frequency is equal to: 
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19.5 Summary 

 An op-amp comparator with hysteresis is known as a Schmitt trigger: 
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 The astable multivibrator is a simple circuit based on the Schmitt trigger 

that can produce a square wave at low frequencies: 
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 A waveform generator circuit that utilises a Schmitt trigger and produces 

both triangular and square waveforms is: 
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Introduction 

The use of both capacitors and inductors in a circuit gives rise to an important 

phenomenon – the exchange of electric and magnetic stored energy in a 

sinusoidal fashion between the ideal elements without dissipation. The peak 

energy stored in the elements reaches a maximum when a sinusoidal forcing 

function drives the circuit into resonance at a frequency close to the natural 

frequency of the circuit. 

The resonance phenomenon occurs in many natural systems, and is the result 

of systems being able to store energy in different ways. For example, a 

pendulum, without friction, will oscillate forever once set in motion, and there 

will be a continual exchange of kinetic energy (the velocity of the pendulum 

mass) and potential energy (stored by virtue of the position of the pendulum in 

a gravitational field) as the pendulum oscillates in a sinusoidal fashion. 

In an electric circuit the resonant condition can be used to create a highly 

“selective” circuit in the sense that a narrow band of frequencies of the forcing 

function will cause the circuit response to be large whilst all other frequencies 

result in a response which is much smaller. This property of second-order 

circuits is not exhibited by passive first-order circuits (or cascades of them). 

The “width of the magnitude response”, or bandwidth B,  for a second-order 

circuit will be seen to be related to a quantity called the quality factor, 0Q . The 

quality factor, together with the undamped natural frequency, 0 , uniquely 

determine the properties of many second-order systems. These parameters can 

be determined for a parallel passive RLC circuit, an electronic op-amp circuit, a 

mechanical system, a hydraulic system, etc. Thus, it pays to express second-

order frequency response quantities in terms of 0  and 0Q  for the sake of 

uniformity across the disciplines. 
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20.1 Resonance 

A system being driven by a sinusoidal forcing function will produce a 

sinusoidal steady-state response at the frequency of the driving force. The 

amplitude of the response may be larger than the forcing function when the 

frequency of the driving force is near a “natural frequency of oscillation” of the 

system.1 This dramatic increase in amplitude near a natural frequency is called 

resonance, and we denote the frequency at which it occurs as r , which is 

called the resonance frequency of the system.2 

The phenomenon of resonance is a familiar one (at least qualitatively). For 

example, a child using a swing realizes that if the pushes are properly timed, 

the swing can move with a very large amplitude. The quartz crystal in a 

computer or watch is made to mechanically vibrate at a resonance frequency 

which is determined by its “cut” (its shape and size). A further illustration is 

furnished by the shattering of a crystal wineglass when exposed to a musical 

tone of the right pitch. The condition of resonance may or may not be 

desirable, depending on the circumstances. 

The reason for large-amplitude oscillations at the resonance frequency is that 

energy is being transferred to the system under favourable conditions. In fact, 

for a parallel RLC circuit, maximum power will be dissipated by the circuit 

when the forcing function’s voltage and current are in phase – i.e. the circuit 

appears to be purely resistive. This leads us to a precise definition for a 

resonance frequency, r . 

                                                 

1 A natural frequency of oscillation only occurs in systems that are second-order or higher. 

Even then, a large amplitude response will occur only under certain conditions. 

2 This assumes that one natural frequency gives rise to one resonance frequency. Certain 

topologies of circuit components can give rise to two resonance frequencies even though there 

is only one natural frequency. Circuits and systems of high-order can have multiple natural 

frequencies and consequently may have multiple resonance frequencies. Also, even though the 

amplitude response is very large at a resonance frequency, it is not necessarily the maximum 

amplitude response – it depends on how we define “response”. 
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In a two-terminal electrical network containing at least one inductor and one 

capacitor, we define resonance to be the condition which exists when the input 

impedance of the network is purely resistive: 

 

(    )Z j

circuit

n -orderth

(      2)n

at resonance when Z is real



 

 

Figure 20.1 

The resonant condition can be achieved by adjusting any circuit parameter. We 

normally devote our attention to the case for which   is the variable, and since 

we have denoted the resonance frequency as r , then resonance occurs if: 

( )  0Im =rjZ  (20.1) 

Thus, a two-terminal circuit is said it be in resonance when the sinusoidal 

voltage and current at the circuit input terminals are in phase. 

This definition also implies that at resonance: 

( )  0Im =rjY  (20.2) 

since R=Z  is real at resonance and therefore GR ==1Y  is real also. 

It should be noted that the resonance condition ( )  0Im =rjZ  may not be 

satisfied at any real positive frequency r . Thus, resonance is a condition 

which a circuit may achieve, but only if its topology and component values 

allow it. 

Resonance defined 
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20.2 Parallel Resonance 

We shall apply the definition of resonance to the parallel RLC circuit: 
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Figure 20.2 

The admittance offered to the ideal current source is: 
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(20.3) 

Obviously, if the impedance is to be purely resistive at resonance, then so is the 

admittance. Thus, resonance occurs when: 

0
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r
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(20.4) 

Hence, the resonance frequency for this simple case is: 

0

1
 ==

LC
r  

(20.5) 

This resonance frequency is identical to the undamped natural frequency that 

was defined whilst considering the step-response of the parallel RLC circuit. 

Let us examine the magnitude of the response, the voltage V  as indicated in 

Figure 20.2. For a constant-amplitude sinusoidal current source input, the 

response is proportional to the input impedance Z . 



20.6 

Index Parallel Resonance PMcL   

20 - The Second-Order Frequency Response  2018 

The admittance as a function of   can be written as: 
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The response is therefore given by: 
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(20.7) 

The response starts at zero, reaches a maximum value at the resonance 

frequency, and then drops again to zero as   becomes infinite: 
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Figure 20.3 

The frequency response is referred to as a bandpass response, since it passes 

only “midband” frequencies whilst attenuating low and high frequencies. 

Typical magnitude 
and phase response 
of a second-order 
bandpass circuit 
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To show that the maximum response is 
sR I , and that this occurs at resonance, 

we could take the magnitude of Eq. (20.7), differentiate and equate to zero to 

obtain the frequencies of any relative maxima and minima, and then use these 

values to obtain the magnitude of the response. However, there is a simpler 

way. 

The admittance contains a constant conductance and a susceptance which has a 

minimum magnitude (of zero) at resonance. The minimum admittance 

magnitude therefore occurs at resonance, and it is R1 . Hence, the maximum 

impedance magnitude is R , and it occurs at resonance. 

At the resonance frequency, therefore, the voltage across the parallel circuit is 

simply sRI , and we can see that the source current goes through the resistor. 

However, there is also a current in L and C, since there is a voltage across 

them: 

II
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rCr

r

Lr





=

=

 
(20.8) 

Since LC rr  =1  at resonance, we find that: 

LrCr II −=  (20.9) 

and therefore 0II =+ CrLr . We thus have a circulating current around the LC 

part of the circuit which is the cause of the never-ending exchange of energy 

between the inductor and the capacitor at resonance. 

Although the height of the response curve depends only upon the value of R, 

the width of the curve or the steepness of the sides depends upon the other two 

element values also. The width of the response curve is most easily expressed 

when we introduce a very important parameter, the quality factor Q. 
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20.2.1 Phasor Diagram of the Parallel RLC Circuit 

It is instructive to illustrate resonance with the aid of phasor diagrams. The 

figure below shows phasor diagrams, as well as illustrations of the sinusoidal 

currents, for the parallel RLC circuit at three different frequencies: 
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Figure 20.4 
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20.3 Quality Factor 

We define quality factor, Q, as: 

periodper lost energy  total

storedenergy  maxmium
2=Q

 
(20.10) 

The constant 2  is put into the definition in order to simplify the more useful 

expressions for Q that occur in the study of second-order systems. 

For the parallel RLC circuit, energy is only lost in the resistor. We can 

therefore express Q in terms of the instantaneous energy associated with each 

of the reactive elements and the average power dissipated in the resistor: 
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(20.11) 

We will apply this definition and determine the value of Q at the resonance 

frequency 0 =r , which is denoted by 0Q . We select the forcing function: 

( ) ( )tIti m 0cos =  (20.12) 

and obtain the corresponding voltage at resonance: 

( ) ( ) ( )tRItRitv m 0cos ==  (20.13) 

The instantaneous energy stored in the capacitor is: 

( ) ( )t
ICR

Cvtw m
C 0

2
22

2

2
1 cos

2
==

 
(20.14) 

 



20.10 

Index Quality Factor PMcL   

20 - The Second-Order Frequency Response  2018 

The instantaneous energy stored in the inductor is: 
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(20.15) 

The total instantaneous energy stored is therefore constant: 
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and this constant value must also be the maximum value. 

In order to find the energy lost in the resistor in one period, we take the average 

power absorbed by the resistor: 

2

2
1

mR RIP =  (20.17) 

and multiply by one period, obtaining: 
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We thus find the quality factor at resonance: 
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This equation holds only for the simple parallel RLC circuit. 
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Equivalent expressions for 0Q  which are often useful may be obtained by 

substitution: 

L

C
R

X

R
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R
CRQ

LC

====
00
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(20.20) 

It is apparent that 0Q  is a dimensionless constant which is a function of all 

three circuit elements in the parallel resonant circuit, and it turns out that it can 

be evaluated from a knowledge of the natural response, as will be illustrated 

later. 

A useful interpretation of 0Q  is obtained when we inspect the capacitor and 

inductor currents at resonance: 

IIII 00 jQCRjLrCr ==−=   (20.21) 

Each is 0Q  times the source current in magnitude and they are 180  out of 

phase. Thus if we apply 1 mA at the resonance frequency to a parallel resonant 

circuit with a 0Q  of 50, we find 1 mA in the resistor, and 50 mA in both the 

inductor and capacitor. A parallel resonant circuit can therefore act as a current 

amplifier (but not a power amplifier, since it is a passive network). 
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20.4 Second-Order Circuit Relations 

The two parameters   and d  were introduced in connection with the natural 

response of a second-order circuit. These two parameters can be related to the 

undamped natural frequency, 0 , and the quality factor at resonance, 0Q . 

We have: 

( )CCQRC 002

1

2

1


 ==

 
(20.22) 

and thus: 

0

0

2Q


 =

 
(20.23) 

We also have: 

22

0  −=d  
(20.24) 

and thus: 
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1
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−=

Q
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(20.25) 

When we analyze second-order circuits in the time-domain, we usually resort 

to using  , 0  and d  (for an underdamped circuit). When we discuss 

second-order circuits in the frequency-domain, we usually use 0  and 0Q . 
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20.5 Bandwidth 

The “width” of the response curve for the parallel RLC circuit can be defined 

more carefully and related to 0Q . 
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Figure 20.5 

The two half-power frequencies 1  and 2  are those frequencies at which the 

magnitude of the voltage response is 21  times its maximum value (or -3 dB 

down from the peak). 

We select 1  as the lower half-power frequency and 2  as the upper half-

power frequency. These names arise from the fact that a voltage which is 21  

times the resonance voltage is equivalent to a squared voltage which is one-half 

the squared voltage (and therefore the power) at resonance. 

The bandwidth of a resonant circuit is defined as the difference of these two 

half-power frequencies: 

-1

12 rads −=B  (20.26) 

We can also refer to bandwidth as: 

Hz12 ffB −=  (20.27) 

The context of the analysis or design makes the units of bandwidth clear. 
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The use of half-power frequencies in the definition of bandwidth is an arbitrary 

but widely accepted criterion used by the engineering profession. The concept 

of bandwidth is used in many other electrical systems and is a very important 

parameter in the design of filters, amplifiers and electrical systems in general. 

One should also be aware that bandwidth is only defined for systems with a 

single peak response – otherwise the definition is ambiguous. 

We think of this bandwidth as the “width” of the response curve, even though 

the curve actually extends from 0=  to = . 

We can express the bandwidth B in terms of 0  and 0Q . The admittance of the 

parallel RLC circuit is: 
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(20.28) 

The magnitude of the admittance at resonance is R1 , and we seek frequencies 

at which the magnitude reaches R2  to achieve half-power. This must occur 

when the imaginary part of the bracketed quantity has a magnitude of unity. 

Thus: 
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(20.29) 
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Solving, we have: 
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(20.30) 

Although individually complicated, their difference provides a very simple 

formula for the bandwidth: 

1

0

0
12 rads−=−=

Q
B




 
(20.31) 

This equation tells us that 0Q  and B are inversely related, as shown below: 
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Figure 20.6 

Bandwidth defined 
for a parallel 
resonant circuit 

The inverse 
relationship between  

B  and 
0Q  
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Circuits possessing a higher 0Q  have a narrower bandwidth – they have greater 

frequency selectivity or “higher quality”. Such circuits were used extensively in 

receivers of the old analog broadcast systems, such as AM and FM radio and 

TV, to “tune into a station” whilst rejecting all others. 

If we multiply the two half-power frequencies together, we can show that: 

2

021  =  (20.32) 

and therefore: 

210  =  (20.33) 

That is, the resonance frequency is the geometric mean of the two half-power 

frequencies. 

For high-Q circuits ( 50 Q ), we can show that: 

22

1

4

1
1 0

0

2

0

02,1

B

QQ
  








+=

 
(20.34) 

and: 

2

21
210




+
=

 
(20.35) 

That is, for high-Q circuits, each half-power frequency is located 

approximately one-half bandwidth from the resonance frequency – the 

resonance frequency is approximately the arithmetic mean of the half-power 

frequencies. 
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20.6 Series Resonance 

The series resonant circuit finds less use than the parallel circuit. Consider the 

series RLC circuit below: 
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Figure 20.7 

We can derive the important equations for the series resonant circuit by using a 

“dual language” on the parallel circuit. We find that resonance occurs when: 

0

1
 ==

LC
r  

(20.36) 

which is the same as for the parallel RLC circuit. However, the quality factor at 

resonance for the series RLC circuit is different: 
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If the response is taken across the resistor so that it is proportional to the 

current, then we achieve a similar response to that of the parallel resonant 

circuit (a bandpass response). In this case the equations for the half-power 

frequencies, the bandwidth, and the resonance frequency are the same as 

before: 
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(20.38) 
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(20.39) 

210  =
 

(20.40) 

The series resonant circuit is characterized by a low impedance at resonance. 

The series resonant circuit provides inductor and capacitor voltages which are 

greater than the source voltage by the factor 0Q . The series circuit thus 

provides voltage amplification at resonance. 
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20.7 Other Resonant Forms 

The parallel and series RLC circuits of the previous two sections represent 

idealized resonant circuits – they are useful approximations to real physical 

circuits where the resistance of the wire making up the inductor and the losses 

in the capacitor’s dielectric are small. The network shown below is a 

reasonably accurate model for the parallel combination of a physical inductor, 

capacitor and resistor. The resistor LR  represents the ohmic losses, core losses, 

and radiation losses of the physical coil. The resistor R  represents the losses in 

the dielectric within the physical capacitor as well as the resistance of the 

physical resistor that is placed in parallel with the inductor and capacitor. 
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Figure 20.8 

In this circuit, there is no way to combine elements and produce a simpler 

model. We have to resort to first principles to determine its resonant condition. 

The definition of resonance is unchanged, and we determine the resonance 

frequency by setting the imaginary part of the admittance to zero: 
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(20.41) 
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Realizing the denominator of the inductor branch, we get: 
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(20.42) 

Thus: 
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L
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(20.43) 

and: 

2
1









−=

L

R

LC

L
r  

(20.44) 

We note that r  is less than LC1 , but sufficiently small values of the ratio 

LRL  may result in a negligible difference between r  and LC1 .  

The maximum magnitude of the input impedance is not R , and it does not 

occur at r  (or at LC1= ). The proof is algebraically cumbersome, but 

the theory is straightforward (set the derivative of the impedance magnitude to 

zero to find relative maxima and minima, etc.). 

It should also be pointed out that if LCLRL 1  then resonance will never 

occur, since Eq. (20.44) results in an imaginary quantity. Thus, we must be 

careful in any analysis we undertake to check the conditions under which a 

circuit may exhibit the phenomenon of resonance. 
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EXAMPLE 20.1 Resonance in a Circuit 

Consider the simple RLC circuit shown below: 
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By KVL, for the mesh on the left: 

0=−+ svv
dt

di
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while, by KCL, at node v: 
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Substituting the second expression into the first, we get: 
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Thus we see that the undamped natural frequency is: 
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However, the impedance seen by the source is: 
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The imaginary part of Z vanishes when: 
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We can see that neither of these resonance frequencies is equal to the 

undamped natural frequency, i.e. 0 r . The two resonance frequencies are: 
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Since the frequency of the source is -1rads 4= , the circuit is in resonance. 

The circuit is shown below in the frequency-domain: 
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By nodal analysis: 

22

1

jj −
+=

− VVV
 

from which: 

−=


=
+

= 452
452

2

1

2

j
V  

and: 

( ) ( ) ( )
=

+−

+−
=

++−
=

+−
=

−
= 01

1

1111211

j

j

j

jj

j

j

j

V
I  
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and: 
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The energy stored in the inductor is: 

( ) ( ) ( )ttLitwL 4cos
8

1

2

1 22 ==  

and the energy stored in the capacitor is: 
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Using the trigonometric identity: 
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the total stored energy is: 
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and this has a maximum value of: 
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The power dissipated by the resistor is: 
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and the energy lost in a period is: 
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Thus the 0Q  of the circuit is: 

( )( )
707.1

2

1
1

4

22161
20 +=

+
=


Q  



20.25 

PMcL The Second-Order Lowpass Frequency Response Index    

2018  20 - The Second-Order Frequency Response 

20.8 The Second-Order Lowpass Frequency Response 

Consider the series RLC circuit again, but this time the response is taken as the 

voltage across the capacitor: 
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Figure 20.9 

In this case the frequency response is given by the voltage divider rule: 
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(20.45) 

Noting that LC10 =  and RLQ 00 =  for the series RLC circuit, this can be 

written as: 
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(20.46) 

This has the form of a second-order lowpass frequency response – it passes low 

frequencies but attenuates high frequencies. 
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The magnitude response is: 
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and the phase is: 
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(20.48) 

The magnitude and phase functions are plotted below for 25.10 =Q : 
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Figure 20.10 
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20.8.1 Peak Frequency 

The peak of the frequency response does not correspond to the resonance 

frequency 0  (nor does it have any relation with d , which arises in the 

description of the time-domain natural response). To obtain the peak of the 

frequency response, we find the relative maximum in the usual way. 

To simplify the algebra, we let: 

( )20=u  (20.49) 

Then the magnitude response can be written as: 
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where: 
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We want to find p  so that ( ) max→pjT , or equivalently, ( ) min→puG . 

To find u  that minimizes ( )uG , we let: 
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(20.52) 

Solving this for u  we get: 

2

02

1
1

Q
u p −=

 
(20.53) 
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Thus, the frequency at which the magnitude response reaches a peak is: 
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(20.54) 

Notice that the peak response always occurs before the resonance frequency for 

the lowpass response, and we approach 0 p  for high 0Q  (say 50 Q ). 

We can also see that a relative peak will not occur in the magnitude response if 

210 Q  (for then p  is an imaginary quantity!). In this case, the absolute 

peak occurs at 0 Hz, or DC. 

The special value of 210 =Q  causes the relative and absolute “peak” to 

coincide at DC, and the magnitude response in this special case is known as 

maximally flat (all derivatives of the magnitude response at DC are zero). 

At the peak frequency, the magnitude of the frequency response is: 
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(20.55) 

For high 0Q  (say 50 Q ), the magnitude response is  ( )
0Qj p T . 
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20.8.2 Bandwidth 

The bandwidth of the lowpass RLC circuit is the difference between the two 

half-power frequencies on each side of the peak frequency: 
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Figure 20.11 

That is, the usual definition of bandwidth applies: 

-1

12 rads  −=B  (20.56) 

By definition, the two half-power frequencies must satisfy: 
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(20.57) 

However, as will be seen, the relative peak in the magnitude response only 

occurs when 7071.0210 Q , and when this is the case the peak is only 

greater than 2  when 307.12110 +Q . Therefore, we need to consider 

three separate cases to determine the bandwidth of the lowpass frequency 

response. 
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Case I – Relative Peak > 2  ( 2110 +Q ) 

As shown before: 
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and for the case of a relative peak: 
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so we have: 
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This can be rewritten as: 
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which can be solved for u  to get: 
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The two half-power frequencies are therefore:  
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and the bandwidth is thus: 

( )12012 uuB −=−=   (20.64) 

For high 0Q  (say 50 Q ), we can simplify this result in the following way. 

Firstly: 
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then, using the binomial series: 
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we can approximate the u  terms with the first two terms from the series: 
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(20.67) 

The lowpass circuit in this case exhibits bandpass behaviour, and it is debatable 

whether we should still call it a lowpass filter. However, since the circuit still 

passes low frequencies down to DC (but at levels which are below half-power), 

the circuit is still classified as a lowpass filter. Perhaps the best name would be 

a “lowpass filter with band enhancement”. 
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Case II – Relative Peak < 2    ( 21121 0 + Q ) 

From Eq. (20.62), it can be shown that when 307.12110 +Q , then 1u  

will be negative and the lower half-power frequency will cease to exist. In this 

case, the bandwidth is: 
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This is because the peak response falls below 2 , and therefore 

( ) 12 pjT . This case is illustrated below: 
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Figure 20.12 
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Case III – No Relative Peak ( 210 Q ) 

If there is no relative peak in the magnitude response (for 7071.0210 Q ), 

then the peak response occurs at DC with a magnitude of 1. We then have only 

one half-power frequency. 

In a manner similar to the derivation for Case I, we can show that the 

bandwidth is given by: 
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This case is illustrated below: 
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Figure 20.13 
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20.8.3 Bode Plots 

The magnitude and phase Bode plots for a range of values of 0Q  are shown 

below for a normalised resonance frequency of 10 = : 

 

 

 

 

Figure 20.14 

The asymptotic Bode magnitude plot decreases at the rate of -40 dB / decade, 

and this is sometimes described as two-pole rolloff. Note the symmetry in the 

phase response around -90. Do you know why? 
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20.9 The Second-Order Highpass Frequency Response 

Consider the series RLC circuit again, but this time the response is taken as the 

voltage across the inductor: 
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Figure 20.15 

The frequency response is given by the voltage divider rule: 
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Noting that LC10 =  and RLQ 00 =  for the series RLC circuit, this can be 

written as: 
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This has the form of a second-order highpass frequency response – it attenuates 

low frequencies but passes high frequencies. 
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The magnitude response is: 
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and the phase is: 
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The magnitude and phase functions are plotted below for 25.10 =Q : 
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Figure 20.16 
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20.9.1 Peak Frequency 

In a similar manner to the lowpass response, the peak of the frequency 

response for the highpass response does not correspond to the resonance 

frequency 0 . If we proceed in a similar manner to that shown for the lowpass 

response, we find that the frequency at which the magnitude response reaches a 

peak is: 
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(20.74) 

Notice that the peak response always occurs after the resonance frequency for 

the highpass response, and we approach 0 p  for high 0Q  (say 50 Q ). 

At the peak frequency, the magnitude of the frequency response is: 
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(20.75) 

For high 0Q  (say 50 Q ), the magnitude response is  ( )
0Qj p T . 

20.9.2 Bandwidth 

If there is a relative peak in the magnitude response, then the two half-power 

frequencies are the same as for the lowpass case (the circuit exhibits bandpass 

behaviour) and the bandwidth is thus: 

( )12012 uuB −=−=   (20.76) 

If 307.12110 +Q  then the peak is below 2  and the bandwidth is 

infinite. 
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20.10 Standard Forms of Second-Order Frequency Responses 

The table below shows the possibilities and names associated with the 

second-order frequency response. 

Frequency Response Magnitude Response Name 

 

( )00

22

0

2

0

Qj
LP





+−
=T  

 

 

Lowpass 

 

( )
( )00

22

0

00

Qj

Qj
BP





+−
=T  

 

 

Bandpass 

 

( )00

22

0

2

Qj
HP





+−

−
=T  

 

 

Highpass 

 

( )00

22

0

22

0

Qj
BS





+−

−
=T  

 

 

Bandstop 

“notch” 

 

( )
( )00

22

0

00

22

0

Qj

Qj
AP





+−

−−
=T  

 

 

Allpass 

Table 20.1 – Standard Forms of Second-Order Frequency Responses 
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20.11 Summary 

• Resonance is a phenomenon that only occurs in 2nd-order or higher circuits, 

and even then, only under certain conditions. It occurs when the forcing 

function drives the circuit near one of its natural frequencies of oscillation. 

• For the RLC circuit, we define the resonance frequency: 

0

1
 ==

LC
r  

• For the RLC circuit, we define the quality factor at resonance: 

parallel   
L

C
R

X

R

X

R
CRQ

LC

====
00

00   

series   
C

L

RR

X

R

X

R

L
Q CL 1000

0 ====


 

• The RLC circuit can be used to create a lowpass, bandpass or highpass 

filter. 

