
G.1

PMcL Contents Index

2018 G - Git Workflow

G Git Workflow

Contents

Introduction .. G.2

G.1 The Main Branches .. G.4

G.2 Supporting Branches .. G.5
G.2.1 Feature Branches ... G.6

G.2.2 Hotfix Branches ... G.8

G.3 Versioning.. G.10

G.4 Summary .. G.12

G.5 References .. G.12

Exercise .. G.13

Answer .. G.14

G.2

Index Introduction PMcL

G - Git Workflow 2018

Introduction

Git is a very successful software version control tool, mainly because of the

way it implements branch and merge operations – they are extremely “cheap”

in terms of time and storage, are simple for users to perform, and are now

considered core parts of a programmer’s daily workflow.

A Git workflow is a set of procedures that every team member has to follow in

order to implement a prescribed software development process. There is no

such thing as the “definitive” workflow. Workflows are arbitrary, and may be

prescribed by the software team, or a company’s software standards, or the size

of a project, etc.

A common workflow model is shown graphically on the next page. Details of

the workflow model are given in the following sections.

G.3

PMcL Introduction Index

2018 G - Git Workflow

0.0.0

1.0.0

1.0.1

1.1.0

2.0.0

C0

C1

C2

C3

C5

C12

C14

C15

C19

C23

C24

C26

C7

C9

C20

C25

C8

C4

C6

C13

C11

C10

C18

C17

C16

C22

C21

master hotfixes develop feature branches

Time

tags

Figure G.1

Tag

1.0.0

Severe bug
fixed for

production:
hotfix-1.0.1

Incorporate
bug fix in

develop

Major
feature for

next release

Feature
for future
release

Incorporate
feature in

develop

Production
release from

develop

First
(empty)

“release”

G.4

Index The Main Branches PMcL

G - Git Workflow 2018

G.1 The Main Branches

There are two main branches with an infinite lifetime:

 master

 develop

1.0.0

1.1.0

C0

C1

C2

C3

C4

C10

C5

C8

Time

master developtags

C6

C7

0.0.0

C9

Figure G.2

The master branch at origin is a “default” branch of Git (the name can be

changed on creation of a repository, but most users don’t bother to change it).

The develop branch needs to be created by the user, and runs in “parallel” to

the master branch. The origin/master branch only holds production-ready

commits, with each commit being tagged with a version number. The HEAD of

this branch always reflects the latest release.

First
production

release

First
(empty)

“release”

Next
production

release

Work in
progress on

“next release”

G.5

PMcL Supporting Branches Index

2018 G - Git Workflow

The origin/develop branch is the main branch used for development

purposes. The source code at HEAD always reflects the latest state of the

development changes.

When the source code in the develop branch reaches a stable point and is

ready to be released, all of the changes are merged back into master and then

tagged with a version number.

Although Git does support an “octopus” merge operation (a merge which is

more than a 3-way merge), this workflow requires a “normal” 3-way merge

from the develop branch into the master branch.

G.2 Supporting Branches

In addition to the main master and develop branches, the workflow model

uses two supporting branches to aid parallel development between team

members, ease tracking of features, and to assist in quickly fixing live

production problems. Unlike the main branches, these branches always have

a limited lifetime, since they will lie dormant after a merge (or optionally be

removed entirely).

The supporting branches are:

 feature/{name}

 hotfix-{version ID}

Each of these branches has a specific purpose and are bound to strict rules as

to which branches may be their originating branch and which branches must

be their merge targets