• The two half-power frequencies 1  and 2  are those frequencies at which 

the magnitude of the response is 21  times its maximum value 

(or -3 dB down from the peak). 

• The bandwidth of an RLC circuit is defined as the difference of the two 

half-power frequencies (if they exist): 

-1

12 rads −=B   or Hz12 ffB −=  

• For a lowpass RLC circuit, if there is only one half-power frequency then 

the bandwidth is equal to it (the formulae above apply with 011 == f ). 

20.12 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

Find 0  and 0Q  for a parallel resonant circuit in which: 

(a) μF 41=C , L = 4 H, = k 20R . 

(b) -1s 1000= , nF 5=C , H 721=L . 

(c) -1s 50= , 
-1rads 600=d  

2. 

Let ( ) ( ) V  cos100 0ttvs =  in the circuit shown below: 

40 k 50 mH

i2

v  t1.25   F

i3i1

(  )

10 k

vs

 

(a) Find the equivalent parallel RLC circuit and then determine 

0 , 0Q  and ( )tv . 

(b) Find ( )ti1 , ( )ti2  and ( )ti3 . 

(c) Calculate the average power loss in the k 10  resistor and the maximum 

energy stored in the inductor. 
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3. 

Find the resonance frequency of the circuit shown: 

0.2 H 25

500   F

10

 

4. 

Consider the circuit shown below: 

80 k100 pF v0

20 k400   H

cos(   ) mVt

 

Find: 

(a) r  (b)  0Q  (c) B (d) 1  (e) 2  (f) 0V  at r  

5. 

A parallel RLC circuit used in a radio frequency (RF) amplifier is intended to 

have an impedance magnitude of k 5  at resonance, 
-17

0 rads 10= , and 

k 3  at a frequency 5 kHz below resonance. Specify R, L and C. 
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6. 

In the series RLC circuit shown below: 

100 pF
i 50

400   HV(     )cos100 t

 

(a) At what value of   is the amplitude of i a maximum? 

(b) By how many -1rads  would   have to be increased to reduce I  by 5%? 

7. 

Find the effective values of 0  and 0Q  for the network shown below: 

20 

0.1 H

0.1   F vC

0.04vC
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8. 

Determine reasonably accurate values of r  and 0Q  for the resonant circuits 

shown below: 

0.1

2 mH 20   F

0.15

(a)

250

2 mH

20   F

1 k

(b)  

9. 

A series RLC circuit has an impedance of +  4010 j  at -1rads 100= . After it 

is scaled in magnitude and frequency by the same factor (i.e. fm kk = ), it is 

found to have an impedance of −  18030 j  at -1rads 50= . Determine the 

elements in the original network. 
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James Clerk Maxwell (1831-1879) 

Maxwell produced a most spectacular work of individual genius – he unified 

electricity and magnetism. Maxwell was able to summarize all observed 

phenomena of electrodynamics in a handful of partial differential equations 

known as Maxwell’s equations3: 

t

t




+=

=




−=

=

E
JB

B

B
E

E







0

 

From these he was able to predict that there should exist electromagnetic waves 

which could be transmitted through free space at the speed of light. The 

revolution in human affairs wrought by these equations and their experimental 

verification by Heinrich Hertz in 1888 is well known: wireless  

communication, control and measurement - so spectacularly demonstrated by 

television and radio transmissions across the globe, to the moon, and even to 

the edge of the solar system! 

James Maxwell was born in Edinburgh, Scotland. His mother died when he 

was 8, but his childhood was something of a model for a future scientist. He 

was endowed with an exceptional memory, and had a fascination with 

mechanical toys which he retained all his life. At 14 he presented a paper to the 

Royal Society of Edinburgh on ovals. At 16 he attended the University of 

Edinburgh where the library still holds records of the books he borrowed while 

still an undergraduate – they include works by Cauchy on differential 

equations, Fourier on the theory of heat, Newton on optics, Poisson on 

                                                 

3 It was Oliver Heaviside, who in 1884-1885, cast the long list of equations that Maxwell had 

given into the compact and symmetrical set of four vector equations shown here and now 

universally known as “Maxwell's equations”. It was in this new form ("Maxwell redressed," as 

Heaviside called it) that the theory eventually passed into general circulation in the 1890s. 
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mechanics and Taylor’s scientific memoirs. In 1850 he moved to Trinity 

College, Cambridge, where he graduated with a degree in mathematics in 1854. 

Maxwell was edged out of first place in their final examinations by his 

classmate Edward Routh, who was also an excellent mathematician. 

Maxwell stayed at Trinity where, in 1855, he formulated a “theory of three 

primary colour-perceptions” for the human perception of colour. In 1855 and 

1856 he read papers to the Cambridge Philosophical Society “On Faraday’s 

Lines of Force” in which he showed how a few relatively simple mathematical 

equations could express the behaviour of electric and magnetic fields. 

In 1856 he became Professor of Natural Philosophy at Aberdeen, Scotland, and 

started to study the rings of Saturn. In 1857 he showed that stability could be 

achieved only if the rings consisted of numerous small solid particles, an 

explanation now confirmed by the Voyager spacecraft. 

In 1860 Maxwell moved to King’s College in London. In 1861 he created the 

first colour photograph – of a Scottish tartan ribbon – and was elected to the 

Royal Society. In 1862 he calculated that the speed of propagation of an 

electromagnetic wave is approximately that of the speed of light: 

We can scarcely avoid the conclusion that light consists in the transverse 

undulations of the same medium which is the cause of electric and magnetic 

phenomena. 

Maxwell’s famous account, “A Dynamical Theory of the Electromagnetic 

Field” was read before a largely perplexed Royal Society in 1864. Here he 

brought forth, for the first time, the equations which comprise the basic laws of 

electromagnetism. 

Maxwell also continued work he had begun at Aberdeen, on the kinetic theory 

of gases (he had first considered the problem while studying the rings of 

Saturn). In 1866 he formulated, independently of Ludwig Boltzmann, the 

kinetic theory of gases, which showed that temperature and heat involved only 

molecular motion. 

All the mathematical 
sciences are 
founded on relations 
between physical 
laws and laws of 
numbers, so that the 
aim of exact science 
is to reduce the 
problems of nature 
to the determination 
of quantities by 
operations with 
numbers. – James 
Clerk Maxwell 
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Maxwell was the first to publish an analysis of the effect of a capacitor in a 

circuit containing inductance, resistance and a sinusoidal voltage source, and to 

show the conditions for resonance. The way in which he came to solve this 

problem makes an interesting story: 

Maxwell was spending an evening with Sir William Grove who was then 

engaged in experiments on vacuum tube discharges. He used an induction 

coil for this purpose, and found the if he put a capacitor in series with the 

primary coil he could get much larger sparks. He could not see why. Grove 

knew that Maxwell was a splendid mathematician, and that he also had 

mastered the science of electricity, especially the theoretical art of it, and so 

he thought he would ask this young man [Maxwell was 37] for an 

explanation. Maxwell, who had not had very much experience in 

experimental electricity at that time, was at a loss. But he spent that night in 

working over his problem, and the next morning he wrote a letter to Sir 

William Grove explaining the whole theory of the capacitor in series 

connection with a coil. It is wonderful what a genius can do in one night! 

Maxwell’s letter, which began with the sentence, “Since our conversation 

yesterday on your experiment on magneto-electric induction, I have considered 

it mathematically, and now send you the result,” was dated March 27, 1868. 

Preliminary to the mathematical treatment, Maxwell gave in this letter an 

unusually clear exposition of the analogy existing between certain electrical 

and mechanical effects. In the postscript, or appendix, he gave the 

mathematical theory of the experiment. Using different, but equivalent 

symbols, he derived and solved the now familiar expression for the current i in 

such a circuit: 

tVidt
C

Ri
dt

di
L sin

1
=++   

The solution for the current amplitude of the resulting sinusoid, in the steady-

state is: 

2

2 1








−+

=

C
LR

V
I




 

from which Maxwell pointed out that the current would be a maximum when: 

C
L




1
=  



20.47 

PMcL James Clerk Maxwell (1831-1879) Index    

2018  20 - The Second-Order Frequency Response 

Following Maxwell, Heinrich Hertz later showed a thorough acquaintance with 

electrical resonance and made good use of it in his experimental apparatus that  

proved the existence of electromagnetic waves, as predicted by Maxwell’s 

equations. In the first of his series of papers describing his experiment, “On 

Very Rapid Electric Oscillations”, published in 1887, he devotes one section to 

a discussion of “Resonance Phenomena” and published the first electrical 

resonance curve: 

 

When creating his standard for electrical resistance, Maxwell wanted to design 

a governor to keep a coil spinning at a constant rate. He made the system stable 

by using the idea of negative feedback. It was known for some time that the 

governor was essentially a centrifugal pendulum, which sometimes exhibited 

“hunting” about a set point – that is, the governor would oscillate about an 

equilibrium position until limited in amplitude by the throttle valve or the 

travel allowed to the bobs. This problem was solved by Airy in 1840 by fitting 

a damping disc to the governor. It was then possible to minimize speed 

fluctuations by adjusting the “controller gain”. But as the gain was increased, 

the governors would burst into oscillation again. In 1868, Maxwell published 

his paper “On Governors” in which he derived the equations of motion of 

engines fitted with governors of various types, damped in several ways, and 

explained in mathematical terms the source of the oscillation. He was also able 

to set bounds on the parameters of the system that would ensure stable 

operation. He posed the problem for more complicated control systems, but 

thought that a general solution was insoluble. It was left to Routh some years 

later to solve the general problem of linear system stability: “It has recently 

come to my attention that my good friend James Clerk Maxwell has had 

difficulty with a rather trivial problem…”. 

The first electrical 
resonance curve 
published, by Hertz, 
1887 

-planes



j
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In 1870 Maxwell published his textbook Theory of Heat. The following year he 

returned to Cambridge to be the first Cavendish Professor of Physics – he 

designed the Cavendish laboratory and helped set it up.  

The four partial differential equations describing electromagnetism, now 

known as Maxwell’s equations, first appeared in fully developed form in his 

Treatise on Electricity and Magnetism in 1873. The significance of the work 

was not immediately grasped, mainly because an understanding of the atomic 

nature of electromagnetism was not yet at hand. 

The Cavendish laboratory was opened in 1874, and Maxwell spent the next 5 

years editing Henry Cavendish’s papers. 

Maxwell died of abdominal cancer, in 1879, at the age of forty-eight. At his 

death, Maxwell’s reputation was uncertain. He was recognised to have been an 

exceptional scientist, but his theory of electromagnetism remained to be 

convincingly demonstrated. About 1880 Hermann von Helmholtz, an admirer 

of Maxwell, discussed the possibility of confirming his equations with a 

student, Heinrich Hertz. In 1888 Hertz performed a series of experiments 

which produced and measured electromagnetic waves and showed how they 

behaved like light. Thereafter, Maxwell’s reputation continued to grow, and he 

may be said to have prepared the way for twentieth-century physics. 

References 

Blanchard, J.: The History of Electrical Resonance, Bell System Technical 

Journal, Vol. 20 (4), p. 415, 1941. 
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21 Second-Order Op-Amp Filters 
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Introduction 

With the advent of op-amps and circuit miniaturization, engineers developed 

what is known as a universal filter. It’s frequency response takes the form of a 

biquadratic equation, and so it is also known as a biquad. Depending on the 

connections made and the point at which the output is taken, the universal filter 

can deliver lowpass, highpass, bandpass, bandstop (notch) and allpass 

responses. It is one of the most useful circuits to the electrical engineer and is 

widely available. 

21.1 Filter Design Parameters 

Jargon fills a special need for the engineer. It is shorthand that permits the 

expression of ideas quickly and compactly. “Design a lowpass filter with an 

 0  of 10,000 and a 0Q  of 5.” We will explore how this can be carried out. 

We begin with the RLC circuit shown below, which has the now familiar form 

of a voltage-divider circuit. 

 

R

VoVi

Lj

Cj
1

 

 

Figure 21.1 
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The frequency response for this circuit is given by: 

 
LRjLC

LC
j

i

o







21

1

V

V
T

 
(21.1) 

This result can be put into a standard form by noting that LC10   and 

RLQ 00   for the series RLC circuit. We can then write: 

 
 00

22

0

2

0

Qj
j







T

 
(21.2) 

The two parameters  0  and 0Q  uniquely specify the standard form of the 

second-order frequency response. 

The historical identification of 0Q  with RLC circuits is no longer appropriate, 

since we can identify many kinds of circuits with the parameter 0Q . We can 

now make the association of  0  and 0Q  with any second-order circuit, as 

suggested by the figure below: 

 

R

VoVi

Lj

Cj
1

Q

 0

VoVi

any second-order circuit standard form

0

 

 

Figure 21.2 

 0  and 0Q  

uniquely specify a 
second-order 
frequency response 



21.4 

Index The Lowpass Biquad Circuit PMcL   

21 - Second-Order Op-Amp Filters  2017 

21.2 The Lowpass Biquad Circuit 

The standard form of a lowpass second-order frequency response, as in 

Eq. (21.2), does not recognise the availability of gain that is possible with 

active circuits. Also, an active circuit may be inverting or non-inverting. A 

more general form for  jT  is therefore: 

 
 00

22

0

2

0

Qj

H
j









T

 
(21.3) 

We seek a circuit that will implement this second-order frequency response, as 

well as any other “biquadratic” frequency response. (A biquadratic, or biquad 

frequency response is similar to the way a bilinear frequency response was 

defined – a biquadratic function is a ratio of second-order polynomials). 

Normalising so that  0 1 , and anticipating an inverting realisation for the 

frequency response, we have: 

 
  i

o

Qj

H
j

V

V
T 






0

2 11 


 
(21.4) 

We can manipulate this equation so that it has a form that can be identified 

with simple circuits we have seen before. We first rewrite Eq. (21.4) as: 

   io HQjj VV  011   (21.5) 

Dividing by  01 Qjj  , it becomes: 

    io
Qjj

H

Qjj
VV

00 11

1
1

















  
(21.6) 

 

Standard form of a 
lowpass second-
order frequency 
response with gain 

Standard form of a 
normalised lowpass 
second-order 
frequency response 
with gain 
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We can manipulate further to form: 

  





















 





01

1
1

1

Qjj

H

j
ioo


VVV

 
(21.7) 

The (–1) term can be realised by an inverting circuit of gain 1. The factor 

 011 Qj   is realised by a “lossy” inverting integrator. Two operations are 

indicated by the remaining factor. The circuit realisation must produce a sum 

of voltages, and it must have a frequency response of the form  j1 . 

The three circuits that provide for these three operations are shown below: 

 

1

1/H

1

1

1

vi

vo

Q

1

1 0

 

 

Figure 21.3 

Second-order 
frequency response 
made from first-
order parts 

The three first-order 
circuits that make a 
second-order circuit 
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If we connect the three circuits together, including a feedback connection of the 

output ov  to the input, the result is a scaled version of the Tow-Thomas biquad 

circuit: 

 

1

1

1

1

1

vo

1

Q
1/H

vi 0

 

 

Figure 21.4 

There are many circuits that implement biquadratic frequency responses. The 

Tow-Thomas circuit is one of them, the Kerwin-Huelsman-Newcomb (KHN) 

circuit is another. For brevity, we will simply refer to the Tow-Thomas biquad 

circuit as “the biquad”. 

With the elements identified by R’s and C’s, we have: 

 

R2

R2

vo

vi

R1

C1
C2

R4
R3

R5

 

 

Figure 21.5 

The normalised 
Tow-Thomas biquad 
circuit 

The Tow-Thomas 
biquad circuit 
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Show that the frequency response is: 

 
 24

2

2153
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CRjCCRR

CCRR
j







T

 
(21.8) 

Comparing this with Eq. (21.3), we have: 
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(21.9) 

 

(21.10) 

 

(21.11) 

An important property of the biquad is that it can be orthogonally tuned. Using 

the above equations, we can devise a tuning algorithm: 

1. R3  can be adjusted to the specified value of  0 . 

2. R4  can then be adjusted to give the specified value of 0Q  without 

changing  0 . 

3. R1  can then be adjusted to give the specified value of H without 

affecting either  0  or 0Q . 

Other advantages of the circuit are: 

 the input impedance is purely resistive 

 there is effectively “pre-amplification” built-in to the topology via the 

gain setting resistor R1  (the incoming signal amplitude is amplified and 

then filtered, which eliminates more “noise” than filtering and then 

amplifying). 

The biquad’s 
frequency response 

The biquad’s design 
equations 

The biquad can be 
orthogonally tuned 

The biquad’s tuning 
algorithm 
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EXAMPLE 21.1 Design of a Lowpass Biquad Circuit 

We require a circuit that will provide an  0 1000  rads-1 , a 866.00 Q  and a 

DC gain of H  2 .  We set  0 1  and use the biquad circuit of Figure 21.4 

with the values of 0Q  and H specified above. 

We then perform frequency scaling to meet the specifications, by setting 

k f  1000 . The biquad circuit then becomes: 

 

vo

vi

1 mF 1 mF

1
1

1

1

0.5
0.866

 

 

Figure 21.6 

We then select km  10 000  to give convenient element values. A realistic 

circuit that meets the specifications is then: 

 

vo

vi

100 nF100 nF

10 k
5 k

8.66 k
10 k

10 k

10 k

 

 

Figure 21.7 
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21.3 The Universal Biquad Circuit 

By applying a feedforward scheme to the lowpass Tow-Thomas biquad circuit, 

a “universal” filter can be implemented. A universal filter is one that can be 

made either a lowpass, highpass, bandpass, notch or allpass filter by 

appropriate selection of component values. 
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1
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Figure 21.8 

In terms of the quantities in Figure 21.8, show that: 

 
 0

2

2

2

31

11

11

Qj

RjCR

i

o










V

V
 

(21.12) 

If we choose C3 1  and R R1 2   , then the first and third terms in the 

numerator vanish, leaving only the 
2  term. Writing this result we have: 
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11 Qj
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(21.13) 

which means we have now created a highpass filter. 

A universal filter can 
implement any 
biquadratic 
frequency response 

The normalised 
Tow-Thomas 
universal filter 

The universal 
biquad circuit can 
implement a 
highpass second-
order frequency 
response 
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Starting with the universal biquad circuit, it is possible to realise a lowpass, 

highpass, bandpass, bandstop or allpass filter by making simple changes such 

as the removal of a resistor. The normalised design values for the various 

responses are given in the table below, where H is the passband gain. 

Table 21.1 – Design Values for the Tow-Thomas Universal Filter 

Filter Type 
Design Values 

R1  R2  C3  

Lowpass 1 H    0  

Bandpass   HQ0  0  

Highpass     H  

Notch   0

2

n H    H  

Allpass 1 H  HQ0  H  

An example of a commercially available universal filter is the UAF42 from 

Texas Instruments. This uses the “state-variable” biquad topology rather than 

the Tow-Thomas. It requires just four external resistors to set the filter 

parameters, and makes available lowpass, highpass and bandpass outputs: 
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Figure 21.9 

The universal 
biquad can 
implement many 
second-order 
frequency 
responses 

Table of design 
values for a 
universal filter 

The UAF42 
universal filter from 
Texas Instruments 
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21.4 Approximating the Ideal Lowpass Filter 

The ideal lowpass filter characteristic is the brick wall filter. Although we 

cannot achieve the ideal, it provides a basis on which we can rate an 

approximation. We want T  to be as constant as possible in the passband, so 

that different low frequency signals are passed through the filter without a 

change in amplitude. In the stopband we require n-pole rolloff, where n is 

large, in contrast to the n  2  rolloff for the biquad circuit. We want the 

transition from passband to stopband to be as abrupt as possible. 

This is summarised in the figure below: 

 

1

0

0 1 

|T| Small error

Brick wall

-pole rolloffn

 

 

Figure 21.10 

The features we 
want when 
approximating the 
ideal lowpass filter 

Approximating the 
ideal lowpass filter 
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The method we will use in the approach to this problem is illustrated below: 
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Figure 21.11 

We will connect modules in cascade such that the overall frequency response is 

of the form given in Figure 21.10. For the example in Figure 21.11, large 

values of 1T  are just overcome by the small values of 2T  and 3T  to achieve 

the approximation to the brick wall. The frequency responses have the same 

value of  0 , but different values of 0Q . Determining the required values of 0Q  

is a part of filter design. 

We achieve the 
approximation to the 
ideal lowpass filter 
by cascading 

The cascaded 
circuits have the 

same  0  but 

different 0Q  
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21.5 The Butterworth Lowpass Filter 

The Butterworth1 response is the name given to the following magnitude 

function: 
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(21.14) 

Normalising such that  0 1  gives: 
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(21.15) 

From this equation we can observe some interesting properties of the 

Butterworth response: 

1.   10 jnT  for all n. 

1.   707.0211 jnT  for all n. 

2. For large  ,  jnT  exhibits n-pole rolloff. 

3.  jnT  has all derivatives but one equal to zero near   0 . The response 

is known as maximally flat. 

                                                 

1 Stephen Butterworth was a British engineer who described this type of response in connection 

with electronic amplifiers in his paper “On the Theory of Filter Amplifiers”, Wireless Eng., 

vol. 7, 1930, pp. 536-541. 

The Butterworth 
magnitude response 
defined 

The normalised 
Butterworth 
magnitude response 

Properties of the 
normalised 
Butterworth 
magnitude response 
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These properties are shown below: 
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Figure 21.12 

The Butterworth response is well-known and has been studied extensively. 

Since all normalised Butterworth responses have  0 1 , we can draw up a  

table of 0Q  values for each value of n:  

Table 21.2 – 0Q  for Butterworth Filters 

n 

2 3 4 5 6 7 8 9 10 

0.707 1.000 0.541 0.618 0.518 0.555 0.510 0.532 0.506 

  1.307 1.618 0.707 0.802 0.601 0.653 0.561 

    1.932 2.247 0.900 1.000 0.707 

      2.563 2.879 1.101 

        3.196 

Note: For n odd, there is an additional first-order factor with a cutoff frequency 

at  0 1 . 

Butterworth lowpass 
magnitude 
responses 

Table of 0Q for 

Butterworth filters 
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EXAMPLE 21.2 Butterworth Lowpass Filter Design 

We are required to implement a 5th-order Butterworth lowpass filter with an 

-1

0 rads 1248 . 

From Table 20.2, for n  5  the required values of 0Q  are 0.618 and 1.618. 

There is also a first-order term with a cutoff frequency at 0 . 

The realisation to meet these specifications can be shown in block diagram 

form: 

 

Vo
Vi

 0 =1248

cutoff at

1st-order

Q

 0 =1248

=0.618

 0 =1248

Q =1.618

2nd-order2nd-order

0 0

 

 

Figure 21.13 

Each second-order block could be realised using the biquad circuit. The first-

order circuit can be realised with a simple buffered RC circuit. If we use the 

circuit of Figure 21.4 for the biquad, then we must frequency scale using 

k f  1248 . We then perform magnitude scaling to achieve practical element 

values. 

 

The Butterworth response is not the only response that can be used to 

approximate the ideal brickwall filter. Other common responses are the 

Chebyshev response, inverse Chebyshev response and Cauer (or elliptic) 

response. Each has their advantages and disadvantages. 
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21.6 Summary 

 The universal biquad circuit is a ready-made module which provides a 

variety of second-order frequency responses – lowpass, highpass, bandpass, 

notch or allpass. 

 The design of a biquad circuit is specified by just three parameters – the 

resonance frequency 0 , the quality factor at resonance 0Q , and the 

passband gain H. 

 Butterworth filters are easily designed using a table of 0Q  values and can 

be implemented as a cascade of first-order and second-order circuits. 
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Exercises 

1. 

Consider the circuit shown below: 

Vo

R

R

R
Vi1

Vi2

R2

R2

Cj
1

 

(a) Show that: 

21

11
iio

CRjCRj
VVV




 

(b) Show that the use of this circuit in the lowpass biquad circuit permits us to 

reduce the number of op-amps by one. 

2. 

(a) Design a lowpass second-order filter with  0 10 000  , 50 Q  and H2  

using 1 nF capacitors. 

(b) Design a highpass second-order filter with  0 5 000  , 80 Q  and H1  

using 10 nF capacitors. 
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3. 

Derive the frequency response of the so-called Sallen-Key circuit: 

2

vo

vi

1 1
Q2

0

Q
1

0

 

This can be used instead of the biquad as a single op-amp lowpass second-

order circuit. 

4. 

Derive the frequency response of the so-called Friend circuit: 

2

2

vo

1
vi

Q4
2

0

Q
1

Q
1

0

0

 

This can be used instead of the biquad as a single op-amp bandpass second-

order circuit. 
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22 Complex Frequency 
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Introduction 

We have analysed circuits with DC sources and sinusoidal sources – DC can be 

considered a special case of a sinusoidal source (one that has zero frequency). 

We have also seen that sinusoids are made up of exponentials with imaginary 

exponents, and that the exponential function plays a special and key role in the 

determination of the natural response of circuits. 

It is only natural, then, to try and extend our study of circuits to a more general 

class of exponential functions – specifically to complex exponential functions, 

which then include DC, exponential, and sinusoidal functions as special cases. 

The introduction of a complex exponential forcing function leads to a natural 

definition of complex frequency. Analysis of circuits using the concept of 

complex frequency leads to special insight into circuit behaviour. We will see 

that complex frequency unifies concepts and results in many advantages – from 

a deeper insight into understanding circuit behaviour, to analytical techniques 

associated with establishing the natural, forced and complete response of a 

circuit, and eventually to “intuition” and circuit design. 
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22.1 Complex Frequency 

Consider an exponentially damped sinusoidal function, such as the voltage:  

     teVtv t

m cos  (22.1) 

(This is termed a damped function because   is generally negative). 

There are several special cases of this function. 

When both   and   are zero, we have DC: 

  0cos VVtv m    (22.2) 

When only   is zero, we have a sinusoid: 

     tVtv m cos  (22.3) 

If only   is zero, we have an exponential voltage: 

  tt

m eVeVtv   0cos   (22.4) 

The form of this exponential voltage reminds us of the complex exponential 

representation of a sinusoid: 

tje 
0V  (22.5) 

The only difference is that the exponent is real in one case, and imaginary in 

the other. Since t  must be dimensionless, we define   to be a “frequency”. 

Perhaps we should generalise our complex exponential representation of a 

sinusoid by including this new frequency,  ? Thus, we define complex 

frequency: 

 js  (22.6) 
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Now, suppose we declare a function of the form: 

  tetf sK  (22.7) 

where K  and s  are complex constants (independent of time). We say that the 

function is characterised by the complex frequency s . For example, a constant 

voltage 0V  may be declared in the required format as: 

  teVtv 0

0  (22.8) 

The complex frequency of a DC voltage or current is thus 0s  . 

The exponential function: 

  teVtv 
0  (22.9) 

is already in the required format, and we identify 0j s . 

A sinusoidal function cannot be expressed in the required format. Given: 

     tVtv m cos  (22.10) 

we use Euler’s identity to express it as: 

      

tt

tjj

m

tjj

m

tjtj

m

ee

eeVeeV

eeVtv

21

21

2
1

2
1

2
1

ss
KK 













 

(22.11) 

Therefore, we have the sum of two complex exponentials – a pair of conjugate, 

counter-rotating phasors. Therefore, two complex frequencies are present, one 

for each term. The complex frequency of the first term is j 1ss  and that 

of the second term is j 2ss . Thus, *

21 ss   and the two values of K  are 

also conjugate, 
j

meV2
1

1 K  and 
j

meV  2
1*

12 KK . 
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Lastly, let us determine the complex frequency associated with the 

exponentially damped sinusoidal function. We again use Euler’s identity: 

   
    

   tjj

m

tjj

m

tjtjt

m

t

m

eeVeeV

eeeV

teVtv





 











2
1

2
1

2
1

cos

 

(22.12) 

We therefore find once again that a conjugate complex pair of frequencies is 

required to describe the exponentially damped sinusoid,  j1s  and 

 j *

12 ss . In general, neither   nor   is zero, and we see that the 

exponentially varying sinusoidal waveform is the general case – the constant, 

exponential and sinusoidal waveforms are special cases. 

As numerical illustrations, we should now recognize by inspection the complex 

frequencies associated with these voltages: 
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(22.13) 
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The reverse should also be true – given a complex frequency or a pair of 

conjugate complex frequencies, we should be able to identify the mathematical 

form of the function with which they are associated. Thus, the most special 

case 0s   defines a constant: 

  constant tetf 0K0s  (22.14) 

where K  must be real if the function is to be real. 

A negative real value, such as 05 js , defines a decaying exponential: 

  tetfj 505  Ks  (22.15) 

where again K  must be real if the function is to be real.  

A purely imaginary value of s , such as 10js , can never be associated with a 

real quantity. In order to construct a real function, it is necessary to consider 

conjugate values of s , such as 102,1 js , with which must be associated 

conjugate values of K . Loosely speaking, however, we may identify either of 

the complex frequencies 10js  or 10js  with a sinusoidal voltage at the 

radian frequency 10 rad/s. The presence of the conjugate complex frequency is 

understood. Thus: 

   







tAtf

j

j
10cos

10

10

2

1

s

s

 
(22.16) 

In a similar manner, a general value for s , such as 53 js , can be 

associated with a real quantity only if it is accompanied by its conjugate: 

   







 tAetf

j

j
t 5cos

53

53
3

2

1

s

s

 
(22.17) 
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In general, the complex frequency s  describes an exponentially varying 

sinusoid. The real part of s  is associated with the exponential variation – if it is 

negative, the function decays to zero as t increases, if positive, the function 

increases, and if it is zero, the sinusoidal amplitude is constant. The imaginary 

part of s  describes the sinusoidal variation – it is specifically the radian 

frequency. 

22.2 The Damped Sinusoidal Forcing Function 

The general exponentially varying sinusoidal voltage: 

     teVtv t

m cos  (22.18) 

is expressible in terms of the complex frequency s  by making use of Euler’s 

identity: 

      tjt

m eeVtv Re  (22.19) 

Collecting factors: 

    tjj

m eeVtv   Re  (22.20) 

we now substitute  js , and obtain: 

   tj

m eeVtv sRe  (22.21) 

We note the resemblance to the corresponding representation of the undamped 

sinusoid: 

   tjj

m eeVtv Re  (22.22) 
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The only difference is that we now have s  where we previously had j . Thus, 

our approach will be to develop a frequency-domain description of the 

exponentially varying sinusoid in exactly the same way as we did for the 

undamped sinusoid: omit the Re notation and suppress 
tes
. 

Thus, if we apply the forcing function: 

   

   tj

m

t

m

eeVtv

teVtv

s

 

Reor   

cos





 
(22.23) 

then we expect the forced response, say a current in some branch of the circuit, 

to be: 

   

   tj

m

t

m

eeIti

teIti

s

 

Reor   

cos





 
(22.24) 

where the complex frequency of the source and the response must be identical. 

We recall that the application of a complex source results in a complex 

response, and that the real part of the source resulted in the real part of the 

response. Thus, given the real forcing function    tj

m eeVtv sRe  we apply the 

complex forcing function tj

m eeV s . The resultant forced response, tj

m eeI s  is 

complex and it must have as its real part the desired time-domain forced 

response    tj

m eeIti sRe . 
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EXAMPLE 22.1 The Damped Sinusoidal Forcing Function 

Consider the circuit: 

3 H

0.1 Fv  t(  )

2i  t(  )

 

We shall apply the forcing function: 

     104cos60 2 tetv t  

and we desire the forced response: 

     teIti t

m 4cos2  

We first express the forcing function as the real part of a complex function: 

   
  
  tjj

tjt

t

ee

ee

tetv

4210

1042

2

60Re

60Re

104cos60













 

or: 

   tetv sVRe  

where: 

42and1060 j sV  

After dropping the Re, we are left with the complex forcing function 
tes

V . In a 

similar manner, we represent the unknown response by the complex quantity 

tes
I  where  mII . 
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From KVL we obtain: 

 

 tvidt
dt

di
i

tvidt
Cdt

di
LRi









1032

1

 

and we substitute the given complex forcing function and the assumed complex 

forced response: 

tttt eeee ssss
I

s
sII  1060

10
32  

The common factor 
tes
 is “suppressed” by dividing both sides by 

te s
: 

 1060
10

32 I
s

sII  

and: 

ss
I

1032

1060




  

The left side of this equation is a current. On the right, the numerator is a 

voltage, and so the denominator must be interpreted as an impedance. 

We now let 42 js  and solve for the complex current I : 

   42104232

1060

jj 


I  

After manipulating the complex numbers, we find: 

 6.10637.5I  

Thus, the forced response is: 

     6.1064cos37.5 2 teti t  
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22.3 Generalized Impedance and Admittance 

In order to apply Kirchhoff’s Laws directly to a circuit with a complex forcing 

function, we need to determine the relationship between the complex voltage 

across an element and the complex current through it, i.e. the impedance or 

admittance of an element. 

We will consider the inductor, and then state the relationships for the other 

elements, since the derivations are similar. 

The defining time-domain equation for the inductor is: 

 
 

dt

tdi
Ltv 

 
(22.25) 

After applying the complex voltage and current equations, we obtain: 

tt e
dt

d
Le ss

IV 
 

(22.26) 

Taking the indicated derivative: 

tt eLe ss
IsV   (22.27) 

Suppressing 
tes
, we find the desired voltage-current relationship: 

IsV L  (22.28) 

Thus, the impedance of the inductor is: 

  Ls
I

V
sZ 

 
(22.29) 

and the admittance is: 

 
LsV

I
sY

1


 
(22.30) 

Generalized 
impedance of an 
inductor 
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We still call V  and I  phasors. These complex quantities have a magnitude 

and angle which, along with a specific complex frequency value, enable us to 

characterize the exponentially varying sinusoidal waveform completely. The 

phasor is still a frequency-domain description, but we have now expanded its 

definition to include complex frequency. 

The frequency-domain equivalent of an inductor is shown below: 

 

V

i

v=L

I

time-domain frequency-domain

=  LIL
di
dt

s Ls

 

 

Figure 22.1 

In the table below, we show how we can transform a resistor, inductor or 

capacitor from the time-domain into its frequency-domain impedance: 

 

Time-domain Frequency-domain 

R
 

R
 

L

 

Ls

 

C

 

sC
1

 

Table 22.1 – Generalized impedances 

Generalized 
impedances of the 
three passive 
elements 
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EXAMPLE 22.2 Generalised Impedance 

If we now reconsider the series RLC example in the frequency domain, the 

source voltage: 

     104cos60 2 tetv t  

is transformed to the phasor voltage: 

 1060V  

A phasor current I  is assumed, and the impedance of each element at the 

complex frequency 42 js  is determined and placed on a frequency-

domain circuit diagram: 

60 10°

2I

s=-2+  4j

-6+  12j

-1-  2j
-2+  4j

10
=

 

The phasor current is now easily found by dividing the phasor voltage by the 

sum of the three impedances: 

   
A  6.10637.5

105

1060

211262

1060












jjj
I  

The forced response is then: 

     6.1064cos37.5 2 teti t  

Thus, the previous result is obtained, but much more easily and rapidly. 
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22.4 Frequency Response as a Function of   

Suppose we have a circuit which is excited by a single source,  0ss VV , 

and that the desired response is a current I . This phasor response is a complex 

number, and it can be represented by two numbers – a magnitude and a phase. 

If the source varies as a function of only radian frequency  , then we can plot 

the magnitude response as a function of   and the phase response as a 

function of  . 

EXAMPLE 22.3 Frequency Response as a Function of   

Suppose we have a series RL circuit: 

RI

LsVs

 

The phasor voltage  0ss VV  is applied, and the response is the phasor 

current I . The forced response is: 

LR

s

s

V
I


  

If sV  represents a sinusoidal forcing function, then js  and we have: 

LjR

s




V
I  

The magnitude of the response is: 

222 LR

Vs


I  
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and the phase of the response is: 

R

L1tanI  

These are the analytical expressions for the magnitude and phase angle of the 

response as a function of   – we can now present the same information 

graphically. 

For the magnitude curve, we note that we are plotting the absolute value of 

some quantity and so the entire curve lies above the   axis. The response is 

RVs  at zero frequency, and the response approaches zero as frequency 

approaches infinity. We graph both positive and negative values of frequency: 

|   |I

0

/ RVs

L
R 2

L
R

L
R2

L
R

- -

magnitude of

jR+ 
=

L

Vs
I (     )j

 

The second part of the response, the phase angle of I  versus  , is an inverse 

tangent function: 

0

L
R 2

L
R

L
R2

L
R

- -

I

90°

-90°

angle of

jR+ 
=

L

Vs
I (     )j
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EXAMPLE 22.4 Frequency Response as a Function of   

Suppose we have a parallel LC circuit: 

s
VI s Ls

C

1

 

The voltage response is easily obtained: 

  
11

1
2 





LC

L

CL

CL
ss

s

s
I

ss

ss
IV  

For a sinusoidal forcing function, then js  and the circuit presents an 

impedance to the current source of: 

LCC
j

LC

Lj

s 1

1

1 22 













I

V
Z  

By letting LC10  , we can express the magnitude of the impedance in a 

form which enables those frequencies to be identified at which the response is 

zero or infinite: 

  00

1








C
Z  

Such frequencies are called critical frequencies, and their early identification 

simplifies the construction of the response curve. We note that the response has 

zero amplitude when 0 . When this happens we say that the response has a 

zero at 0 , and we also describe the frequency at which it occurs as a zero. 

A response of infinite amplitude is noted at 0   and 0  . These  

frequencies are called poles, and the response is said to have a pole at each of 

these frequencies. Finally, we note that the response approaches zero as 

 , and thus   is also a zero (it is customary to consider plus 

infinity and minus infinity as being the same point). 
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The locations of the critical frequencies should be marked on the   axis, by 

using small circles for the zeros and crosses for the poles. The drawing of the 

graph is made easier by adding broken vertical lines as asymptotes at each pole 

location. The completed graph of magnitude versus   is shown below: 

0

|   |Z

0- 0 2 02- 0

2

0C

1

0C

 

The corresponding phase response is, from an inspection of the original 

equation: 

0

Z

0- 0 2 02- 0

90°

-90°  
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22.5 Frequency Response as a Function of   

By analogy with the response due to a varying  , we now consider a response 

due to a varying  . Suppose we have a circuit which is excited by a single 

source,  0ss VV , and that the desired response is a current I . This phasor 

response is a complex number, and it can be represented by two numbers – a 

magnitude and a phase. If the source varies as a function of only  , then we 

can plot the magnitude response as a function of   and the phase response as a 

function of  . 

EXAMPLE 22.5 Frequency Response as a Function of   

Suppose we have a series RL circuit: 

RI

LsVs

 

The phasor voltage  0ss VV  is applied, and the response is the phasor 

current I . The forced response is: 

LR

s

s

V
I


  

We now set 0 , 0j s , thus restricting ourselves to time-domain 

sources of the form 
t

ss eVv  . Thus: 

LR

s




V
I  

As   varies, we can obtain a qualitative description of the circuit’s behaviour. 

When   is large and negative, the current response is negative and relatively 

small in amplitude. As   increases, becoming a smaller negative number, the 

magnitude of the response increases, until we encounter LR , a pole of 
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the forced response, at which point the response is infinite. As   continues to 

increase, the next noteworthy point is 0 , where we have the case of a DC 

source, ss Vv  , and the forced response is obviously RVsI . Positive values 

of   must all provide positive amplitude responses, and the response must 

decrease as   get larger. Finally, as  , we have a zero-amplitude 

response, and therefore a zero. The only critical frequencies are the pole at 

LR  and the zero at  . 

This information is plotted graphically below: 

0

|   |I

Vs

R

L
R

-
 

The phase response, not shown, is either 0  or 180 . 

In the example above, a finite critical frequency occurred at LR . That 

is, when the circuit is excited at this frequency by the voltage: 

LRt

ss eVv   (22.31) 

we get an infinite response. Why? The forcing function has a familiar form – it 

is the same form as the natural response of the circuit. We know that if we have 

a source-free circuit, then the response due to an initial current would be: 

LRteIi  0  (22.32) 

Thus, a zero-amplitude input produces a finite response. Since the circuit is 

linear, we conclude that a non-zero-amplitude forcing function will produce an 

infinite forced response. 
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This result is quite general: 

When any circuit is excited at a frequency which is a pole of 

the response, then an infinite response must result. 
(22.33) 

We also have: 

The frequencies of the poles are directly related 

to the natural response of the circuit. 
(22.34) 

EXAMPLE 22.6 Frequency Response as a Function of   

Suppose we have a series RC circuit, excited by an exponential current source 

t

ss eIi  : 

R

 t

ss
eIi  v C

 

The voltage across the source is: 







RC
RII

C
R ss

11 









 ZIV  

We can now identify the poles and zeros of the response from the form of the 

equation – it indicates a pole at 0  and a zero at RC1 . 
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The response magnitude is plotted as a function of   below: 

-
0

|   |V

RIs

CR
1

 

The reason for the pole at zero frequency may again be explained on physical 

grounds. If 0sI , then the current source is an open-circuit and the response 

is the initial capacitor voltage. A non-zero sI  must therefore produce an 

infinite forced voltage response. In other words, if a constant current has been 

applied to the circuit forever, then the capacitor voltage would be infinite. 

EXAMPLE 22.7 Frequency Response as a Function of   

Suppose we have a series RLC circuit, excited by an exponential voltage 

source: 

1 H

0.2 F

6i  t(  )

100e
t
V

 

The current is easily found: 

  51
100

56

100












I  
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The response curve is most easily found by first indicating the locations of all 

poles and zeros on the   axis, and placing vertical asymptotes at the poles. We 

can then seek out relative minima and maxima, and make a sketch of the 

response: 



|   |I

0-1-5  

The two poles may again be used to construct the natural response: 

  tt

n eAeAti 5

21

   

Compare this with the case of an overdamped series RLC circuit: 

 

5and1

533

1

22

2

2

2,1















LCL

R

L

R
s

 

Once again, at either of these two frequencies, a zero-amplitude forcing 

function may be associated with a finite-amplitude response which can be 

interpreted as the natural response of the circuit. 
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22.6 The Complex-Frequency Plane 

Now that we have considered the forced response of a circuit as   varies (with 

0 ) and as   varies (with 0 ), we are prepared to develop a more 

general graphical representation by graphing quantities as functions of s . 

After we develop the concept of the complex-frequency plane, or s -plane, we 

shall see how quickly the behaviour of a circuit can be obtained from a 

graphical representation of its critical frequencies. 

The response of a circuit to a complex frequency s  is a complex function of s . 

Thus, we need a method of representing both the magnitude and phase of the 

response as s  varies. Therefore, we represent the magnitude and phase 

individually, using a three-dimensional model built over the s -plane, where the 

height at any point is equal to the value of the quantity we are representing – 

either the magnitude or the phase. 

The s -plane consists of a   axis and a j  axis, perpendicular to each other: 

 



j

0

complex plane

=   + j

Re s

Im s
s

 

 

Figure 22.2 
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We are familiar with the type of time-domain function associated with a 

particular value of the complex frequency s . It is now possible to associate the 

functional form of a forcing function or forced response with the various 

regions in the s -plane. 

 

j

-planes



 

 

Figure 22.3 

The origin, for example, must represent a DC quantity. Points lying on the    

axis must represent exponential functions, decaying for 0 , increasing for 

0 . Pure sinusoids are associated with points on the positive or negative 

j  axis. Points in the left half-plane (LHP) describe the frequencies of 

exponentially decreasing (or damped) sinusoids. The RHP contains points 

describing exponentially increasing sinusoids. 

We may represent the magnitude of a function of s  as a surface lying above (or 

just touching) the s -plane. 
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EXAMPLE 22.8 Admittance Magnitude on the Complex Plane 

Suppose we want to graph the magnitude of the admittance of the series 

combination of a 1 H inductor  and a  3  resistor: 

 
3

1




s
sY  

We identify the pole immediately as 03 js  – thus our 3D model of the 

magnitude of  sY  must have infinite height over this point. When s  is 

infinite, the magnitude of  sY  must be zero. The model must have zero height 

at points infinitely far away from the origin. A cut-away view of the magnitude 

of  sY  is shown below: 

-6

-4

-2

0 -10
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0
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0

0.2
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0.8
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j


|Y|

 

We can completely specify  sY , apart from a constant gain factor, by drawing 

a so-called pole-zero plot: 



j

-3

-planes  

The graph of the 

magnitude of  sY  

over the s-plane 
forms a surface with 
poles and zeros 

A pole-zero plot is a 
shorthand way of 
representing a 
complex function 
of s 



22.26 

Index The Complex-Frequency Plane PMcL   

22 - Complex Frequency  2017 

A pole-zero plot locates all the critical points in the s-plane that completely 

specify the function  sY  (to within an arbitrary constant), and it is a useful 

analytic and design tool. 

One cut of the surface has been fortuitously placed along the imaginary axis. If 

we graph the height of the surface along this cut against  , we get a picture of 

the magnitude of the frequency response versus  : 

|    |Y



1/3

0

magnitude of

(   )Y 
1

j3+ 
=

 

We can obtain a mental image of the surface that represents the magnitude of a 

function over the s-plane quite quickly if we imagine a rubber sheet model. At 

zeros, we secure the rubber sheet to the plane (tent pegs). At poles, we prop the 

rubber sheet up with infinitely high and thin poles. 

The frequency 
response is 
obtained from the 

j-axis of a plot of a 
function over the 
entire s-plane 
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EXAMPLE 22.9 Impedance Magnitude on the Complex Plane 

We are given a pole-zero plot of some impedance  sZ . 



j

-2

-planes

-1+  5j

-1-  5j  

If we visualize a rubber-sheet model, tacked down at 02 js  and propped 

up at 51 js  and 51 js , we should see a terrain with two mountains 

and one valley. The portion of the model for the upper LHP is shown below: 
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We can build up the expression for  sZ  which leads to this pole-zero 

configuration. The zero requires a factor of  2s  in the numerator, and the 

two poles require the factors  51 js  and  51 js  in the denominator. 

Except for a multiplying constant k, we now know the form of  sZ : 

 
  

262

2

5151

2

2 









ss

s

ss

s
sZ

k

jj
k

 

The plots  Z  versus   and  Z  versus   may be obtained exactly from 

this expression, but the general form of the function is apparent from the pole-

zero configuration and the rubber-sheet analogy. Portions of these two curves 

appear at the sides of the 3D model above. 
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22.7 Visualization of the Frequency Response from a Pole-Zero Plot 

The frequency response can be visualised in terms of the pole locations of the 

response function. For example, for an underdamped second-order lowpass 

system: 

  io
Q

V
ss

V
2

000

2

2

0








 
(22.35) 

the poles are located on a circle of radius 0  and at an angle with respect to the 

negative real axis of  0

1 21cos Q . These complex conjugate pole 

locations are shown below: 
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p
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j

j

 

 

Figure 22.4 

In terms of the poles shown in Figure 22.4, the response function is: 

   io
psps

VV



2

0
 

(22.36) 

Standard form for a 
lowpass second-
order response 
function 

Pole locations for an 
underdamped 
lowpass second-
order response 
function 

Underdamped 
lowpass second-
order response 
function using pole 
factors 
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When js  the two pole factors in this equation become: 

j p m j p m        

1 1 2 2and
 

(22.37) 

In terms of these quantities, the magnitude response is: 
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(22.38) 

and the phase response is: 

   21   jT  (22.39) 

Vectors representing Eq. (22.37) are shown below: 
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Figure 22.5 

Polar representation 
of the pole factors 

Magnitude function 
written using the 
polar representation 
of the pole factors 

Phase function 
written using the 
polar representation 
of the pole factors 

Determining the 
magnitude and 
phase response 
from the s-plane 
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Figure 22.5 shows three different frequencies – one below 0 , one at 0 , and 

one above 0 . From this construction we can see that the short length of m1  

near the frequency 0  is the reason why the magnitude function reaches a peak 

near 0 . These plots are useful in visualising the frequency response of the 

circuit. 
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22.8 Summary 

 Complex frequency is defined as  js . 

 A whole class of forcing functions and responses (exponentially damped 

sinusoids) can be expressed using   tetf sK , where K is a complex 

constant. If s is complex, then a real function must be composed of a 

conjugate pair:   tt eetf
** ss KK  . 

 A complex forcing function for a voltage can be expressed as 
tes

V , where 

 mVV  is a phasor with the complex frequency s. 

 The generalised impedances of the three passive elements are: 

RR Z ,  LL sZ  ,   
C

C
s

Z
1

  

 Critical frequencies of a forced response occur at zeros and poles. A zero is 

a frequency at which the response is zero. A pole is a frequency at which 

the response is infinite. 

 The poles of a circuit determine the form of its natural response. 

 The frequency response of a circuit can be evaluated at each point in the 

s-plane. The response along the j  axis represents the sinusoidal steady-

state frequency response. 

 A pole-zero plot encapsulates all of the information about a circuit’s 

response, apart from a multiplicative constant. We can also use a pole-zero 

plot to visualize the frequency response. 

22.9 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

Find the complex frequencies associated with the natural response of a source-

free series RLC circuit in which H 10L , μF 250C , and R : 

(a)   500   (b)   320  

2. 

(a) If     mA  351000cos2 100

1   teti t  and 

    mA  201000sin4 100

2   teti t , find the phasor representing the sum 

of these two currents. 

(b) Find the phasor corresponding to     mA  50sin250cos32 5 tteti t   . 

3. 

Consider the circuit shown below: 

1 H

1 F

1 i t( )

vs 1 H

 

Find  ti  at s 5.0t  if: 

(a) V  10sv  

(b)   V  2cos10 tvs   

(c) V  10 3t

s ev   

(d)   V  2cos10 3 tev t

s
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4. 

Consider the circuit shown below: 

2 H

5

vs 20 is

 

If V  3cos20 4 tev t

s

 , while A  4cos3 3 tei t

s

 , find the energy stored in the 

inductor at 0t . 

5. 

Consider the circuit shown below: 

2 kvis

0.1 F

1 k 0.2 F

 

Find all the critical frequencies of the ratio sIV , and graph the magnitude of 

the ratio as a function of   (use a spreadsheet). 

6. 

One of the critical frequencies of the impedance of a series RLC circuit occurs 

at -1s  104 js . If the minimum impedance magnitude is   100 , 

determine: 

(a) R  (b) L  (c) C 
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7. 

The pole-zero plot of an input impedance displays a zero at 50s  and poles 

at 3020 js . 

(a) Determine the magnitude and angle of each vector from a critical frequency 

to the point 20js . 

(b) Calculate the (complex) ratio of  20in jZ  to  40in jZ . 

8. 

In 1945, Dr Hendrik W. Bode published Network Analysis and Feedback 

Amplifier Design, codifying in one classic book the filter and feedback-

amplifier theory upon which much of the electronics industry still relies. 

One of the many results his seminal work revealed was the constant-resistance 

network: 

inZ
C2L 1

R1 R2

 

The figure shows only one of many forms of this circuit. 

Show that, as long as you let 
21 RR   and scale the components such that the 

time constant 11 RL  equals the time constant 22CR , then the impedance of the 

whole circuit remains constant at all frequencies, and is equal to 1R . 

The circuit occasionally sees application in digital systems as a terminating 

network, where 2C  represents the unavoidable capacitance of a logic gate 

input. 
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23 Specialty Amplifiers 
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Introduction 

There are several popular types of specialty amplifiers, or amplifiers that are 

based in some way on op-amp techniques. In an overall application sense, they 

are not generally used as universally as op-amps. Examples of specialty 

amplifiers include difference amplifiers, instrumentation amplifiers, 

programmable gain amplifiers (PGAs) and isolation amplifiers. These will be 

looked at briefly because they are used in the important areas of data 

acquisition and distribution systems and embedded systems. 

In addition, there are many other types of amplifiers such as audio and video 

amplifiers, cable drivers, high-speed variable gain amplifiers and various 

communication-related amplifiers. 
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23.1 Differential and Common-Mode Signals 

A difference amplifier is one that responds to the difference between the two 

signals applied at its input and ideally rejects signals that are common to the 

two inputs. The representation of signals in terms of their differential and 

common-mode components is given below: 

 

(        )

v=

vicm

= vicmvi2 + vid /2

= vicmvi1 vid /2

vid /2

vid /2

vi1i2vid

vicm= vi1 +vi2
1
2

 

 

Figure 23.1 – Common-Mode and Differential Signals 

Although the ideal difference amplifier will amplify only the differential input 

signal idv  and reject completely the common-mode signal icmv , practical 

circuits will have an output voltage ov  given by: 

icmcmiddo vAvAv   (23.1) 

where dA  denotes the amplifier differential gain and cmA  denotes its common-

mode gain (ideally zero). One measure of a differential amplifier’s 

performance is the degree of its rejection of common-mode signals in 

preference to differential signals. This is usually quantified by a measure 

known as the common-mode rejection ratio (CMRR), defined as: 

dB  log20CMRR 10

cm

d

A

A


 
(23.2) 
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23.2 Difference Amplifiers 

A simple difference amplifier can be constructed with four resistors and an 

op-amp, as shown below: 

 

R2

R1

vo

R3

R4

v i1

v i2

 

 

Figure 23.2 – A Difference Amplifier 

It is often used in applications where a simple differential to single-ended 

conversion is required. Because of its popularity, this circuit will be examined 

in more detail, in order to understand its fundamental limitations before 

discussing instrumentation amplifiers. 

We can use superposition to determine the output: 

 

R2

R1

R3 R4

v i1

vo1

R2

R1

R3

R4

v i2

vo2

(a) (b)  

 

Figure 23.3 – Analyzing a Difference Amplifier 

Difference amplifier 

Analyzing a 
difference amplifier 
using superposition 
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We have: 

1

1

2
1 io v

R

R
v 

 
(23.3) 

and, since we normally select 1234 RRRR  , we also have: 

2

1

2
2

43

4

1

2
2 1 iio v

R

R
v

RR

R

R

R
v 











 
(23.4) 

Thus: 

  iddidiio vAv
R

R
vv

R

R
v 

1

2
12

1

2

 
(23.5) 

Thus, for exact resistor ratios 1234 RRRR  , the common-mode gain is zero. 

Any mismatch, however, will lead to finite CMRR. 

The differential resistance of the amplifier is calculated as shown below: 

 

R2

R1

R1

R2

i i

Virtual short circuit

i i

v id

R id

 

 

Figure 23.4 – Determining the Input Resistance of a Difference Amp 

Thus, the input resistance is: 

12RRid   (23.6) 

The differential gain 
of a difference 
amplifier 

Determining the 
input resistance of a 
difference amplifier 

The input resistance 
of a difference 
amplifier 



23.6 

Index Difference Amplifiers PMcL   

23 - Specialty Amplifiers  2017 

23.2.1 Difference Amplifier Deficiencies 

If the amplifier is required to have a large differential gain 
12 RR , then 

1R  will 

be relatively small and the input resistance will be correspondingly low, a 

drawback of this circuit. 

Another drawback is that it is not easy to vary the differential gain, since we 

need to maintain the resistors in the ratio 1234 RRRR  . 

It is also extremely sensitive to source impedance imbalance (the two inputs 

see different input impedances, so a balanced source is not necessarily a good 

thing). 

A net matching tolerance of 0.1% in the resistor ratios yields a worst case DC 

CMRR of 66 dB, which is quite low (compared to the op-amp which typically 

has a CMRR of 100 dB). 

23.2.2 Difference Amplifier ICs 

To overcome the matching tolerance problem on the resistors, it is usual to 

seek out an integrated circuit difference amplifier which includes on-chip laser 

trimmed precision thin film resistor networks. An example is the INA146 from 

Texas Instruments: 

 

R5

R4

R2

vo

A1

R1

v
IN

+

v
IN

R3

10 k

100 k 10 k

10 k100 k

A2(1%)

V+

R 1G R 2G

57

2

3

14

V- vo 1

INA146
8

6

 

 

Figure 23.5 – The Texas Instruments INA146 

A major difference 
amplifier deficiency 
is due to inevitable 
unequal resistor 
ratios 

The Texas 
Instruments INA146,  
a difference 
amplifier with laser-
trimmed resistors – 
a very flexible IC! 
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23.3 Instrumentation Amplifiers 

The most popular among all of the specialty amplifiers is the instrumentation 

amplifier (or simply in-amp). The in-amp is widely used in many industrial and 

measurement applications where DC precision and gain accuracy must be 

maintained within a noisy environment, and where large common-mode signals 

(usually at the AC power line frequency) are present. 

The internal configuration of an in-amp is shown below: 

 

R4

R3

R3

R4

R2

RG

v i2

vo

A2

v i1

R2

A1

A3

 

 

Figure 23.6 – A 3 Op-Amp Instrumentation Amplifier 

It has a pair of differential input terminals, and a single-ended output that 

works with respect to a reference or common terminal. The input impedances 

are balanced and high in value, typically greater than G 1 . The in-amp uses 

an internal feedback resistor network, plus one gain set resistance, GR , which 

is external to the package. 

A 3 op-amp 
instrumentation 
amplifier (in-amp) 
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An analysis of the in-amp is shown below: 

 

/

/

R4

R3

R3

R4

R2

RG

v i2

vo (        )1+
R4

R3

=
RG

R22
v id

(      )1+ RG

2R2

v id

vo2

v id RG

v id RG/

v i2

(           )v i1v i2

v id=

0 V

0

A2

v i1

R2

vo1

v id RG

v i1

0 V

0

A1

A3

 

 

Figure 23.7 – Analysis of the In-Amp 

The analysis shows that the gain of the in-amp is given by: 

iddid

G

o vAv
R

R

R

R
v 








 2

3

4 2
1

 
(23.7) 

Note that this formula is only valid for perfect op-amps and matched resistors. 

In this case, there is no output component due to the common-mode voltage, 

and so the common-mode gain is 0cmA . Real in-amps have CMRRs ranging 

from 90 to 130 dB, i.e. the common-mode gain is around a million times 

smaller than the differential gain! 

23.3.1 In-Amp Advantages 

The in-amp gain can be set by the user by selecting the external GR . 

In-amp gain can also be preset via an internal GR  by pin selection (again 

isolated from the signal inputs). Typical in-amp gains range from 1 to 1000. 

The internal resistors are trimmed so that standard 1% or 0.1% resistors can be 

used to set the gain to popular values, such as 2, 5, 10, …, 200, 500, 1000. 

Analysis of the 
in-amp to determine 
the differential gain 

The differential gain 
of a difference 
amplifier 
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Furthermore, common-mode signals are only amplified in the first stage by a 

factor of 1 regardless of gain. When the two input terminals are connected 

together to a common-mode input voltage icmv , it is easy to see that an equal 

voltage appears at the negative input terminals of 
1A  and 

2A , causing the 

current through GR  to be zero. Thus there will be no current in the 
2R  

resistors, and the voltages at the output terminals of 
1A  and 

2A  will be equal to 

the input (i.e. icmv ). Thus the first stage does not amplify icmv , it simply 

propagates icmv  to its two output terminals where they are subtracted to 

produce a zero common-mode output by 3A .  

Another important feature of the in-amp is that the internal resistance network 

and GR  are isolated from the signal input terminals. 

23.3.2 In-Amp Disadvantages 

From Figure 23.7, we can see that for the in-amp to “work”, the sum of the 

common-mode voltage and the signal voltage at the outputs of 1A  and 2A  must 

fall within the amplifier output voltage range. Otherwise, one of these op-amps 

will saturate and the output of the difference amplifier will not be proportional 

to the differential voltage. 

Unlike the difference amplifier, there is no attenuation of the input voltage 

before it “meets” the op-amp terminals. Therefore, the input voltages to the in-

amp must lie within the supply voltage range for the in-amp to “work”. 

The CMRR is a function of frequency – it falls off at around 10-100 Hz. In 

addition, the bandwidth (which is dependent on the gain) falls within the range 

1-1000 kHz. This makes the in-amp only suitable for very low frequency 

applications, such as weigh scales, ECG and medical instrumentation and 

industrial process controls where the frequency of the sensor signals is 

naturally low. 

The in-amp has a 
very high CMRR 
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23.3.3 In-Amp Application 

An example of a commercially available in-amp is the AD620. An application 

of the in-amp is shown below, where it is used in a data acquisition system to 

amplify the output from a pressure transducer bridge (which is normally 

balanced) from a single 5 V supply: 

 

10 k

20 k

AD705
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+5 V

3 k

3 k

3 k

3 k
499

8

2

3

1

G=100
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5

20 k

1.7 mA

IN

AGND

ADC
DIGITAL
DATA
OUTPUT

0.6 mA
MAX
1.3 mA 0.1 mA

MAX

 

 

Figure 23.8 – A Pressure Monitor Circuit 

The in-amp is ideally suited for this application because the bridge output is 

fundamentally balanced, and the in-amp presents it with a truly balanced high 

impedance load. 

Full scale output voltages from a typical bridge circuit can range from 

approximately 10 mV to several hundred mV. Typical in-amp gains in the 

order of 100 to 1000 are therefore ideally suited for amplifying these small 

voltages to levels compatible with popular analog-to-digital (ADC) input 

voltage ranges (usually 1 V to 10 V full scale). 

In addition, the in-amp’s high CMRR at power line frequencies allows 

common-mode noise to be rejected, when the bridge must be located remotely 

from the in-amp. 

Typical application 
of an in-amp (the 
AD620 from Analog 
Devices) as an 
amplifier for a 
pressure transducer 
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23.4 Programmable Gain Amplifiers 

Most data acquisition systems with wide dynamic range need some method of 

adjusting the input signal level to the analog-to-digital converter (ADC). 

Typical ADC full scale input voltage ranges lie between 1 V and 10 V. To 

achieve the rated precision of the converter, the maximum input signal should 

be fairly near its full scale voltage. 

Transducers however, have a very wide range of output voltages. High gain is 

needed for a small sensor voltage, but with a large output, a high gain will 

cause the amplifier or ADC to saturate. So, some type of predictably 

controllable gain device is needed. 

Such a device has a gain that is controlled by a digital input. This device is 

known as a programmable gain amplifier, or PGA. Typical PGAs may be 

configured either for selectable decade gains such as 10, 100, 1000, etc., or 

they might also be configured for binary gains such as 1, 2, 4, 8, etc. 

A PGA is usually located between a sensor and its ADC, as shown below: 

 

sensor

gain
control

PGA ADC
digital
output

 

 

Figure 23.9 – Use of a Programmable Gain Amplifier 

Thus, a digital processor can combine PGA gain information with the digital 

output of the ADC to increase its resolution. Some ADCs have on-chip PGAs.  

A PGA is used to 
increase the 
dynamic  range of a 
system 

A PGA’s location in 
a system 
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23.4.1 PGA Design Issues 

 How to switch the gain 

 Effects of the switch on-resistance ( ONR ) 

 Gain accuracy 

 Gain linearity 

 Bandwidth 

 DC offset 

 Gain and offset drift over temperature 

 Settling time after switching gain 

23.4.2 PGA Example 

An example of a PGA with programmable gains of 1, 10, 100 and 1000 is 

shown below: 

 

v in
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+15 V

vout

10 k

1 k
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10 11

15 14
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G=1

G=100

G=10

G 1000

20 pF



 

 

Figure 23.10 – A PGA with Decade Gains 

A PGA with a 
decade scale that is 
not influenced by 
switch resistance 
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23.5 Isolation Amplifiers 

There are many applications where is it desirable, or even essential, for a 

sensor to have no direct (“galvanic”) electrical connection with the system to 

which it is supplying data. This might be in order to avoid the possibility of 

dangerous voltages or currents from one half of the system doing damage in 

the other. Such a system is said to be isolated, and the arrangement that passes 

a signal without galvanic connections is known as an isolation barrier. 

Examples include the need to prevent the ignition of explosive gases by sparks 

at sensors and the protection from electric shock of patients whose ECG or 

EEG is being monitored. In the ECG case, protection may be required in both 

directions: the patient must be protected from accidental electric shock, but if 

the patient’s heart should stop, the ECG machine must be protected from the 

very high voltages (> 7.5 kV) applied to the patient by the defibrillator which 

will be used to attempt to restart it. 

A summary of applications for isolation amplifiers (both analog and digital) is 

given below: 

 Sensor is at a high voltage relative to other circuitry (or may become so 

under fault conditions) 

 Sensor may not carry dangerous voltages, irrespective of faults in other 

circuitry (e.g. patient monitoring and intrinsically safe equipment for 

use with explosive gases) 

 To break ground loops (two “grounds” in the same system at different 

voltages, causing current between them) 

The most common isolation amplifiers use transformers, which exploit 

magnetic fields, and another common type uses small high voltage capacitors, 

exploiting electric fields. Optoisolators, which consist of an LED and a 

photocell, provide isolation by light. Different isolators have differing 

performance: some are sufficiently linear to pass high accuracy analog signals 

across an isolation barrier. With others, the signal may need to be converted to 

digital form before transmission for accuracy to be maintained. 

 

Electrical isolation is 
necessary in a wide 
variety of 
applications 
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EXAMPLE 23.1 Isolation Amplifier 

An example of a 3-port isolation transformer is the Analog Devices AD210. It 

allows the user to select gains from 1 to 100, using external resistors, with the 

input section op-amp. It uses transformers to achieve 2500 V RMS (3500 V 

peak) isolation. 

A typical application using the AD210 is shown below: 

vo

DEMOD

FILTER

COM o

OUTPUT

POWER

SUPPLY

+Voss

-Voss

T3

T1

OUTPUT

MOD

INPUT

COM i

FB

-IN

+IN

INPUT

POWER

SUPPLY

+Viss

-Viss

T2 POWER

POWER

OCILLATOR

PWR COM PWR

AD620RG0.1

High voltage
AC Input = 230 V

REF

-15 V

+15 V

M

+15 V

AD210

 

The AD210 is used with an AD620 in-amp in a high-side current-sensing 

system for motor control. Current is sensed on the high (230 V) side of the 

motor (as opposed to using a resistor on the ground side – so-called low-side 

sensing) so that any fault current from the motor to the chassis (earth) is also 

detected. 

The input of the AD210, being isolated, can be directly connected to a 230 V 

power line without protection being necessary. The input section’s isolated 

±15 V powers the AD620, which senses the voltage drop in a small value 

current sensing resistor. The AD210 input stage op-amp is simply connected as 

a unity-gain follower. The 230 V RMS common-mode voltage is ignored by 

this isolated system. 

Motor control 
current sensing 
using an analog 
3-port isolator –  
providing power, 
input and output 
isolation 
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EXAMPLE 23.2 Digital Isolator 

An example of a digital isolator is an LED / phototransistor optocoupler: 

VDD1

425

v IN

CMOS
GATE

GND 1

HIGH VOLTAGE

ISOLATION BARRIER

IIN IOUT

GND 2

10 k
VDD2

vOUT

(5 V)

(5 V)

 

A current of approximately 10 mA drives an LED transmitter,  with light 

output received by a phototransistor. The light produced by the LED saturates 

the phototransistor (drives the collector-emitter voltage low). Input / output 

isolation of 5000–7000 V RMS is common. Although fine for digital signals, 

most optocouplers are too nonlinear for most analog applications. Also, since 

the phototransistor is being saturated, response times can be around 10-20 s 

for slower (cheap) devices, limiting high speed applications. 

The availability of low cost digital isolators solves most system isolation 

problems in data acquisition systems as shown below: 

ISOLATION BARRIER

ADC
DIGITAL

ISOLATORS

ground reference A

SENSOR
MICRO-

CONTROLLER

ground reference B  

In this system, digitizing the signal first using an ADC with serial output, then 

using digital isolation, eliminates the problem of analog isolation amplifiers 

(which are expensive). 

A digital isolator 
using a LED and 
phototransistor 

Practical application 
of digital isolation in 
a data acquisition 
system 
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23.6 Summary 

 The two signals that appear at the inputs of difference amplifiers can be 

split into a common-mode signal and a differential signal. This aids in 

calculating the output of a difference amplifier, and gives rise to a measure 

of difference amplifier performance, known as the common-mode rejection 

ratio, or CMRR. It is usually expressed in dB. 

 Difference amplifiers are used to amplify the difference between two 

signals, and to reject the common-mode. However, they are very sensitive 

to the values (i.e. tolerance, drift due to temperature, etc.) of the resistors 

used in the circuit. Therefore, only integrated circuit packages with laser-

trimmed resistors in close proximity are used in practice. 

 Instrumentation amplifiers are an arrangement of op-amps that overcomes 

some of the deficiencies of the standard difference amplifier. They have a 

very large balanced input impedance, and can provide large differential 

gain whilst rejecting the common-mode signal. They are readily available 

in integrated circuit packages, and are commonly used in bridge circuits. 

 Programmable gain amplifiers are used in data acquisition systems where 

the transducer exhibits a very large range of output voltages. They can be 

controlled digitally. 

 Isolation amplifiers provide electrical isolation between sensors and 

electronic circuitry, and are used in environments where a direct electrical 

connection would be hazardous, such as in mining and biomedical 

applications. 

23.7 References 

Jung, W: Op-Amp Applications, Analog Devices, 2002. 
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Exercises 

1. 

Consider the instrumentation amplifier implementation shown below: 

R5R3

R4 R6

R2

RG

v i2

vo

A2

v i1

R1

A1

A3
1 k

100 k

100 k

10 k

10 k 10 k

10 k

vo1

vo2

 

(a) Determine expressions for the output voltages of 
1A  and 2A  in terms of 

the input voltages 1iv  and 2iv . 

(b) Find the overall differential voltage gain dA  of the in-amp. 

(c) The following voltages are applied to the in-amp: mV 2301 iv , 

mV 2352 iv . Determine the final output voltage. 

(d) What value of GR  must be used to change the gain of the in-amp to 

1000? 
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2. 

Consider the two-op-amp instrumentation amplifier shown below: 

vo

v i1

A1

RG

16 k

R4

40 k

R2

v i2

A2

10 k

R

10 k

3

R1

40 k  

Determine the value of the overall differential voltage gain dA  of the in-amp. 
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24 Transfer Functions 
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Introduction 

In any particular circuit, the phasor ratio of the desired forced response to the 

forcing function, written in terms of the complex frequency s, is called the 

transfer function. Thus, a transfer function is an input-output description of the 

behaviour of a circuit, and it does not include any information concerning the 

internal structure of the circuit and its behaviour (we have already seen that the 

RLC circuit can be replaced by a biquad circuit utilising op-amps – both have 

the same input-output behaviour within certain bounds). 

The transfer function is intimately related to the characteristic equation – it 

completely characterises a circuit. We can thus dispense with circuit 

schematics, and start to think in terms of cascaded and interconnected “blocks” 

that are described by transfer functions – so-called block diagrams. 

The transfer function will also be seen to hold information about the form of 

the circuit’s natural response. Thus, given a transfer function of a circuit, we 

can write down an expression for the natural response by inspection. If we are 

given a forcing function and the initial conditions, we can then determine the 

complete response. 

We shall also see that circuits are not special – we can model any system 

described by linear differential equations (e.g. mechanical, hydraulic, 

electrical, thermal, fluid) with block diagrams. 
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24.1 Transfer Functions 

Let us analyse the following simple circuit: 

 

C

R

v  t(  )(  )v  ts

 

 

Figure 24.1 

We can find the forced response of this circuit by working in the frequency-

domain (if the source has a functional form that we can transform to the 

frequency-domain, such as an exponentially damped sinusoid). Then we have: 

ss
RC

RC

CR

C
V

s
V

s

s
V

1

1

1

1







 
(24.1) 

A transfer function is the ratio of the desired forced response to the forcing 

function, using phasor notation and the complex frequency s. It is usually 

designated  sT : 

 
sV

V
sT 

 
(24.2) 

With this notation, we can see that the transfer function is a complex function 

of the complex variable s . Thus, in this case, we have: 

 
RC

RC

1

1




s
sT

 
(24.3) 

Several important conclusions can be drawn from the form of the transfer 

function. 
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24.1.1 Characteristic Equation 

Setting the denominator of the transfer function to zero, we get the 

characteristic equation of the circuit, 01  RCs . This corresponds exactly 

to that obtained from the original source-free homogeneous differential 

equation for the circuit, 0 RCvdtdv . Thus we see that the denominator 

of the transfer function seems to come directly from the source-free circuit 

itself, and is thus dependent only on the topology and types of passive circuit 

components. We will see later that the form of the natural (i.e. source-free) 

response is directly related to the characteristic equation. 

24.1.2 Pole-Zero Plot 

Roots of the characteristic equation give us the poles of the transfer function. In 

this case there is one pole at 01 jRC s . Zeros are obtained by finding 

those frequencies for which the transfer function is zero. In this case, there is a 

zero at s . When plotting poles and zeros, we normally don’t show poles 

and zeros at infinity, and so the pole-zero plot corresponding to this particular 

transfer function is: 

 

RC



j

-1

-planes  

 

Figure 24.2 

This pole-zero plot conveys exactly the same information as the transfer 

function, apart from the multiplicative factor RC1 . For example, from the plot 

above we know the transfer function has the form 
RC

K

1s
. In many instances, 

just the form of the transfer function tells us a lot about the circuit’s behaviour, 

so engineers make a lot of use of pole-zero plots. 
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24.1.3 Transfer Function Form 

The form of a transfer function is such that it can always be written as a ratio of 

two polynomials. The numerator polynomial can be factored into m “zero” 

terms, the denominator can be factored into n “pole” terms. 
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mK
pspsps

zszszs
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21

 
(24.4) 

The number of pole terms determines the order of the circuit. For our simple 

example RC circuit, we have a first-order circuit, since there is one pole. There 

are no zeros (except for the implicit one at s ). 

Some of the poles in the transfer function may occur as complex conjugate 

pairs. For example, if the first two pole terms are complex conjugates, then the 

transfer function can be written as: 
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(24.5) 

If we let jyx 1p  then jyx *

1p , then x2*

11 pp  and 22*

11 yx pp , 

both of which are real quantities. Thus, if we define the real numbers xa 2  

and 22 yxb  , then the transfer function can be written as: 
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(24.6) 

This is an extremely important observation – it tells us that a transfer function 

can be written with real coefficients as a product of first-order and second-

order factors! Thus, if we become familiar with the properties of first-order and 

second-order circuits, we can handle circuits of any order! 
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24.1.4 Relationship to Differential Equation 

Returning to the original circuit, we can do KVL around the loop and write the 

describing differential equation in the form: 

RC

v

RC

v

dt

dv s
 

(24.7) 

or, using the D operator: 

RC

v
v

RC
D s










1
 

(24.8) 

Now, putting aside all mathematical formality, we substitute s for D, and 

transform into the frequency-domain: 

s
RCRC

VVs
11











 
(24.9) 

We now get: 

 
RC

RC

s 1

1




s
sT

V

V
 

(24.10) 

Thus, we can directly convert a differential equation into the frequency-domain 

by setting all derivatives to s. It also turns out that integrals in the time-domain 

turn into s1  factors when converting to the frequency-domain. 

A more mathematically formal way to transform from the differential equation 

(the time-domain) to the transfer function (the frequency-domain) will come 

later with a study of the Laplace Transform. 
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24.1.5 Circuit Abstraction 

The transfer function is a relationship between the input and output of a circuit 

only, expressed in the frequency-domain using the notion of complex 

frequency and phasors. It tells us nothing about internal voltages, currents, 

consumed power, topology or even components. Thus, we could represent the 

RC circuit as a simple “black box” that converts one phasor into another: 

 

Vs V
1/RC

s1/RC

C

R

v  t(  )(  )v  ts

 

 

Figure 24.3 

The representation of a circuit in terms of its input signal, transfer function and 

output signal is known as a block diagram. The block diagram is a concept that 

is used often across all disciplines of engineering, and can be applied to any 

linear system, not just electrical circuits. It is a way to characterize a system 

without resorting to writing differential equations – instead we represent a 

system by its transfer function and work with input and output phasors. The 

only drawback to this approach is that we must work with algebraic equations 

involving complex numbers – but most of us would prefer this to solving 

differential equations! 
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24.2 Forced Response 

For now, we can only consider cases where the forced response can be 

expressed as an exponentially damped sinusoid (in the most general case). This 

includes DC, exponential and sinusoidal waveforms as special cases. 

To determine the forced response, the transfer function is evaluated at the 

complex frequency of the forcing function, say fss  . Then, to determine the 

phasor representation of the desired response, we simply multiply the phasor 

representation of the forcing function by the transfer function (which is now 

just a complex number). 

That is, the output phasor representing the forced response is given by: 

  sf
f

VsTV
ss

  (24.11) 

For example, suppose the forcing function is   0Vtvs  , a DC voltage. Then we 

know that this forcing function has a complex frequency 0s  , so evaluation 

of the transfer function at 0s   gives: 

  1
1

1









0s

0s s
sT

RC

RC
 

(24.12) 

Thus, the desired forced response voltage phasor is: 

  001 VVsf 


VsTV
0s  (24.13) 

Converting back to the time-domain, we find that the forced response is 0V , 

which we know is true from other circuit analysis methods. 
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If we had a sinusoidal forcing function,      tVtv ms cos , then we 

evaluate the transfer function at js : 
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(24.14) 

Thus, the desired forced response voltage phasor is: 
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(24.15) 

In more advanced circuit analysis, when the Laplace Transform is introduced, 

we will be able to handle almost any type of forcing function, rather than just 

exponentially damped sinusoids (or its special cases), by replacing the forcing 

function phasor (which is a constant) by a forcing function which is a 

mathematical expression containing s. 
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EXAMPLE 24.1 Forced Response 

Consider the circuit: 

0.2 H

3i  t( )s 1

0.01 F

v  t( )1 v  t( )2

 

We transform to the frequency-domain: 

0.2

3Is 1V1

s 

100
s 

V2

 

and, using the current-divider rule, we write down the transfer functions: 
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Note that the denominators are the same!  
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Suppose we want to find 
2V  for A 02.0 sI  and 0s  . Then: 

  0
00

0
I0TV 




 02.0

50020

15
222 s

 

Thus, the output voltage for a DC current source is zero, as can be seen by 

inspection of the circuit – the capacitor acts as an open circuit. 

Suppose now that s . Then: 
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500201

15
02.0

500201

15
2222 s  

Thus, the output voltage for an infinitely high frequency source (say a 

sinusoidal source) is zero, as can be seen by inspection of the circuit – the 

inductor acts as an open circuit. 

Suppose now that 10s . Then: 
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500102010
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 sITV  

Thus   tetv 10

2 075.0  . Note that this is a forced response due to the forcing 

function   tetv 10

2 2.0  , and not the natural response. 

Now apply a sinusoidal forcing function, with 10js . Then: 
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j

j

jj

j
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Thus     mV  4.6310cos08.672  ttv . 

Lastly, let 2010 js . Then since we are exciting the system at the same 

frequency as a pole, the response must be infinite. 
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24.3 Frequency Response 

Frequency response, by definition, is the sinusoidal steady-state response, i.e. 

the forced response to a sinusoid. As shown above, we can derive the 

frequency response directly from the transfer function. All we have to do is 

evaluate the transfer function at an arbitrary sinusoidal frequency js : 

    responsefrequency 





j
j

TsT
s  (24.16) 

For example, for the simple RC circuit, we have: 
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(24.17) 

Thus, it is a simple matter to derive expressions for the frequency response 

from the transfer function. We can now determine the magnitude response and 

phase response for the simple RC circuit: 
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(24.18) 
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EXAMPLE 24.2 Frequency Response from Transfer Function 

For the circuit seen previously, in the frequency-domain: 

0.2

3Is 1V1

s 

100
s 

V2

 

we can use the transfer function to establish the frequency response quite 

quickly. For example, we know: 
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Then the frequency response is given by: 
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The magnitude and phase responses are, respectively: 
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Bode plots of these responses are shown below: 

 

 

The circuit, with the output taken as  tv2 , is thus a bandpass filter. 
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24.4 Natural Response 

The natural response is, by definition, of a form independent of the forcing 

function. Thus, we should be able to find the natural response by setting the 

forcing function to zero. In the example RC circuit, we work in the frequency-

domain and set 0V s . Thus, we have: 
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s
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(24.19) 

At first glance, it appears as though the response phasor must be zero. This is 

true for most frequencies, but what happens when the forcing function happens 

to be at a complex frequency 01 jRC s ? 

We know that if we excite the circuit at 01 jRC s  with a finite voltage, 

we get an infinite voltage (the definition of a pole). Mathematically, we have: 
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(24.20) 

So we conclude that if we “excite” the circuit at the same frequency with a zero 

voltage, that we get a finite response. Mathematically, we have: 

00

00V
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(24.21) 

Thus, the natural response must occur at frequencies corresponding to the poles 

of the transfer function. 
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For the example RC circuit, the pole of the transfer function occurs and infinite 

voltage results when the operating frequency is 01 jRC s . A finite 

voltage at this frequency thus represents the natural response: 

01at jRCAn  sV  (24.22) 

Transforming this natural response to the time-domain: 

  RCt

n Aetv   (24.23) 

For an arbitrary transfer function: 
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the poles of  sT  occur at nppps  , , 21 , and if the input forcing function is 

operating at any of these frequencies, an infinite forced response will result. 

Thus, a finite response at each of these frequencies is possible for the natural 

response. We thus have the form of the natural response by inspection of the 

poles of the transfer function. The most general expression is: 
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 (24.25) 

or, in words: 

poles repeated andcomplex   todue response 

polesdistinct  andcomplex   todue reponse 

poles repeated and real  todue response 

polesdistinct  and real  todue reponseresponse natural









 (24.26) 

The coefficients of the natural response must be evaluated using a knowledge 

of the forcing function and the initial conditions. 
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EXAMPLE 24.3 Frequency Response from Transfer Function 

Consider the circuit seen previously in the frequency-domain: 

0.2

3Is 1V1

s 

100
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V2

 

The transfer functions were derived as: 
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Consideration of either transfer function will determine the form of the natural 

response. First, we find the poles by setting the denominator to zero, and thus 

obtain the roots by solving the characteristic equation: 
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Thus, we have two complex and distinct poles. The form of the natural 

response for either  tv1  or  tv2  is thus: 

     tBetAetv tt

n 20sin20cos 1010    

To evaluate A and B, we need to know the initial conditions and the forcing 

function. 
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Note that the denominators of the two transfer functions in the preceding 

example are the same. This is not a coincidence. Provided that one portion of a 

circuit is not separated from the rest, each transfer function will have the same 

denominator regardless of which voltage or current is chosen as the output 

variable. This should not be surprising however, for the denominator (via the 

characteristic equation) determines those values of s, called poles or natural 

frequencies, that determine the natural response – and the form of the natural 

response is the same throughout a nonseparated circuit. 

If the natural response is desired for a circuit that contains no forcing function, 

then we can insert any source we like into the circuit, evaluate the transfer 

function, and then determine the natural response by inspection of the poles. 

If the circuit already contains a source, then we are allowed to set it to zero, 

apply a forcing function in a more convenient location, and then determine the 

poles from the resulting transfer function. 

These methods will work since the poles of the transfer function are a 

characteristic of the circuit only, and not of the forcing function – we will 

obtain the same poles for any of the many source locations that are possible – 

apart from two special cases: 

(a)  if a forcing function is naively applied in a portion of the circuit that is 

separated from the response, then the transfer function   0sT   will result. 

A case of this type can often be recognised by an inspection of the circuit 

before the source is installed. 

(b) if a forcing function is naively applied in a portion of the circuit so that it is 

the response, then the transfer function   1sT  will result. A case of this 

type will occur if a voltage source is placed in parallel with a desired 

voltage response or a current source is placed in series with a desired 

current response. 
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EXAMPLE 24.4 Natural Response from the Transfer Function 

Consider the source-free circuit: 

3 F


1

2
1v  t( )1 2 F v  t( )2

 

We seek expressions for  tv1  and  tv2
 for 0t , given the initial conditions, 

    V  1100 21  vv .  

Firstly, note that this is not a single time constant (STC) circuit, since we 

cannot reduce the circuit further. We thus need to investigate this circuit by 

examination of a transfer function. 

Let us install a current source sI  in parallel with the  1  resistor, and find the 

transfer function   sIVsT 1 , which also happens to be the input impedance 

seen by the current source. 

We have: 
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Thus,  tv1  must be of the form: 

  62

1

tt BeAetv    
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The solution is completed by using the given initial conditions to establish the 

values of A and B. Since  01v  is given as 11, then: 

BA11  

The necessary additional equation is obtained by differentiating 
1v  and 

applying KCL at the bottom node: 

BA
C

i

dt

dv C

t

6
1

0

1 2
2

2211







 

Thus, 8A  and 3B , and the desired solution is: 

  62

1 38 tt eetv    

The natural frequencies comprising 
2v  are the same as those of 1v , and a 

similar procedure to evaluate the arbitrary constants leads to: 

  62

2 12 tt eetv    
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24.5 Complete Response 

As we know, the complete response is the sum of the forced response plus 

natural response: 

response
natural

  
response
forced

  
response

complete


 
(24.27) 

The transfer function can be used to give us both the forced response and 

natural response, and therefore the complete response! 

EXAMPLE 24.5 Complete Response Using the Transfer Function 

We wish to find the complete response  ti  of the following circuit: 


1

2
1 F

i t( )

t=0

(  )v  ts

2

1

3
F

=e -tcos(2 )t

vC1

vC2

 

The switch is in an open position prior to 0t , and thus all currents and 

voltages to the right of the switch are assumed to be zero. At 0t  the switch is 

closed, and the current through the switch is to be found. This response is 

composed of both a forced response and a natural response: 

     tititi nf   

Each may be found through a knowledge of the transfer function,   sVIsT  , 

which is also the input admittance of the circuit to the right of the switch. 

We have: 
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After combining and factoring: 

 
 

  312

2
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In order to find the forced response, the frequency-domain voltage source 

 01sV  at 21 js  may be multiplied by the transfer function, evaluated 

at 21 js : 

 
  

    jjjj

jj
sjf











 18

5
1

2222

2121
21
VsTI

s
 

and thus: 

 45
16

25
fI  

Transforming to the time-domain, we have: 

     452cos
16

25
teti t

f  

The form of the natural response can be written by inspection of the poles of 

the transfer function: 

  tt

n BeAeti 3   

The complete response is therefore: 

    ttt BeAeteti 3452cos
16

25    

The solution is completed by using the given initial conditions to establish the 

values of A and B. Since the voltage across both capacitors is initially zero, the 

initial source voltage of 1 V must appear across the  2  resistor. Thus: 

  BAi 
2

1

16

25

2

1
0  
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Again, it is necessary to differentiate and then to obtain an initial condition for  

dtdi . From the expression for the complete response, we first find: 

BA

BA
dt

di

t

3
16

15

3
2

1

2

2

16

25

0













  

The initial value of this rate of change is obtained by analysing the circuit. 

However, those rates of change which are most easily found are the derivatives 

of the capacitor voltages, since dtdvCi  , and the initial values of the 

capacitor currents should not be too difficult to find. KVL around the circuit 

gives: 

212 CCs vvvi   

Dividing by 2 and taking the derivative: 

dt

dv

dt

dv

dt

dv

dt

di CCs 21

2

1

2

1

2

1
  

The first term on the right-hand side is obtained by differentiation of the source 

function and evaluation at 0t , the result is -1As 21 .The second term is 

numerically equal to 23  of the initial current through the F 31  capacitor, or 

-1As 43 . Similarly, the last term is -1As 41 . Thus: 

 
2

3

4

1

4

3

2

1

0


tdt

di
 

We may now use our two equations in A and B to determine the unknown 

coefficients of the natural response: 

163and0  BA  

The complete response is therefore: 

    tt eteti 3163452cos2165    
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24.6 Summary 

 A transfer function is the ratio of the desired forced response to the forcing 

function, using phasor notation and the complex frequency s. It is usually 

designated  sT . 

 A transfer function is always the ratio of two polynomials in s. It can be 

written as: 

 
    
    n

mK
pspsps

zszszs
sT










21

21  

where iz  is termed a zero and jp  is termed a pole. 

 A pole-zero plot provides an alternative description of a transfer function 

(to within an arbitrary constant K) as it specifies all zeros and poles. 

 The transfer function can be derived from the differential equation 

describing a circuit by replacing the D operator with s. 

 The transfer function can be derived by working directly in the frequency-

domain with the concept of generalized impedance ( R , Ls  and Cs1 ). 

 The transfer function can be used to determine the forced response phasor – 

by evaluating it at the complex frequency of the forcing function and 

multiplying the resultant complex number by the input phasor. 

 The transfer function can be used to determine the frequency response of a 

circuit by letting js : 

    responsefrequency 





j
j

TsT
s

 

 The transfer function can be used to determine the natural response of a 

circuit, since the poles of a circuit determine the form of its natural 

response. 

 The transfer function is a complete description of a circuit – from it we can 

derive the forced response, the natural response, the complete response, and 

the frequency response! 
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Exercises 

1. 

The capacitors in the circuit shown below carry charge at 0t . 

v 50 k

i1 i2

8   F

250 k

1   F

 

Find the frequencies present in the specified response for 0t : 

(a)  ti n1   (b)  ti n2   (c)  tvn  

2. 

Find  tv  for all values of time in the circuit shown below: 

t=0

12

2 H 6 H3v  t(  )( )i  ts

=e -tcos(2 )t

 

3. 

Find  ti  for all values of time in the circuit shown below: 

i

t=0 10 0.8 H

0.1 H212 V
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4. 

Consider the circuit shown below: 

0.1 F2 v2

2.5i2

5H
1
2

i2

 

Determine: 

(a) The transfer function 12 sIV , if 1sI  is in parallel with the inductor with 

its arrow directed upward. 

(b) The transfer function 22 sIV , if 2sI  is in parallel with the capacitor with 

its arrow directed upward. 

(c) The transfer function 12 sVV , if 1sV  is in series with the inductor with its 

positive reference on top. 

(d) Specify the form of the natural response  tv n2 . 
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5. 

Consider the following circuit: 

0.5 H

 V2   (  )u  t

1

i t(  )

0.8 F

1

0.5 Hvs

 

(a) Write the transfer function for sVI  and find the three natural 

frequencies (possibly complex) associated with the response  ti . 

Hint: There is a pole at 2s . 

(b) If  ti  is represented as a forced response plus a natural response, 

   titi nf  , find  ti f  by working in the frequency-domain. 

(c) Write down the form of the natural response,  tin . 

(d) Determine the complete response  ti . 

6. 

There is no initial energy stored in the following circuit: 

L

i t(  )

Cvs R1

2

R2

 

(a) Transform the circuit into the s-domain and formulate mesh-current 

equations. 

(b) Solve the mesh equations to establish the transfer function sVI2 . 

(c) Find  ti2  if    V 12 tutvs  ,  k 11R ,  k 22R , H 4L  and 

nF 500C . 
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Pierre Simon de Laplace (1749-1827) 

The application of mathematics to problems in physics became a primary task 

in the century after Newton. Foremost among a host of brilliant mathematical 

thinkers was the Frenchman Laplace. He was a powerful and influential figure, 

contributing to the areas of celestial mechanics, cosmology and probability. 

Laplace was the son of a farmer of moderate means, and while at the local 

military school, his uncle (a priest) recognised his exceptional mathematical 

talent. At sixteen, he began to study at the University of Caen. Two years later 

he travelled to Paris, where he gained the attention of the great mathematician 

and philosopher Jean Le Rond d’Alembert by sending him a paper on the 

principles of mechanics. His genius was immediately recognised, and Laplace 

became a professor of mathematics. 

He began producing a steady stream of remarkable mathematical papers. Not 

only did he make major contributions to difference equations and differential 

equations but he examined applications to mathematical astronomy and to the 

theory of probability, two major topics which he would work on throughout his 

life. His work on mathematical astronomy before his election to the Académie 

des Sciences included work on the inclination of planetary orbits, a study of 

how planets were perturbed by their moons, and in a paper read to the 

Academy on 27 November 1771 he made a study of the motions of the planets 

which would be the first step towards his later masterpiece on the stability of 

the solar system. 

In 1773, before the Academy of Sciences, Laplace proposed a model of the 

solar system which showed how perturbations in a planet’s orbit would not 

change its distance from the sun. For the next decade, Laplace contributed a 

stream of papers on planetary motion, clearing up discrepancies in the orbit’s 

of Jupiter and Saturn, he showed how the moon accelerates as a function of the 

Earth’s orbit, he introduced a new calculus for discovering the motion of 

celestial bodies, and even a new means of computing planetary orbits which 

led to astronomical tables of improved accuracy. 
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The 1780s were the period in which Laplace produced the depth of results 

which have made him one of the most important and influential scientists that 

the world has seen. Laplace let it be known widely that he considered himself 

the best mathematician in France. The effect on his colleagues would have 

been only mildly eased by the fact that Laplace was right! 

In 1784 Laplace was appointed as examiner at the Royal Artillery Corps, and 

in this role in 1785, he examined and passed the 16 year old Napoleon 

Bonaparte. 

In 1785, he introduced a field equation in spherical harmonics, now known as 

Laplace’s equation, which is found to be applicable to a great deal of 

phenomena, including gravitation, the propagation of sound, light, heat, water, 

electricity and magnetism. 

Laplace presented his famous nebular hypothesis in 1796 in Exposition du 

systeme du monde, which viewed the solar system as originating from the 

contracting and cooling of a large, flattened, and slowly rotating cloud of 

incandescent gas. The Exposition consisted of five books: the first was on the 

apparent motions of the celestial bodies, the motion of the sea, and also 

atmospheric refraction; the second was on the actual motion of the celestial 

bodies; the third was on force and momentum; the fourth was on the theory of 

universal gravitation and included an account of the motion of the sea and the 

shape of the Earth; the final book gave an historical account of astronomy and 

included his famous nebular hypothesis which even predicted black holes. 

Laplace stated his philosophy of science in the Exposition: 

If man were restricted to collecting facts the sciences were only a sterile 

nomenclature and he would never have known the great laws of nature. It is 

in comparing the phenomena with each other, in seeking to grasp their 

relationships, that he is led to discover these laws... 

Exposition du systeme du monde was written as a non-mathematical 

introduction to Laplace's most important work. Laplace had already discovered 

the invariability of planetary mean motions. In 1786 he had proved that the 

eccentricities and inclinations of planetary orbits to each other always remain 

small, constant, and self-correcting. These and many of his earlier results 

"Your Highness, I 
have no need of this 
hypothesis. "  
     - Laplace, to 
Napoleon on why 
his works on 
celestial mechanics 
make no mention of 
God. 
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formed the basis for his great work the Traité du Mécanique Céleste published 

in 5 volumes, the first two in 1799.  

The first volume of the Mécanique Céleste is divided into two books, the first 

on general laws of equilibrium and motion of solids and also fluids, while the 

second book is on the law of universal gravitation and the motions of the 

centres of gravity of the bodies in the solar system. The main mathematical 

approach was the setting up of differential equations and solving them to 

describe the resulting motions. The second volume deals with mechanics 

applied to a study of the planets. In it Laplace included a study of the shape of 

the Earth which included a discussion of data obtained from several different 

expeditions, and Laplace applied his theory of errors to the results. 

In 1812 he published the influential study of probability, Théorie analytique 

des probabilités. The work consists of two books. The first book studies 

generating functions and also approximations to various expressions occurring 

in probability theory. The second book contains Laplace's definition of 

probability, Bayes's rule (named by Poincaré many years later), and remarks on 

mathematical expectation. The book continues with methods of finding 

probabilities of compound events when the probabilities of their simple 

components are known, then a discussion of the method of least squares, and 

inverse probability. Applications to mortality, life expectancy, length of 

marriages and probability in legal matters are given. 

After the publication of the fourth volume of the Mécanique Céleste, Laplace 

continued to apply his ideas of physics to other problems such as capillary 

action (1806-07), double refraction (1809), the velocity of sound (1816), the 

theory of heat, in particular the shape and rotation of the cooling Earth 

(1817-1820), and elastic fluids (1821). 

Many original documents concerning his life have been lost, and gaps in his 

biography have been filled by myth. Some papers were lost in a fire that 

destroyed the chateau of a descendant, and others went up in flames when 

Allied forces bombarded Caen during WWII. 

Laplace died on 5 March, 1827 at his home outside Paris. 
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25 Sensor Signal Conditioning 
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Introduction 

A sensor is a device that receives a signal or stimulus and responds with an 

electrical signal. Sensors and their associated circuits are used to measure 

various physical properties such as temperature, force, pressure, flow, position, 

light intensity, etc. These properties act as the stimulus to the sensor, and the 

sensor output is conditioned and processed to provide the corresponding 

measurement of the physical property. 

Sensors which measure different properties may have the same type of 

electrical output. For example, a Resistance Temperature Detector (RTD) is a 

variable resistance, as is a resistive strain gauge. Both RTDs and strain gauges 

are often placed in bridge circuits, and the conditioning circuits are therefore 

quite similar. Therefore bridges and their conditioning circuits will be looked at 

in detail. 

Active sensors require an external source of excitation. Examples include RTDs 

and strain gauges. 

Passive or self-generating sensors do not require external power. Examples 

include thermocouples and photodiodes. 

The full-scale outputs of most sensors are relatively small voltages, currents, or 

resistance changes, and therefore their outputs must be properly conditioned 

before further analog or digital processing can occur. Amplification, level 

translation, galvanic isolation, impedance transformation, linearization and 

filtering are fundamental signal-conditioning functions that may be required. 

Sensors translate a 
physical quantity to 
an electrical quantity 
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25.1 Sensors 

There are many types of sensors – we will briefly look at those which lend 

themselves to measurement systems, data acquisition systems and process 

control systems. 

Some typical sensors and their output formats are shown in the table below: 

 

Property Sensor Active / 

Passive 

Output 

Temperature Thermocouple 

Silicon 

RTD 

Thermistor 

Passive 

Active 

Active 

Active 

Voltage 

Voltage / Current 

Resistance 

Resistance 

Force / Pressure Strain Gauge 

Piezoelectric 

Active 

Passive 

Resistance 

Voltage 

Acceleration Accelerometer Active Capacitance 

Position Linear Variable 

Differential Transformer 

(LVDT) 

Active AC Voltage 

Light Intensity Photodiode Passive Current 

Table 25.1 – Typical Sensors 

Some typical 
sensors and their 
output formats 
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25.2 Process Control Systems 

A common application of sensors is within process control systems. One 

example would be control of a physical property, such as temperature. A 

sample block diagram of how this might be implemented is given below: 

 

REMOTE

SIGNAL

CONDITIONING

4 TO 20mA

TRANSMITTER

4 TO 20mA

RECEIVER

SIGNAL

CONDITIONING

CONTROL ROOM

ADC

MICRO-

CONTROLLER

PC or

SCADA

DAC

SIGNAL

CONDITIONING

4 TO 20mA

TRANSMITTER

4 TO 20mA

RECEIVER

SIGNAL

CONDITIONING

SENSOR

ACTUATOR

PROCESS

 

 

Figure 25.1 – A Typical Process Control System 

In this system, an output from a temperature sensor is conditioned, transmitted 

over some distance, received, and then digitized by an analog-to-digital 

converter (ADC). The microcontroller or host computer determines if the 

temperature is above or below the desired value, and outputs a digital value to 

the digital-to-analog converter (DAC). The DAC output is conditioned and 

drives the remotely located actuator, in this case a heater. The interface 

between the control room and the remote process is via an “industry standard” 

4-20 mA current loop. 

A typical process 
control system, 
showing where the 
sensor fits into the 
overall system 
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25.3 Programmable Logic Controllers 

Many industrial processes are controlled at the “remote” end, with the 

microcontroller taking the form of a Programmable Logic Controller, (PLC). 

A PLC is a digital computer used for automation of processes, such as control 

of machinery on factory assembly lines, chemical processes, etc. Unlike 

general-purpose computers, the PLC is designed for multiple input and output 

arrangements, extended temperature ranges, immunity to electrical noise, and 

resistance to vibration and impact. They are generally programmed with 

proprietary software from the PLC vendor. 

 

 

 

Figure 25.2 – A Programmable Logic Controller (PLC) 

A Programmable 
Logic Controller 
(PLC) 
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PLCs communicate with a Supervisory Control and Data Acquisition 

(SCADA) system using “industrial Ethernet” or a vendor proprietary protocol.  

The control room has a human interface to the SCADA system. 

 

REMOTE

SIGNAL

CONDITIONING

CONTROL ROOM

ADC

MICRO-

CONTROLLER
SCADA

DAC

SIGNAL

CONDITIONING

SENSOR

ACTUATOR

PROCESS
HUMAN

INTERFACE

to other PLCs

to other PLCs
PLC  

 

Figure 25.3 – A Process Control System with PLCs and SCADA 

25.4 Smart Transducers 

By including the microcontroller (with integrated ADC and DAC), the sensor, 

and the actuator into one device, a “smart transducer” can be implemented with 

self-contained calibration and linearization features, among others. 

 

MICRO-

CONTROLLER

NETWORK

INTERFACE

PHYSICAL
PROCESS

TRANSDUCER

Digital

Communication

System

Smart Transducer

 

 

Figure 25.4 – A Smart Transducer 

A process control 
scheme that uses 
PLCs and a SCADA 
system 

A smart transducer 
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25.5 Programmable Automation Controllers 

Modern industrial automation is starting to use a new device known as a 

Programmable Automation Controller (PAC). PACs are used to interface with 

simple sensors and actuators, just like a PLC, but they also have advanced 

control features, network connectivity, device interoperability and enterprise 

data integration capabilities. PACs are multifunctional, handling the digital, 

analog, and serial signal types common in all types of industrial applications. 

The same hardware can be used for data collection, remote monitoring, process 

control and discrete and hybrid manufacturing. PACs also use standard IT 

components and protocols, with Ethernet and TCP/IP being very common. 

 

(Courtesy Opto 22) 

Figure 25.5 – A PAC in a Modern Industrial Application 

In the example shown above, the PAC is operating in multiple domains to 

monitor and manage a production line, a chemical process, a test bench, and 

shipping activities. To do so, the PAC must simultaneously manage analog 

values such as temperatures and pressures; digital on/off states for valves, 

switches, and indicators; and serial data from inventory tracking and test 

equipment. At the same time, the PAC is exchanging data with an OLE for 

Process Control (OPC) server, an operator interface, and a Structured Query 

Language (SQL) database. Simultaneously handling these tasks without the 

need for additional processors or “middleware” is a hallmark of a PAC. 

A PAC in a modern 
industrial application 
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25.6 Bridge Circuits 

Resistive elements are some of the most common sensors. They are 

inexpensive, and relatively easy to interface with signal-conditioning circuits. 

Resistive elements can be made sensitive to  temperature, strain (by pressure or 

by flex) and light. Using these basic elements, many complex physical 

phenomena can be measured. 

Sensor element resistance can range from less than  100  to several hundred 

k , depending on the sensor design and the physical environment to be 

measured. The table below shows the wide range of sensor resistances used in 

bridge circuits. 

 

Sensor Resistance Range 

Strain Gauges  120 ,  350 ,  3500  

Weigh-Scale Load Cells  350 -  3500  

Pressure Sensors  350 -  3500  

Relative Humidity k 100 - M 10  

Resistance Temperature Devices (RTDs)  100 ,  1000  

Thermistors  100 - M 10  

Table 25.2 – Sensor Resistance Ranges 

Resistive sensors produce relatively small percentage changes in resistance in 

response to a change in a physical variable. For example, RTDs and strain 

gauges present a significant measurement challenge because the typical change 

in resistance over the entire operating range may be less than 1% of the 

nominal resistance value. Accurately measuring small resistance changes is 

therefore critical when applying resistive sensors. 

Rather than trying to measure the sensor output directly, a bridge circuit is 

often used. The ability to balance the bridge initially (and zero the output, ov ) 

is a significant advantage of the bridge, since it is much easier to measure small 

changes in voltage ov  from a null voltage than from an elevated voltage ov , 

which may be as much as 1000 times greater than ov . 

Resistive elements 
form the basis for 
many types of 
physical 
measurements 

The change in a 
resistive element is 
small and therefore 
accurate 
measurement is 
essential 
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A resistance bridge, or Wheatstone bridge, shown in the figure below, is used 

to measure small resistance changes accurately. 

 

VB

vo

R1 R2

R3R4

At balance,

 

Bo V
RR

R

RR

R
v 

















32

2

41

1

ov  if
R1

R4


R2

R3

The Wheatstone bridge:

 

 

Figure 25.6 – The Wheatstone Bridge 

It consists of four resistors connected to form a quadrilateral, a source of 

excitation voltage BV  (or, alternately, a current) connected across one of the 

diagonals, and a voltage detector connected across the other diagonal. The 

detector measures the difference between the outputs of the two voltage 

dividers connected across BV . The general formula for the output ov  is: 

Bo V
RR

R

RR

R
v 

















32

2

41

1

 
(25.1) 

For sensor applications, the deviation of one or more of the resistors in a bridge 

from an initial value is measured as an indication of the change in the measured 

variable. In this case, the output voltage change is an indication of the 

resistance change. Since very small resistance changes are common, the output 

voltage change may be as small as tens of millivolts, even with an excitation 

voltage of V 10BV  (a typical value). 

The Wheatstone 
bridge is the basis of 
many types of 
sensor 
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In many bridge applications, there may not just be a single variable element, 

but two, or even four elements, all of which may vary. The figure below shows 

those bridges most commonly suited for sensor applications: 
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Figure 25.7 – Bridges for Sensors 

Note that since the bridge output is always directly proportional to 
BV , the 

measurement accuracy can be no better than that of the accuracy of the 

excitation voltage. 

In each case, the value of the fixed bridge resistor R  is chosen to be equal  to 

the nominal value of the variable resistor(s). The deviation of the variable 

resistor(s) about the nominal value is assumed to be proportional to the 

quantity being measured, such as strain (in the case of a strain gauge), or 

temperature (in the case of an RTD). 

The single-element varying bridge (A) is most suited to temperature sensing 

using RTDs or thermistors. All the resistances are nominally equal, but one of 

them (the sensor) is variable by an amount R . As the equation indicates, the 

relationship between the bridge output and R  is not linear. Also, in practice, 

most sensors themselves will exhibit a certain specified amount of nonlinearity, 

which must be taken into account. Software calibration is used to remove the 

linearity error in digital systems. 

Bridges that are 
commonly suited for 
sensor applications 

The single-element 
varying bridge is 
most suited to 
temperature sensing 
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The two-element varying bridge (C) requires two identical elements that vary 

in opposite directions. For example, this could correspond to two identical 

strain gauges: one mounted on top of a flexing surface, and one on the bottom. 

This configuration is linear, and the terms RR   and RR   can be viewed 

as two sections of a linear potentiometer. 

The all-element varying bridge (D) produces the most signal for a given 

resistance change, and is inherently linear. It is also an “industry-standard” 

configuration for load cells constructed from four identical strain gauges. 

 

 

 

 

Figure 25.8 – Load Cells 

Load cells – bridge 
elements are “strain 
gauges” arranged in 
a particular 
orientation 
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25.6.1 Bridge Design Issues 

 Selecting the configuration (1, 2, 4-element varying) 

 Selection of voltage or current excitation 

 Stability of excitation or ratiometric operation 

 Bridge sensitivity: Full-Scale Output / Excitation 

1 mV/V to 10 mV/V typical 

 Full-scale bridge outputs 

10 mV to 100 mV typical 

 Precision, low-noise amplification / conditioning techniques required 

 Linearization techniques may be required 

 Remote sensors present challenges 

Regardless of the absolute level, the stability of the excitation voltage or 

current directly affects the accuracy of the bridge output. Therefore stable 

references and / or ratiometric drive techniques are required to maintain 

highest accuracy. 

Ratiometric refers to the use of the bridge drive voltage of a voltage-driven 

bridge as the reference input to the ADC that digitizes the amplified bridge 

output voltage. 
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25.6.2 Amplifying and Linearizing Bridge Outputs 

The output of a single-element varying bridge may be amplified with an 

instrumentation amplifier (in-amp): 
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Figure 25.9 – Bridge Output Using an In-Amp 

The in-amp provides a large and accurate gain that is set with a single resistor, 

GR . The in-amp also provides dual, high-impedance loading to the bridge 

nodes – it does not unbalance or load the bridge. Using modern in-amps with 

gain ranging from 10-1000, excellent common-mode rejection and gain 

accuracy can be achieved with this circuit. 

However, due to the intrinsic characteristics of the bridge, the output is still 

nonlinear. In a system where the output of the in-amp is digitized using an 

ADC and fed into a microcontroller, this nonlinearity can be corrected in 

software. 

The bridge in this example is voltage driven, by the voltage BV . This voltage 

can optionally be used for an ADC reference voltage, in which case it is an 

additional output of the circuit, REFV . 

The output of a 
single-element 
varying bridge is 
normally amplified 
with an in-amp 
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An analog circuit for linearizing a single-element bridge is shown below: 
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Figure 25.10 – Linearizing a One-Element Varying Bridge 

The top node of the bridge is excited by the voltage BV . The bottom of the 

bridge is driven in complementary fashion by the left op-amp, which maintains 

a constant current of RVB  in the varying resistance element, RR  , which is 

the mechanism for linearity improvement. Also, the bridge left-side centre 

node is “ground-referenced” by the op-amp, making this configuration 

suppress common-mode voltages. 

The output signal is taken from the right-hand leg of the bridge, and is 

amplified by a second op-amp connected as a noninverting gain stage. 

The circuit requires two op-amps operating on dual supplies. In addition, 

paired resistors 1R  and 2R  must be ratio matched and stable for overall 

accurate and stable gain. The circuit is practical if a dual precision op-amp 

(with high gain, low offset / noise and high stability) is used. 

An analog circuit for 
linearizing a single-
element varying 
bridge 



25.15 

PMcL Bridge Circuits Index     

2017  25 - Sensor Signal Conditioning 

A circuit for linearizing a two-element bridge  is shown below: 
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Figure 25.11 – Linearizing a Two-Element Varying Bridge 

This circuit uses an op-amp, a sense resistor, and a voltage reference, set up in 

a feedback loop containing the sensing bridge. The net effect of the loop is to 

maintain a constant current through the bridge of SENSEREFB RVI  . The 

current through each leg of the bridge remains constant ( 2BI ) as the 

resistance changes. Therefore the output is a linear function of R . An in-amp 

provides the additional gain. If ratiometric operation of an ADC is desired, the 

REFV  voltage can be used to drive the ADC. 

An analog circuit for 
linearizing a two-
element varying 
bridge 
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25.6.3 Driving Remote Bridges 

Wiring resistance and noise pickup are the biggest problems associated with 

remotely located bridges. The figure below shows a  350  strain gauge which 

is connected to the rest of the bridge circuit by 30 m of twisted pair copper 

wire. The temperature coefficient of the copper wire is 0.385 %/°C. The figure 

shows nominal resistor values at C 25  . 
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Figure 25.12 – A Bridge with Wiring Resistance 

The full-scale variation of the strain gauge resistance above its nominal  350  

value is +1% (   5.3 ), corresponding to a full-scale strain gauge resistance of 

 5.353  which causes a bridge output voltage of +23.45 mV. Notice that the 

addition of the  21  resistor, COMPR , is used to compensate for the wiring 

resistance and balances the bridge when the strain gauge is  350 . 

Assume that the cable temperature increase C 10   above a nominal room 

temperature of C 25  . The values in parentheses in the diagram indicate the 

values at C 35  . With no strain, the additional lead resistance produces an 

offset of +5.44 mV in the bridge output. Full-scale strain produces a bridge 

output of +28.84 mV (a change of +23.4 mV from no strain). Thus, the 

increase in temperature produces an offset voltage error of +5.44 mV, or +23% 

full-scale, and a gain error of -0.05 mV (23.4 mV – 23.45 mV), or -0.21% full-

scale. 

Wiring resistance is 
a big problem for 
remotely located 
bridges 
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The effects of wiring resistance on the bridge output can be minimized by the 

3-wire connection shown below: 
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Figure 25.13 – A 3-Wire Connection for a Bridge 

We assume that the bridge output voltage is measured by a high impedance 

device, therefore there is no current in the sense lead. The sense lead measures 

the voltage output of a divider: the top half is the bridge resistor plus the lead 

resistance, and the bottom half is strain gauge resistance plus the lead 

resistance. The nominal sense voltage is therefore independent of the lead 

resistance. When the strain gauge resistance increases to full-scale (  5.353 ), 

the bridge output increases to 24.15 mV. 

Increasing the temperature to C 35   increases the lead resistance in each half 

of the divider. The full-scale bridge output voltage decreases to +24.13 mV, 

but there is no offset error. The gain error due to the temperature increase of 

C 10   is therefore only -0.02 mV, or -0.08% full-scale. 

The three-wire method works well for remotely located resistive elements 

which make up one leg of a single-element varying bridge. However, four-

element varying bridges are generally housed in a complete assembly, as in the 

case of a load cell. When these bridges are remotely located from the 

conditioning electronics, special techniques must be used to maintain accuracy. 

Wiring resistance for 
a remotely located 
bridge can be 
overcome using a 3-
wire connection 



25.18 

Index Bridge Circuits PMcL   

25 - Sensor Signal Conditioning  2017 

Most four-element varying bridges (such as load cells) are six-lead assemblies: 

two leads for the bridge output, two leads for the bridge excitation, and two 

sense leads. To take full advantage of the additional accuracy that these two 

extra leads allow, a method called Kelvin or 4-wire sensing is employed, as 

shown below: 
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Figure 25.14 – A 6-Lead Bridge Using Kelvin Sensing 

In this setup the drive voltage BV  is not applied directly to the bridge, but goes 

instead to the input of the upper precision op-amp, which is connected in a 

feedback loop around the bridge (+) terminal. Although there may be a 

substantial voltage drop in the +FORCE lead resistance of the remote cable, the 

op-amp will automatically correct for it, since it has a feedback path through 

the +SENSE lead. The net effect is that the upper node of the remote bridge is 

maintained at a precise level of BV . A similar situation occurs with the bottom 

precision op-amp, which drives the bridge (-) terminal to ground level. Again, 

the voltage drop in the –FORCE lead is relatively immaterial, because of the 

sensing at the –SENSE terminal. 

A 6-lead bridge uses 
Kelvin sensing to 
overcome lead 
resistance in both 
the sensing 
terminals and the 
excitation terminals 
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25.6.4 Integrated Bridge Transducers 

A very powerful combination of bridge circuit techniques is shown below: 
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Figure 25.15 – An Integrated Bridge Transducer 

This is an example of a basic DC operated bridge, utilising ratiometric 

conversion with a high performance ADC, combined with  Kelvin sensing to 

minimize errors due to wiring resistance. 

The Analog Devices AD7730 Bridge Transducer ADC can be driven from a 

single supply voltage of 5 V, which in this case is used to excite the bridge. 

Both the analog input and the reference input to the ADC are high impedance 

and fully differential. By using the +SENSE and –SENSE outputs from the 

bridge as the differential reference voltage to the ADC, there is no loss in 

measurement accuracy as the actual bridge excitation voltage varies. 

The AD7730 is one of a family of “sigma-delta” ADCs with high resolution 

(24 bits) and internal programmable gain amplifiers (PGAs) and is marketed as 

a “Bridge Transducer ADC”. The chip has a self-calibration feature which 

allow offset and gain errors due to the ADC to be minimized. A system 

calibration feature allows offset and gain errors to be reduced to a few 

microvolts. 

A bridge transducer 
ADC can be used to 
connect directly to a 
6-lead bridge 
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25.7 Strain, Force, Pressure and Flow Measurements 

The most popular electrical elements used in force measurements include the 

resistance strain gauge, the semiconductor strain gauge, and piezoelectric 

transducers. The strain gauge measures force indirectly by measuring the 

deflection it produces in a calibrated carrier. Pressure can be converted into a 

force using an appropriate transducer, and strain gauge techniques can then be 

used to measure pressure. Flow rates can be measured using differential 

pressure measurements, which also make use of strain gauge technology. 

 

Measurement Sensor 

Strain Strain gauge, Piezoelectric transducer 

Force Load cell 

Pressure Diaphragm to force to strain gauge 

Flow Differential pressure techniques 

Table 25.3 – Sensors used for Typical Measurements 

The resistance-based strain gauge uses a resistive element which changes in 

length, hence resistance, as the force applied to the base on which it is mounted 

causes stretching or compression. It is the most well known transducer for 

converting force into an electrical variable. 

A strain gauge can 
be used to measure 
strain, force, 
pressure and flow 
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A bonded strain gauge consists of a thin wire or conducting film arranged in a 

coplanar pattern and cemented to a base or carrier. The basic form of this type 

of gauge is shown below: 
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Figure 25.16 – A Bonded Strain Gauge 

The strain gauge is normally mounted so that as much as possible of the length 

of the conductor is aligned in the direction of the stress that is being measured. 

Lead wires are attached to the base and brought out for interconnection. 

Semiconductor strain gauges have a greater sensitivity and higher-level output 

than wire strain gauges. They can also be produced to have either positive or 

negative changes when strained. However, they are temperature sensitive, are 

difficult to compensate, and the change in resistance is nonlinear. 

A bonded strain 
gauge 
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25.8 High Impedance Sensors 

Many popular sensors have output impedances greater than several megohms, 

and thus the associated signal-conditioning circuitry must be carefully designed 

to meet the challenges of low bias current, low noise, and high gain. A few 

examples of high impedance sensors are: 

 Photodiode preamplifiers 

 Piezoelectric sensors 

 Humidity monitors 

 pH monitors 

 Chemical sensors 

 Smoke detectors 

Very high gain is usually required to convert the output signal of these sensors 

into a usable voltage. For example, a photodiode application typically needs to 

detect outputs down to 30 pA of current, and even a gain of 
610  will only yield 

30 mV. To accurately measure photodiode currents in this range, the bias 

current of the op-amp should be no more than a few picoamps. A high 

performance JFET-input op-amp is normally used to achieve this specification. 

Special circuit layout techniques are required for the signal conditioning 

circuitry. For example, circuit layouts on a printed circuit board (PCB) 

typically need very short connections to minimise leakage and parasitic 

elements. Inputs tend to be “guarded” with ground tracks to isolate sensitive 

amplifier inputs from voltages appearing across the PCB. 

High impedances 
sensors… 

…require special 
interfacing circuits 
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25.9 Temperature Sensors 

Temperature measurement is critical in many electronic devices, especially 

expensive laptop computers and other portable devices – their densely packed 

circuitry dissipates considerable power in the form of heat. Knowledge of 

system temperature can also be used to control battery charging, as well as to 

prevent damage to expensive microprocessors. 

Accurate temperature measurements are required in many other measurement 

systems, for example within process control and instrumentation applications. 

Some popular types of temperature sensors and their characteristics are 

indicated in the table below: 

Sensor Range Accuracy Excitation Feature 

Thermocouple -184°C to 

+2300°C 

High accuracy 

and 

repeatability 

Needs cold 

junction 

compensation 

Low-

voltage 

RTD -200°C to 

+850°C 

Fair linearity Requires 

excitation 

Low cost 

Thermistor 0°C to 

+100°C 

Poor linearity Requires 

excitation 

High 

sensitivity 

Semiconductor -55°C to 

+150°C 

Linearity: 1°C 

Accuracy: 1°C 

Requires 

excitation 

10 mV/K, 

20 mV/K 

or 1A/K 

typical 

output 

Table 24.1 – Popular Types of Temperature Sensors 

In most cases, because of low-level and/or nonlinear outputs, the sensor output 

must be properly conditioned and amplified before further processing can 

occur. Sensor outputs may be digitized directly by high resolution ADCs – 

linearization and calibration can then be performed in software, reducing cost 

and complexity. 

Temperature is an 
extremely important 
physical property to 
measure 

Popular types of 
temperature sensor 
and their 
characteristics 
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Resistance Temperature Devices (RTDs) are accurate, but require excitation 

current and are generally used within bridge circuits. 

Thermistors have the most sensitivity, but are also the most nonlinear. They are 

popular in portable applications for measurement of battery and other critical 

system temperatures. 

Modern semiconductor temperature sensors offer both high accuracy and 

linearity over about a -55°C to +150°C operating range. Internal amplifiers can 

scale output to convenient values, such as 10 mV/°C. 
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25.10 Summary 

 A sensor is a device that receives a signal or stimulus and responds with an 

electrical signal. The full-scale outputs of most sensors are relatively small 

voltages, currents, or resistance changes, and therefore their outputs must 

be properly conditioned before further analog or digital processing can 

occur. 

 Amplification, level translation, galvanic isolation, impedance 

transformation, linearization and filtering are fundamental signal-

conditioning functions that may be required with sensors. 

 A resistance bridge, or Wheatstone bridge, is used to measure small 

resistance changes accurately. There are a variety of different bridge 

circuits, and a variety of amplifying and linearizing techniques to suit each 

type. 

 There are a variety of methods for interfacing to remote bridges. Many 

integrated bridge transducers are available as “one-chip” solutions to bridge 

driving and measurement. 

 There are many types of sensors – their use in a certain application requires 

an understanding of their physical construction and operation, as well as the 

required performance and cost demanded by the overall system. 

25.11 References 

Jung, W: Op-Amp Applications, Analog Devices, 2002. 



25.26 

Index Exercises PMcL   

25 - Sensor Signal Conditioning  2017 

Exercises 

1. 

For temperature measurements only one active transducer is used and so it is 

not possible to have a linear output if it is placed in a bridge. 

(a) Show that the output from a single-element varying bridge is given by: 

2

4 R
R

RV
v B

o 



  

(b) Since the active transducer resistance change can be rather large (up to 

100% or more for RTDs), the nonlinearity of the bridge output 

characteristic (the formula above) can become quite significant. It is 

therefore desired to linearize the output of a temperature transducer using 

the following circuit: 

R1

vo

R1

R2

VB

2R + R

 

Derive an equation for the output voltage. 
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Introduction 

In order to understand, analyse and design complex systems, we must obtain 

quantitative mathematical models of these systems. Since most systems are 

dynamic in nature, the descriptive equations are usually differential equations. 

If the system stays “within bounds”, then the equations are usually treated as 

linear differential equations, and the method of transfer functions can be used 

to simplify the analysis. 

In practice, the complexity of systems and the ignorance of all the relevant 

factors necessitate the introduction of assumptions concerning the system 

operation. Therefore, we find it useful to consider the physical system, 

delineate some necessary assumptions, and linearize the system. Then, by 

using the physical laws describing the linear equivalent system, we can obtain 

a set of linear differential equations. Finally, utilizing mathematical tools, such 

as the transfer function, we obtain a solution describing the operation of the 

system. 

In summary, we: 

1. Define the system and its components. 

2. List the necessary assumptions and formulate the mathematical model. 

3. Write the differential equations describing the model. 

4. Solve the equations for the desired output variables. 

5. Examine the solutions and the assumptions. 

6. Reanalyse or design. 
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26.1 Differential Equations of Physical Systems 

The differential equations describing the dynamic performance of a physical 

system are obtained by utilizing the physical laws – this approach applies 

equally well to electrical, mechanical, fluid and thermodynamic systems. 

For mechanical systems, Newton’s laws are applicable. 

EXAMPLE 26.1 Spring-Mass-Damper Mechanical System 

Consider the simple spring-mass-damper mechanical system shown below: 

Mass

M

r  t(  )
Force

f

Friction y

K

 

This is described by Newton’s second law of motion (this system could 

represent, for example, a car’s shock absorber). We therefore obtain: 

rKy
dt

dy
f

dt

yd
M 

2

2

 

where K is the spring constant of the ideal spring and f is the friction constant. 
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EXAMPLE 26.2 Parallel RLC Circuit 

Consider the electrical RLC circuit below: 

R L Cr  t(  ) v  t(  )

 

This is described by Kirchhoff’s current law. We therefore obtain: 

rvdt
LR

v

dt

dv
C  

1
 

In order to reveal the close similarity between the differential equations for the 

mechanical and electrical systems, we can rewrite the mechanical equation in 

terms of velocity: 

dt

dy
v   

Then we have: 

rvdtKfv
dt

dv
M    

The equivalence is immediately obvious where velocity  tv  and voltage  tv  

are equivalent variables, usually called analogous variables, and the systems 

are analogous systems. 

The concept of analogous systems is a very useful and powerful technique for 

system modelling. Analogous systems with similar solutions exist for 

electrical, mechanical, thermal and fluid systems. The existence of analogous 

systems and solutions allows us to extend the solution of one system to all 

analogous systems with the same describing differential equation. 
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26.2 Linear Approximations of Physical Systems 

Many physical systems are linear within some range of variables. However, all 

systems ultimately become nonlinear as the variables are increased without 

limit. For example, the spring-mass-damper system is linear so long as the 

mass is subjected to small deflections  ty . However, if  ty  were continually 

increased, eventually the spring would be overextended and break. Therefore, 

the question of linearity and the range of applicability must be considered for 

each system. 

A necessary condition for a system to be linear can be determined in terms of a 

forcing function  tx  and a response  ty . A system is linear if and only if: 

       tbytaytbxtax 2121   (26.1) 

That is, linear systems obey the principle of superposition, [excitation by 

   txtx 21   results in    tyty 21  ] and they also satisfy the homogeneity 

property [excitation by  tax1  results in  tay1 ]. 

It may come as a surprise that a system obeying the relation bmxy   is not 

linear, since it does not satisfy the homogeneity property. However, the system 

may be considered linear about an operating point  00 , yx  for small changes 

x  and y . When xxx  0  and yyy  0 , we have: 

bxmmxyy

bmxy





00
 

(26.2) 

and, since bmxy  00 , then xmy  , which is linear. 

In general, we can often linearize nonlinear elements by assuming small-signal 

conditions. This approach is the normal approach used to obtain linear 

equivalent circuits for electronic circuits and transistors. 
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Consider a general element of a system which can be described by a 

relationship between the excitation variable  tx  and the response  ty : 

 

y0

y
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y=f  x(  )

tangent
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Figure 26.1 

The normal operating point is designated by  00 , yx . A Taylor series 

expansion about the operating point gives: 

    
 0

00

xxdx

df
xxfxxfy

 
(26.3) 

The tangent to the curve at the operating point is a good approximation to the 

curve for small x . Thus, for a small region about the operating point, a 

reasonable first-order approximation of the element is: 

 
  xmy

dx

df
xxfy

xx




00

0

 
(26.4) 

which can be written as the approximate linear equation: 

xmy   (26.5) 

This linear approximation is only accurate for a range of small signals which 

depends on the actual nonlinear element’s characteristic. 
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EXAMPLE 26.3 Pendulum Oscillator 

Consider the pendulum oscillator: 



Length L

Mass M
 

The magnitude of the torque on the mass is: 

sinMgLT   

where g is the gravity constant. The equilibrium position for the mass is 

 00 . The nonlinear relation between T and   is shown graphically below: 



2
 

T
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The first derivative evaluated at equilibrium provides the linear approximation 

which is: 

 

  






 

MgL

MgL

d

d
MgLT








00cos

sin 0

0

 

This approximation is reasonably accurate for 44   . For example, 

the response of the linear model for the swing through 30  is within 2% of 

the actual nonlinear pendulum response. 
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26.3 The Transfer Function 

We have already seen that the transfer function, which represents the 

input/output relationship of a system in terms of complex frequency, has a 

simple relationship to the differential equation describing the system. 

Differentiation in the time-domain turns into multiplication by s in the 

frequency-domain: 

s
dt

d
 

(26.6) 

Similarly, integration in the time-domain turns into division by s in the 

frequency-domain. 

s

1 

0 
 

t

d
 

(26.7) 

EXAMPLE 26.4 Transfer Function from a Differential Equation 

For the simple spring-mass-damper mechanical system, the describing 

differential equation was found to be: 

rKy
dt

dy
f

dt

yd
M 

2

2

 

Transforming to the frequency-domain, we get: 

RYsYYs  KfM 2  

Thus, the transfer function is: 

KfM 


ssR

Y
2

1
 

Alternatively, the transfer function of a system can be obtained by analysis 

performed entirely in the frequency-domain (as we do for the transfer function 

of circuits). 
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26.4 Block Diagrams 

We can represent a transfer function graphically, with a block diagram. This 

shows the relationship between the forced response and the forcing function – 

an input/output relationship. For example, the simple RC circuit can be 

represented by: 

 

Vs V
1/RC

s1/RC

C

R

v  t(  )(  )v  ts

 

 

Figure 26.2 

EXAMPLE 26.5 Block Diagram of a Spring-Mass-Damper System 

The block diagram for the simple spring-mass-damper mechanical system is: 

YR

+

1

f +KM s s
2
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With this representation, we understand that we have to multiply the input 

phasor by the transfer function in the box to obtain the output phasor. In 

general, we use the following notation, where  sG  is the transfer function, 

X  is the input, and Y  is the output: 

 

X Y
G  s(  )

 

 

Figure 26.3 

Blocks can be connected in cascade, but only if the outputs are “buffered”, i.e. 

the connection does not cause the transfer function of each individual block to 

be different from the “unloaded” or open condition: 

 

==X
G   s(  )

1
G   s(  )

2

Z G
1
G

2
XY G

1
X

 

 

Figure 26.4 

Obviously, op-amp circuits are ideal for cascading. 

Most systems have several blocks interconnected by various forward and 

backward paths. Signals (e.g. voltages, currents) in block diagrams can not 

only be transformed by a transfer function, they can also be added and 

subtracted. 

 

Z   X  Y=    -X

Y

X

Y

Z   X  Y=   +

 

 

Figure 26.5 

A block represents 
multiplication with a 
transfer function 

Cascading blocks 
implies multiplying 
the transfer 
functions 

Addition and 
subtraction of 
signals in a block 
diagram 
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EXAMPLE 26.6 Block Diagram of an Ideal Integrator Op-Amp Circuit 

Consider the ideal integrator op-amp circuit: 

R

C

vo

v i

 

We know that the gain can be expressed as: 

R

C

i

o s

Z

Z

V

V 1

1

2   

Therefore, the op-amp integrator can be represented by: 

Vi Vo

s

-1

RC
 

Thus, an integrator circuit has a s1  term in its transfer function. This makes 

intuitive sense, since multiplication by s represents differentiation, and so 

division by s must be representative of integration. 
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EXAMPLE 26.7 Block Diagram of a Summing Lossy Integrator 

The op-amp circuit: 

R1

RF

CF

R2

vo

v1

v2

 

can be represented by: 

V1 1

R
1

1

R
2

s + 1/R
F
C

F

-1/C
F

V2

Vo

I 2

I 1
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EXAMPLE 26.8 Block Diagram of a Bilinear Op-Amp Circuit 

The bilinear op-amp circuit: 

1

Vo

Vi

z1

pK

K1

 

can be represented by: 

Vi Vo
-K s+p

s+z

 

 

It should be obvious that we can now establish a “cookbook” approach to 

circuit design – if we have a transfer function that we want to implement, we 

simply find the appropriate op-amp circuit in the “cookbook”. 
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EXAMPLE 26.9 Block Diagram of a Field-Controlled DC Motor 

The DC motor is a power actuator device that delivers energy to a load as 

shown below: 

 

A schematic diagram of the DC motor is shown below: 



Ra

L a

ia

Load

Inertia= J
Friction= f

Armature

vf

i f

Field

R f

L f
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For a field-controlled DC motor, the armature current is assumed to be constant 

and the torque developed by the motor is assumed to be linearly related to the 

field current: 

fmm iKT   

The motor torque is delivered to the load, which can also be subjected to 

external disturbances (e.g. wind-gust forces for a tracking antenna): 

dmL TTT   

The load torque for a rotating system with inertia and friction comes from the 

rotational form of Newton’s second law: 

dt

d
f

dt

d
JTL





 ,  

The blocks are derived from the differential equations governing the various 

parts of the system. The block diagram of a field-controlled DC motor is 

therefore: 

Km

Vf I f

+

1

R f sL f

motor windings

Tm

Td

TL

+

1

f sJ

friction and
inertia

load
torque speed

 1

s



position
field
current

armature
torque

disturbance
torque

motor
action

field
voltage

 

If there is no disturbance torque, then the model of the field-controlled DC 

motor is: 

f(         )

Vf

s



+R f sL f(            )

Km

+sJ
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26.5 Feedback 

Perhaps the most important block diagram is that of a feedback connection, 

shown below: 

 

G  s(  )

H  s(  )

R CE

 

 

Figure 26.6 

We have the following definitions: 

 sG  = forward path transfer function 

 sH  = feedback path transfer function 

 tr  = reference, input, or desired output 

 tc  = controlled variable, or output 

 te  = actuating error signal 

   tctr   = system error 

R

C
 = closed-loop transfer function 

   sHsG  = loop gain 

Standard form for 
the feedback 
connection 
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To find the closed-loop transfer function, we solve the following two equations 

which are self-evident from the block diagram: 

 
 CsHRE

EsGC




 

(26.8) 

Then the output C  is given by: 

     
      RsGsHsGC

CsHsGRsGC





1  
(26.9) 

and therefore: 

 
   sHsG

sG

R

C




1  
(26.10) 

Note that for negative feedback we get    sHsG1  and for positive feedback 

we get    sHsG1 . 

 

negative feedback positive feedback

1+GH 1- GH  

 

Figure 26.7 

Transfer function for 
the standard 
negative feedback 
connection 

Negative and 
positive feedback 
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EXAMPLE 26.10 Block Diagram of a Noninverting Amplifier 

Consider a noninverting amplifier where the op-amp is modelled as having 

infinite input impedance, zero output impedance, and a large but finite gain A: 

R2

vo

R1

A

vi

 

The voltage fed back to the inverting terminal is negative feedback. Let the 

proportion of the voltage fed back be given by: 

oo vv
RR

R


 21

1  

Then a block diagram that models the non-inverting amplifier is: 

Vi



A
Vo

 

The transfer function can be simplified to: 

Vi



A Vo

+A1  

For large values of A such that 1A , the transfer function reduces to: 

1

21
1

R

R
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26.6 Summary 

 We model linear time-invariant systems by making necessary simplifying 

assumptions before applying the basic physical laws. The result is a linear 

differential equation describing the system. 

 A linear differential equation can be turned into a transfer function by 

replacing the derivative operator with the complex frequency s. 

Alternatively, the transfer function of a system can be obtained by 

performing analysis directly in the frequency-domain. 

 A transfer function can be represented graphically in the form of a block 

diagram. Block diagrams can be connected together in cascade, and signals 

can be added and subtracted. 

 Negative feedback in a system is a very important concept. For a forward  

path transfer function G and a feedback path transfer function H, the 

closed-loop transfer function is: 

 
GH

G
sT




1
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Exercises 

1. 

Consider the following circuit: 

R3

A2

R2

v in1
R0

A1

C1

R1

R4

A3

C5

R5

vout3

RF

vout1

A4

v7

vout4

v8

-1

R6

R8

R7

 

(a) Construct a block diagram of the circuit. 

(b) Show that the transfer function   in1out31 VVsT   is: 

 


























51515142

3

5511

2

514203
1

111

CCRRCCRRR

R

CRCR

CCRRRR

F

ss

sT  

(c) By comparing with the “standard form” of a second-order all-pole 

transfer function: 

 
2

0

2

2

01
1

2 






ss
sT

K
 

write expressions for 1K ,   and 0  in terms of R’s and C’s. 
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(d) For the special case of when 51 RR  , 51 CC   and 
4RRF  , and defining 

22

0  d , show that the poles of the transfer function are located 

at djp  2,1  where: 

142

3

11

11

CRR

R

CR
d    

(e) For the special case of when 51 RR  , 51 CC   and 
4RRF  , show that 

the transfer function   in1out12 VVsT   can be put in the form: 

 
 

2

0

2

2
2

2 








ss

s
sT

K
 

(f) For the special case of when 51 RR  , 51 CC  , 4RRF  , 86 RR   and 

7

8

1

02

R

R

R

R
 , show that the transfer function   in1out43 VVsT   can be put 

in the form: 

 
 

2

0

2

22

0

2

3

3
2

2










ss

s
sT

K
 

(g) Draw pole-zero plots for each of the three transfer functions. 

(h) Perform a simulation of the circuit and determine each transfer function’s 

frequency response. Hence, classify each of the transfer functions in 

terms of their frequency response (e.g. lowpass, highpass, notch, etc.). 
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27 Revision 
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27.1  Basic Laws 

Know 

 Current, voltage, power and circuits. 

 Circuit elements and types of circuits. 

 Ohm’s Law. 

 Kirchhoff’s Current Law (KCL). 

 Kirchhoff’s Voltage Law (KVL). 

 Resistance and source combination. 

 Voltage and current dividers. 

Know the passive and active sign conventions and have confidence in applying 

KCL and KVL to any circuit. Know and use Ohm’s Law. Know circuit 

analysis short-cuts with series / parallel combinations, voltage and current 

dividers. 

 

27.2 Amplifiers 

Know 

 Amplifiers. 

 The ideal op-amp. 

 Negative feedback. 

 The noninverting amplifier. 

 The inverting amplifier. 

Know what parameters are used for an ideal op-amp, the concept and 

application of negative feedback and the concept of the “virtual short-circuit”. 

You should know the gain formulas for both noninverting and inverting 

amplifiers, and be able to derive them if necessary. 
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27.3 Nodal and Mesh Analysis 

Know 

 Nodal analysis. 

 Mesh analysis. 

Know that nodal analysis applies KCL and finds nodal voltages, whilst mesh 

analysis applies KVL and finds mesh current. Know how to perform, by hand, 

analysis on a three-node or three-mesh circuit composed of resistors, ideal 

independent and ideal dependent sources. 

 
27.4 Circuit Analysis Techniques 

Know 

 Source transformations. 

 Linearity and superposition. 

 Thévenin’s and Norton’s Theorems. 

You should be able to convert between a real voltage source and a real current 

source (a special application of Thévenin’s and Norton’s Theorems). Know 

when linearity applies (and does not apply), and be able to use superposition 

appropriately (e.g. DC and AC sources, common-mode and differential mode). 

Know how to apply Thévenin’s and Norton’s Theorems to any linear circuit, 

even if it contains dependent sources. 

 

27.5 Linear Op-Amp Applications 

Know 

 Summing amplifier. 

 Difference amplifier. 

 Integrator. 

 Differentiator. 

Know the basic functionality of the summing and difference amplifier, 

integrator and differentiator. You should be able to derive output equations 

from first principles if needed, using the basic circuit laws and the concept of 

the virtual short-circuit. 
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27.6  Reactive Components 

Know 

 Capacitor and inductor construction and v-i relationships. 

 Stored energy relationships for inductors and capacitors. 

 Series/parallel connection of inductors and capacitors. 

 Circuit analysis with inductors and capacitors. 

Familiar 

 Physical characteristics of inductors; parasitic effects. 

 Physical characteristics of capacitors; parasitic effects. 

Aware 

 Duality. 

Know the v-i relationships and the energy stored for C and L, and how they can 

be combined in series and parallel. Know how to write nodal or mesh equations 

for any circuit. Know how to perform DC analysis for any circuit. 

Familiar with the fact that real components exhibit other characteristics, and we 

initially study idealized forms of components. The most important nonideality 

of the passive components is the resistance of the inductor windings. 

Aware of the concept of duality – be able to recognise circuits that are “duals”. 

 

27.7 Diodes and Basic Diode Circuits 

Know 

 Ideal diode. 

Familiar 

 Diode models. 

 Rectifier circuits. 

 Limiting and clamping circuits. 

 LEDs. 

Know the operation of an ideal diode. 

Familiar with the fact that real signal diodes exhibit a 0.7 V voltage drop when 

conducting, the principles of rectification and why we rectify, application of 

diodes to limiting and clamping voltage signals, light emitting diodes have a 

forward voltage drop different to 0.7 V (depends on the colour). 
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27.8  Source-Free RC and RL Circuits 

Know 

 Differential operators. 

 Properties of differential operators. 

 The characteristic equation. 

 The simple RC circuit. 

 Properties of the exponential response. 

 Single time constant RC circuits. 

 The simple RL circuit. 

 Single time constant RL circuits. 

Know how to write a differential equation using the D operator, write a 

characteristic equation by inspection of a differential equation, analyse any 

first-order RC or RL circuit to obtain the natural response, expressed in terms 

of the appropriate time constant. 

 

27.9 Nonlinear Op-Amp Applications 

Familiar 

 Op-amp comparators. 

 The superdiode. 

 Precision half-wave and full-wave rectifiers. 

 Precision peak detector. 

 Limiters. 

 Clamps 

Familiar with nonlinear op-amp circuits such as the comparator, superdiode, 

precision rectification, limiters and clamps. 
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27.10 The First-Order Step Response 

Know 

 The unit-step forcing function. 

 The driven RC circuit. 

 Forced and natural response. 

 RC circuits. 

 Analysis procedure for single time constant RC circuits. 

 RL circuits. 

 Analysis procedure for single time constant RL circuits. 

Know the definition of a unit-step as applied to a voltage or current source, that 

a driven circuit has a forced response and a natural response, and that these 

correspond to the particular solution and complementary solution to the 

circuit’s describing differential equation, how to analyse any first-order circuit 

with a step (DC) forcing function. 

 

27.11 Op-Amp Imperfections 

Know 

 DC imperfections (offset voltage, bias and offset currents). 

 Finite open-loop gain. 

Familiar 

 Finite bandwidth. 

 Output voltage saturation. 

 Output current limits. 

 Slew rate. 

 Full-power BW. 

Know how to calculate the effect of DC imperfections on an op-amp circuit’s 

output, and derive gain expressions if the op-amp has finite gain. 

Familiar with other limitations of the op-amp, as observed in the laboratory. 
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27.12 The Phasor Concept 

Know 

 Sinusoidal signals. 

 Sinusoidal steady-state response. 

 Complex forcing function. 

 Phasors. 

 Phasor relationships for R, L and C. 

 Impedance. 

 Admittance. 

Know the general expression for a sinusoid, the concepts of amplitude and 

phase, that a sinusoidal input yields a sinusoidal output in the steady-state 

(“sinusoid in = sinusoid out”), complex forcing functions can be created from 

real sinusoidal forcing functions, the concept of a phasor (visualize a rotating 

phasor, and how to obtain the real part), phasor relationships for R, L and C and 

the concepts of impedance and admittance. 

 

27.13 Circuit Simulation 

Familiar 

 DC analysis. 

 AC analysis. 

 Transients. 

Familiar with the schematic capture process, simulation in the time-domain 

(transient analysis) and frequency-domain (AC analysis). 



27.8 

Index The Sinusoidal Steady-State Response PMcL   

27 - Revision  2017 

27.14  The Sinusoidal Steady-State Response 

Know 

 Nodal analysis. 

 Mesh analysis. 

 Superposition. 

 Source transformations. 

 Thévenin’s Theorem. 

 Norton’s theorem. 

 Phasor diagrams. 

 Power in AC circuits. 

Know how to apply nodal and mesh analysis to circuits in the frequency-

domain, apply superposition, source transformations, Thévenin’s and Norton’s 

Theorems and draw phasor diagrams. Know the different forms of power such 

as instantaneous, average, real, reactive and complex. 

 

27.15 Amplifier Characteristics 

Familiar 

 Circuit models for amplifiers. 

 Cascaded amplifiers. 

 Efficiency. 

 I/O impedances. 

 Ideal amplifiers. 

 Frequency response. 

 Linear distortion. 

 Transfer characteristic. 

 Nonlinear distortion. 

Familiar with the circuit models used for real amplifiers, cascading amplifiers, 

efficiency, input and output impedances, ideal amplifier characteristics, 

frequency response including the concepts of bandwidth and half-power, linear 

amplitude and phase distortion, nonlinear distortion. 
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27.16 Frequency Response 

Know 

 Decibels. 

 Cascading two-ports. 

 Logarithmic frequency scales. 

 Bode plots. 

 First-order lowpass filters. 

 First-order highpass filters. 

Aware 

 Fourier analysis, cascade filters. 

Know the definition of the decibel and its application to amplifier circuits, how 

to cascade circuits, logarithmic scales, Bode plots, how to derive the equations 

for the frequency response for first-order lowpass and highpass filters, and 

sketch their responses. 

 

27.17 First-Order Op-Amp Filters 

Know 

 Bilinear frequency response. 

 First-order lowpass filters. 

 First-order highpass filters. 

Know the form of the bilinear frequency response, and be able to derive a 

suitable op-amp implementation of it, how to implement lowpass and highpass 

filters using cascaded op-amp circuits. 
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27.18 The Second-Order Step Response 

Know 

 Solution of the homogeneous linear differential equation. 

 Source-free parallel RLC circuit. 

 Overdamped parallel RLC circuit. 

 Critical damping. 

 Underdamped parallel RLC circuit. 

 Source-free series RLC circuit. 

 Complete response of the RLC circuit. 

Know the solution of the second-order homogeneous linear differential 

equation from inspection of the roots of the characteristic equation, the natural 

response of the parallel RLC circuit for the overdamped, critically damped and 

underdamped cases, the natural response of the series RLC circuit and the 

complete response of any RLC circuit. 

 

27.19 Waveform Generation 

Familiar 

 Open-loop comparator. 

 Comparator with hysteresis. 

 Astable multivibrator. 

 Waveform generator. 

Familiar with the open-loop comparator, hysteresis, the astable multivibrator 

and waveform generation from laboratory experience. 
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27.20 Second-Order Frequency Response 

Familiar 

 Lowpass, bandpass and highpass responses. 

 Resonance. 

 Bandwidth. 

 Quality factor. 

Familiar with the concept of lowpass, bandpass and highpass frequency 

responses for second-order systems. The concept of resonance, bandwidth and 

quality factor for a second-order system and the relationships between them. 

The concept of frequency selectivity and its application to filtering signals in 

the frequency-domain. 

 

27.21 Second-Order Op-Amp Filters 

Familiar 

 Filter design parameters. 

 The lowpass biquad circuit. 

 The universal biquad circuit. 

Aware 

 Approximating the ideal lowpass filter. 

 The Butterworth lowpass filter. 

Familiar with op-amp circuits that implement second-order systems, such as 

the universal biquad filter, and their advantages and disadvantages. Aware of 

the concept of cascade filter design, the ideal filter and various practical 

response types such as the Butterworth response. 
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27.22 Complex Frequency 

Know 

 Complex frequency. 

 Damped sinusoidal forcing function. 

 Generalized impedance and admittance. 

 Frequency response. 

 The complex-frequency plane. 

Aware 

 Visualization of the frequency response from a pole-zero plot. 

Know the concept of complex frequency, the damped sinusoidal forcing 

function, generalized impedance and admittance, frequency response for both 

  and  . Aware of visualization of the frequency response from a pole-zero 

plot. 

 

27.23 Specialty Amplifiers 

Know 

 Differential and common-mode signals. 

 Difference amplifiers. 

Aware 

 Instrumentation amplifiers. 

 Programmable gain amplifiers. 

 Isolation amplifiers. 

Know the concept of the differential and common-mode signals, and why we 

split signals up in this way. Know the difference amplifier and its limitations. 

Aware of the existence of other types of amplifier, which are based on the op-

amp, such as the instrumentation amplifier which is suited to specific 

applications, such as those found in data acquisition and distribution systems. 
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27.24 Transfer Functions 

Know 

 Transfer functions. 

 Forced response. 

 Frequency response. 

 Natural response. 

 Complete response. 

Know the concept of the transfer function, how to find the forced response and 

natural response from it. 

 

27.25 Sensor Signal Conditioning 

Familiar 

 Bridge circuits. 

Aware 

 Strain, force, pressure and flow measurements. 

 High impedance sensors. 

 Temperature sensors. 

Familiar with bridge circuits and their linearization. 

Aware of a few sensors and their signal-conditioning circuits, with an emphasis 

on bridge circuits which are found in process control systems and data 

acquisition systems. 
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27.26 System Modelling 

Familiar 

 Differential equations of physical systems. 

 Linear approximations of physical systems. 

 The transfer function. 

 Block diagrams. 

 Feedback  

Familiar with the concept of system modelling and linear approximations, 

derivation of the transfer function from the describing differential equation, 

block diagrams, modelling of electromechanical systems and the principles of 

feedback. 
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Matrices - Quick Reference Guide 

Definitions 

Symbol Description 

ija  Element of a matrix. i is the row, j is the column. 

 ija

aaa

aaa

aaa





















333231

232221

131211

A  

A is the representation of the matrix with elements 

ija . 



















3

2

1

x

x

x

x  

x is a column vector with elements ix . 



















000

000

000

0  

Null matrix, every element is zero. 



















100

010

001

I  

Identity matrix, diagonal elements are one. 



























00

00

00

I  

Scalar matrix. 



















3

2

1

00

00

00







Λ  

Diagonal matrix,  jiaij   0 . 

Multiplication 

Multiplication Description 

YZ k  Multiplication by a scalar: ijij kyz   

Axz   
Multiplication by a vector: 




n

j

jiji xaz
1

 

ABZ  
Matrix multiplication: 




n

k

kjikij baz
1

. 

BAAB  In general, matrix multiplication is not commutative. 
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Operations 

Terminology Description 



















332313

322212

312111

aaa

aaa

aaa
t

A  

Transpose of A (interchange rows and columns): 

ji

t

ij aa  . 

333231

232221

131211

det

aaa

aaa

aaa

 AA  

Determinant of A. 

If 0A , then A is singular. 

If 0A , then A is non-singular. 

nnnjn

iniji

nj

ij

aaa

aaa

aaa







1

1

1111

.....

.....

a  

Minor of ija . Delete the row and column containing 

the element ija  and obtain a new determinant. 

  ij

ji

ijA a
 1  Cofactor of ija . 



















332313

322212

312111

adj

AAA

AAA

AAA

A  

Adjoint matrix of A. Replace every element ija  by its 

cofactor in A , and then transpose the resulting 

matrix. 

A

A
A

adj1   
Reciprocal of A: IAAAA   11 . 

Only exists if A is square and non-singular. 

Formula is only used for 3x3 matrices or smaller. 

Linear Equations 

Terminology Description 

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa







 

Set of linear equations written explicitly. 



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

 

Set of linear equations written using matrix elements. 

bAx   Set of linear equations written using matrix notation. 

bAx
1  Solution to set of linear equations. 

Eigenvalues 

Equations Description 

xAx     are the eigenvalues. x are the column 

eigenvectors. 

0 IA   Finding eigenvalues. 
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Answers 

1.1 

(a) To the left (b) mA 300 100te
 (c) 4.055 ms (d) 0.3820 A/mm2  

(e) 40

3

t
10 20 300

1.8963

q
(mC)

(ms)
40

300

t
10 20 300

110.4

i
(mA)

(ms)
 

(f) 
1610860.1   

1.2 

(a) 10 µC  (b) 10 µC  (c) 12.71 mA 

1.3 

(a) 975 C  (b) 383 C 

1.4 

(a) 31.1 kC  (b) 48 W  (c) 373 kJ  (d) 24.9 W 

1.5 

8.0 C 

1.6 

(a) 120.8 V  (b) 8.453 kW (c) 754.0 W/mm2 

1.7 

(a) 10 V  (b) 5 A  (c) 50 W 

1.8 

(a) -3 A  (b) 3 V  (c) 15 W 
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1.9 

-30 W 

1.10 

 W48.68
xvP ,  W9.168V 50 P ,  W70.132.0 

xvP ,  W1.114 10 P  

1.11 

(a) -20 V, -20 mA, 50 mA  (b) V 26
3
2 , mA 26

3
2 , mA 3

3
1  

1.12 

(a) V 6
3
2 , A 3

3
1 ,  W66

3
2   (b) 20 V, 10 A, 200 W 

1.13 

(a)  8  (b)  7.3  

1.14 

(a) 2.5 A (b) 4 V 

1.15 

si
RRR

RR
v

321

31
3


  si

RRR

RR
i

321

32
1




  

1.16 

5.5 V, 3.975 A 

1.17 

(a) 30 W (b) -2 A 
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2.1 

(a) 0 V, 1 mA, 1 mA, -10 V, -10 mA, -11 mA 

(b) -10 V/V (c) -10 A/A  (d) 100 W/W 

2.2 

(c) 
1

2

R

R
  (b) 

1R  (c) same results, thanks to the VSC 

2.3 

1R  can be any non-zero value,   2002R  

2.4 

(a) R  (b)  0  

2.5 

(a) 
















 3

2

1
1 1 R

R

R
R  (b)  0  (c) 

2

11
R

R
  

2.6 

(a) iR
R

R










1

21  (b) iR  (c) 
1R

Ri  
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3.1 

(a) -33 (b) 17, -34, -11 

3.2 

2 A 

3.3 

25.64 W 

3.4 

(a) 6 A (b) 3 A 

3.5 

-3.5 mA 

3.6 

20 mA, -80 mW 
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4.1 

80 W 

4.2 

4 A 

4.3 

(a) 150 V  (b) 110 V 

4.4 

(a) 15 A,  2  (b)  2  (c) 112.5 W 

4.5 

381 mW 

4.6 

 98  
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4.7 

(a) 
2

2

Rr

IR
i

m

S
A


    

(b) It is indeterminant – A Ai . For this special case you can show that 

KVL is violated – the circuit becomes: 

iArm IS-

 

Thus, the “branch” containing Ai , which has 0 V across it, appears in 

parallel with a Thévenin equivalent ideal voltage source equal to 

SmTh IrV  , which is impossible. 

Note that there is no Norton equivalent circuit! 

(c) In a practical setting, it is impossible to create ideal circuit elements, so the 

real circuit’s behaviour would be perfectly explainable and measureable if 

modelled correctly (inclusion of finite wire resistance, linear range of 

power supplies, etc). 

A large but finite current Ai  would result – either briefly (before a fuse 

blows or a protection device trips), or continuously (limited by the power 

supply’s output current and voltage capability). 
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5.1 

vo

v i

25 nF

10 k

 

5.2 

vo

v2

1 M

1 Mv1

100 k

100 k

100 k
 

5.3 

321 2vvvvo   

5.4 

v i

1 k

10 k

10 k

 mV 10iv  when the source is attached 

5.5 

R

v
i i
o   
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6.1 

(a) 20.6 ms  (b) 177.7 ms 

6.2 

A 001.02 t , V 001.0/01.0 t  

6.3 

(a) 9.6 V, 192 mW, 1.152 mJ (b) 16 V, 0 W, 3.20 mJ 

6.4 

(a) 2 nF  (b) 2.4 nF 

6.5 

(a) μF 
7

12
  (b) μF 

11

12
  (c) μF 9  

6.6 

(a) V 10cos60 t   (b) A 10sin25 t  

6.7 

(a)  025102102
 

0 

44

Ls

t

iivdtv
dt

dv
 

  

(b)  05000500004.0
 

0 
Cs

t

vvidti
dt

di
   

6.8 

Use 
1v , 

2v , Cv  left to right. 

11 3vvv C   

 
 

0102
5020

8.05.010 421100
 

0 
21 


 

 dt

dvvvv
edtvv CCt

t

 

 
 

0
50

8.05.010 2100
 

0 
12 


 


Ct

t vv
edtvv  
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8.1 

 100 ,  μF 2  

8.2 

(b) 50 mC  (b) 38.9 mC 

8.3 

76.10 V 

8.4 

mA 3 003.0te  

8.5 

s 6.122t  (over 2 minutes) 

8.6 

μA 75.6 40te  

8.7 

153.7 ms 

8.8 

(a) 9.6 A   (b) 2.4 A   (c) A 6.9 2te
   (d) A 4.2 4te

   (e)   V  2.19 24 tt ee    

8.9 

(a) 28.95 ms (b) 144.3 ms 

8.10 

(a) 800 mA  (b) 280 mA 

8.11 

V 10 80te
 

8.12 

mA 40460 200250 tt ee    
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9.1 

v i

7

LM311

2

3

1

LM311

2

3

1

7
vo

R4

R1

R2

R3

VTH = 5.5 V

VTL = 4.5 V

+12 V

5.1 k

9 k

13 k

2 k

 

9.2 

vo

v i

1

1

 

9.3 

vo

v i

1

1

-5 V 0  
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9.4 

C

vovi

 

9.5 

(i)

Differentiator

(ii) (iii)

Full-wave

rectifier

Threshold

detector
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10.1 

   V 2.0120
0







n

n
ntu  

10.2 

   V t150 10 ue t ,    V t2520 10 ue t  

10.3 

   V t120 3106

ue t  

10.4 

(a)      V t6040t-100 6250 ueu t   

(b) 100 V 

10.5 

k 76.28 , F 62.13   

10.6 

V 3010 40000te  

10.7 

22.31 mA, 9.812 mA 

10.8 

(a)  te 125014.0    A 

(b)  tt ee 12501002310    A 

(c)   tet 1250451250cos22.0   A 

10.9 

   t20040 15000 ue t  V 

10.10 

(a) 0 W  (b) 200 W  (c) 131.7 W (d) 0 W 
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11.1 

(a) V/V 200799OLA   

(b) μV 5.497OSV  

(c) kΩ 5002 R  
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12.1 

(a) 12.5 ms, 80 Hz, 502.7 rad/s 

(b)   92.43160cos77.27 t  V 

(c) 08.66  

12.2 

(a) 8.00 and  68.38   (b) 11.17 ms (c) 89.54 Hz (d) 562.6 rad/s  

(e) 8.00 and  7.128  (f) 0.8983 

12.3 

  0.116500cos3.412 t  V 

12.4 

  87.362000cos80 t  mA 

12.5 

    44.6310cos342.1455cos2 tt  A 

12.6 

(a)  5.13383.18   (b)   87.56584.5  

(c)  04702.007248.0 j  (d)  1838.005243.0 j  

12.7 

    22.38500cos598.423.711000cos98.15 tt   V 

12.8 

(a)   01.94cos79.95 t  mA  (b)   6.11114.25  mA 
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12.9 

(a) 143.5 W (b)  -135.0 W 

12.10 

(a) 39.99 W (b)  9.512 W (c)  -9.512 W 

12.11 

(a)  38.4700.26  mA  (b)   38.377692.0  A 

12.12 

(a) 384.2 and 65.92 Hz   (b)  203.8 and 124.3 Hz 

12.13 

1.25 mH 

12.14 

125 nF 

12.15 

1 Ω, 1 H 
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13.1 
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14.1 

(a)  7.128809.7  V   (b)   64  

14.2 

(a)   04.4410cos468.6 4t   V (b)    04.4410cos234.3 4t   A 

14.3 

(a)   69.3310cos09.11 4t  A (b)    5.17010cos288.3 4t  A 

14.4 

(a)   4510cos24 6 t  V (b)   13510cos2 6 t  V 

14.5 

  176 j  

14.6 

A 43.18581.1   

14.7 

05.65 and  72.60 , or  8.112 and 00.13  

14.8 

mW 8.4
1
Rp , mW 9.110Lp , mW 9.110Cp  and mW 2.19

2
Rp  

14.9 

(a) kW 1020 P , kW 510 P  (b)  kW 125.320 P , kW 25.610 P  

14.10 

mA 622.6  
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14.11 

(a)   1.106 
22

300
  (b)  V 24.61  RMS 

14.12 

(a) A 471.4  RMS  (b)  0.9150 lagging 

14.13 

(a) 46.86 kW (b)  33.32 kvar (c) kVA 41.355.57   

(d) 57.5 kVA (e)   41.3592  

14.14 

There are two possible solutions: 

VA 4.12496.81

VA 57.3504.98

j

j

I

V





S

S
 or 

VA 57.350.298

VA 4.1240.118

j

j

I

V





S

S
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16.1 

(a) 2 kHz  (b)  2.5 Hz 

16.2 

(a) 0 dB (b)  32.04 dB (c)  -6.021 dB 
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17.1 

(dB)

0 dB

 rad/s (log scale)

-20 dB/decade

10 710 610 510 410 3

-40 dB/decade

10 8

T(    )j|          |

-20

-40

-60

-80

-100

 

17.2 

One possible solution is: 

10 nF

100 k

10 k
1   F

 

17.3 

One possible solution is: 

vovi

100 nF 20 nF 100 nF 20 nF

10 k 10 k10 k 10 k
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17.4 

One possible solution is: 

vo

10 nF

1 M

10 nF

v i

1 k

10.1 k
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18.1 

(a) 0tV,  100200 82   tt ee   (b)  0tV,  200100 82   tt ee  

18.2 

(a) 0tV,  5540 2000500   tt ee   (b)  V  00.15  and V  00.17  

18.3 

(a)   25   (b)  1.28 mJ 

18.4 

(a) H  125
14 , F  70

1  (b)  3.630 J 

18.5 

12.89 kV 

18.6 

  0tV,  200 150005000   tt ee  

18.7 

-9.992 kV 

18.8 

(a) 500 J in L, 80 J in C  (b)  335.4 J in L, 62.21 J in C 

18.9 

  V  25020 150100 tt ee   ,   A  23 100150
24

1 tt ee    

18.10 

(a)   0tV,  1650 80002000
3

25   tt ee  

(b)   0tA,  42 80002000
3

5   tt ee  

18.11 

(a) 0 A (b) 1.748 A  (c) -1.073 A 
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20.1 

(a) -1rads 1000 , 5  (b)  
-1krads 120 , 60 (c) 

-1rads 1.602 , 6.021 

20.2 

(a) -1krads 4 , 40,   V  4000cos80 t  

(b)   mA  4000cos2 t ,   mA  4000sin400 t ,   mA  4000sin400 t  

(c) 20 mW, 4 mJ 

20.3 

-1rads 5.115  

20.4 

(a) -1Mrads 999.4  (b)  49.99   (c) 
-1krads 0.100   

(d) 
-1Mrads 949.4  (e) 

-1Mrads 049.5  (f)  85.8840  mV 

20.5 

k  5 , μH  360.2 , nF  237.4  

20.6 

(a) -1Mrads 5  (b)  
-1krads 59.20  

20.7 

-1krads 472.4 , 22.36 

20.8 

(a) -1krads 5 , 40.01  (b)  
-1krads 5 , 20.03 

20.9 

  10 , 514.3 mH, μF  875  
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21.1 

(a) If we analyse the circuit: 

C

vo

R

R

R2R1

R5

vi2

vi1

 

then the output voltage phasor is found to be: 

 

515221521

211522

RRRRRRRRCRj

RRR ii
o








VV
V  

Note that we must have 512 || RRR   for the circuit to be a pure 

integrator. If RRR 251   then RR 2  and we have: 

21

5

2

1

1 1122
ii

ii
o

CRjCRjCRjCRj
VV

VV
V
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(b) The circuit is a noninverting integrator, so that it accomplishes the same 

objective as cascading an inverting integrator and an inverter. A 

normalized version of the biquad with the noninverting integrator is 

shown below: 

2

vi

1

vo

Q
0

1
1

R

R

H1+

2

H

2

R
2R

1

R
5

 

Note that we must have 512 || RRR   for the noninverting integrator to be 

a pure integrator, and if 1H  then 251  RR  and 12 R .  
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21.2 

(a) One possible solution is: 

vo

vi

1 nF1 nF

100 k
50 k

500 k
100 k

100 k

100 k

 

(b) One possible solution is: 

160 k

vo

vi

20 k

20 k
20 k

20 k

10 nF 10 nF

10 nF

 

21.3 

 
 0

2 11

1

Qj
j





T  

21.4 

 
 0

2

0

11

2

Qj

Qj
j









T  
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22.1 

(a) -10, -40  (b)  1216 j  

22.2 

(a)  50.58 754.5  mA  (b)   69.33 211.7  mA 

22.3 

(a) 10.00 A  (b)  -1.995 A (c) -97.01 mA (d) 53.90 mA 

22.4 

2.508 J 

22.5 

Zeros:   ,3333s ; poles 000 10 ,2500 s  

0-10-20 10 20 (kHz)

V(  )

I (  )s



5000

 

22.6 

(a)   100   (b)  12.5 H  (c) μF  7.689  

22.7 

(a)  80.21 85.53  from zero at 50s , 

 20.68 85.53  from pole at 3020 js , 

 57.26 36.22  from pole at 3020 js  

(b)  13.42 137.1  
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23.1 

(a) 2
1

1
1

1 1 i

G

i

G

o v
R

R
v

R

R
v 








  

1
2

2
2

2 1 i

G

i

G

o v
R

R
v

R

R
v 








  

(b) 201dA  

(c) 1.005 V 

(d)  2.200  

23.2 

10dA  
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24.1 

(a), (b) and (c) -2 and -5 

24.2 

     V  89452cos2815 3 tuete tt    

24.3 

    A  25456 1025 tuee tt    

24.4 

(a) 0  (b)     5.1710 s  (c) 0  (d) V 5.17 tAe
 

24.5 

(a)    5225 2  sssVI s , 21 ,2 js  

(b)   A 1ti f  

(c)      tCetBeAeti ttt

n 2sin2cos2    

(d)       A 2sin1 2 tuteeti tt    

24.6 

(a) 



































0
1

2

1

211

11
s

C
RRR

RLR V

I

I

s

s

 

(b) 
 

     LCRR

R

CRRLRR

RR

LRR

R

s

21

1

2121

212

21

1

2

1





















ss

s

V

I
 

(c)      tueeti tt 50031000

2
500

3    
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25.1 

(b) R
RR

V
v B

o 



21

 



A.31 

PMcL Answers Index    

2018  Answers 

26.1 

(a)  

-1

R
0

1

R
7

s + 1/R
1
C

1

-1/C
1

Vout3

- R
2

R
3 1

R
4

s + 1/R
5
C

5

-1/C
5

1

R
F

Vin1

-1

R
8

R
6

Vout4

Vout1

-

 

(b) Considering just the output out3V , this can be reduced to: 

(                  )

Vin1 -1

R0

1

RF

s + 1/R
1
C

1

Vout3

(                  )s + 1/R
5
C

5

- C
1

R
2

R
3

R
4

C
5

/

 

Further reduction gives: 

(                  )s + 1/R
1
C

1

Vin1

(                  )s + 1/R
5
C

5
+ C

1
R

2
R

3
R

4
C

5
/ R

F

C
1

R
2

R
3

R
4

C
5

/R
0

Vout3

 

Expansion of the denominator results in the given transfer function. 

(c)  

 F

F

RRRRRRR

RRRR
K

425310

531
1


  













5511

11

2

1

CRCR
  

51515142

3
0

1

CCRRCCRRR

R

F
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(d)  

11111111

12

2

111

2

1

CRCRCRCR









  

142

3

2

1

2

1

2

1

2

1

2

1

2

42

3 111

CRR

R

CRCRCRR

R
d   

(e) From the block diagram, we can see that: 

55542

3

1out

3out

1

1

CRCRR

R




sV

V
 

Then: 

51515142

3

5511

2

10

55

out1

out3

in1

out3

in1

1out

111

1

CCRRCCRRR

R

CRCR

CR

CR

F















ss

s

V

V

V

V

V

V
 

For the special case of 51 RR  , 51 CC   and 4RRF  , this reduces to: 

   
2

0

222

0

2

10in1

1out

22

1



















ss

s

ss

s

V

V
K

CR
 

(f) The output voltage 4outV  is given by: 

out1

7

6
in1

8

6
4out VVV

R

R

R

R
  

Then substituting for out1V  gives: 

in12

0

2

107

6
in1

8

6
4out

2

1
V

CRR

R

R

R










ss

s
VV  

The transfer function is then: 
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2

0

2

170

8

2

0

2

2

0

2

8

6
3

22

2









ss

s

ss

ss
T

CRR

R

R

R
s  

Substituting the special conditions on the values gives: 

 
2

0

2

22

0

2

2

0

2

170

82

0

170

82

3
2

2

2

2




























ss

s

ss

ss

T
CRR

R

CRR

R

s  

(g) The pole-zero plots for  s1T ,  s2T  and  s3T  are respectively: 



j

0j



dj

d-j
0-j

  



j

0j



dj

d-j
0-j

  



j

0j



dj

d-j
0-j

j 0

22 2

-j 0

22 2

 

(h) Lowpass, lowpass, notch. 
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Index

A 

admittance 

defined, 12.36 

generalized, 22.11 

amplifier 

AC coupled, 15.18 

amplitude distortion, 15.21 

bandwidth, 15.20 

current, 15.11 

current gain, 15.4 

DC coupled, 15.18 

distortionless, 15.25 

frequency response, 15.17 

half-power frequencies, 15.20 

harmonic distortion, 15.27 

impedances, 15.14 

isolation, 23.13 

linear waveform distortion, 15.21 

models, 15.10 

performance, 15.3 

phase distortion, 15.21 

power gain, 15.4 

step response, 15.26 

transconductance, 15.12 

transresistance, 15.13 

voltage, 15.10 

voltage gain, 15.4 

amplifiers 

cascaded, 15.5 

circuit model, 2.8 

power supplies, 2.6 

saturation, 2.7 

units of gain, 2.4 

astable multivibrator, 19.6 

attenuation 

defined, 16.4 

B 

biquad circuit 

design, 21.8 

frequency response, 21.7 

Tow-Thomas, 21.6 

tuning algorithm, 21.7 

universal, 21.9 

block diagram, 24.7, 26.9 

bilinear op-amp circuit, 26.13 

feedback, 26.16 

field-controlled DC motor, 26.14 

ideal integrator, 26.11 

noninverting amplifier, 26.18 

summing lossy integrator, 26.12 

Bode plot, 16.14 

approximate magnitude response, 

16.18 

approximate phase response, 16.20 

factors, 16.16, 16.21 

Boltzmann's constant, 7.4 

breakdown 

avalanche, 7.7 

Zener, 7.7 

bridge 

3-wire connection, 25.17 

4-wire sensing, 25.18 

design issues, 25.12 

integrated transducer, 25.19 

linearizing, 25.14, 25.15 

output using an in-amp, 25.13 

resistance, 25.9 

Wheatstone, 25.9 

bridge circuit, 25.8 

bridges 

driving remotely, 25.16 
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buffer, 2.28 

C 

capacitance, 6.3 

capacitor, 6.3 

characteristics, 6.10 

circuit symbol, 6.5 

defined, 6.3 

energy stored, 6.7 

model, 6.24 

v-i relationships, 6.5 

capacitors 

DC circuits, 6.32 

electrolytic, 6.24 

in parallel, 6.30 

in series, 6.31 

practical, 6.23 
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common-mode signals, 23.3 
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complex-frequency plane, 22.23 
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current, 1.4 

defined, 1.4 

mesh, 3.22 
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practical, 4.12 
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dependent sources, 1.40 
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input resistance, 23.5 

differential equation 
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differential operators, 8.3 

properties, 8.5 
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Schottky, 7.9 

symbol, 7.7 

varactor, 7.9 
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constant voltage drop, 7.17 
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duality, 6.36 
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Earth, 3.4 

emission coefficient, 7.4 
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exponential damping coefficient, 

18.13 

exponential response 

properties, 8.16 

exponentially damped sinusoid, 22.3 
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filter 
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forced response, 10.9, 10.11, 10.17 
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definition, 4.4 
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frequency response 
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21.3, 21.4 
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bilinear phase response, 17.7 

experimentally, 16.13 
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function, 16.3 
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representation, 16.4 
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as a function of omega, 22.14 
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half-power frequency, 20.13 

homogeneity, 26.5 
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only real roots, 18.6 

repeated complex roots, 18.10 

repeated real roots, 18.5 

solution, 18.3 
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impedance, 12.31 
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circuit symbol, 6.15 
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in series, 6.27 

practical, 6.25 
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Kirchhoff’s Current Law, 1.21 

Kirchhoff’s Voltage Law, 1.25 
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loop, 3.21 
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magnitude response, 16.7 
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mesh analysis, 3.20 

circuits with current sources, 3.26 

circuits with dependent sources, 

3.28 

circuits with resistors and 

independent voltage sources only, 

3.24 

methodology, 3.23 
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3.14 
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3.6 

circuits with voltage sources, 3.12 
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Norton’s theorem, 4.20 
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Ohm’s Law, 1.10 

op-amp, 2.9 
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fabrication and packaging, 2.14 

feedback, 2.10 
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AC simulation, 13.11 

drawing the schematic, 13.4 
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schematic capture, 13.5 
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starting a new project, 13.3 

transient simulation, 13.8 
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critically damped, 18.18 
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18.22 

overdamped, 18.14 
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response comparison, 18.26 
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formal relationship, 12.21 

graphical illustration, 12.22 

mesh analysis, 14.6 
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Norton’s theorem, 14.11 

relationship for a capacitor, 12.27 

relationship for a resistor, 12.23 

relationship for an inductor, 12.25 

relationships, 12.23 

representation, 12.19, 12.20, 12.22 
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superposition, 14.8 

Thévenin’s theorem, 14.9 

transform, 12.20 

transform method, 14.3 
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reactive, 14.29 
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efficiency, 15.9 
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quality factor, 20.9 
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driven, 10.7 

energy, 8.15 
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power, 8.15 

single time constant, 8.19 
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time constant, 8.17 
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precision full-wave, 9.15 
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practical, 1.15 
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frequency, 20.3 

parallel, 20.5 

response function, 4.4 
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time constant, 8.23 

RL circuits 
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root-mean-square (RMS), 14.24 
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saturation current, 7.4 
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temperature, 25.23 
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critically damped, 18.34 

forced response, 18.29 
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overdamped, 18.32 

peak time, 18.38 

quality factor, 20.17 
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sinusoid, 12.4 

frequency, 12.4 
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source transformations, 4.10 
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Thévenin’s theorem, 4.20 

Tow-Thomas, 21.6 

transfer function, 24.3, 26.8 

circuit abstraction, 24.7 

complete response, 24.21 

forced response, 24.8 

form, 24.5 

frequency response, 24.12 

natural response, 24.15 

relationship to differential equation, 

24.6 

transient response, 10.10 

U 

undamped natural frequency, 18.13 

unit-step, 10.3 

as a switch, 10.6 

universal filter 

design, 21.10 
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voltage, 1.5 

defined, 1.5 

voltage divider rule, 1.36 
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practical, 4.10 
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waveform generator, 19.9 
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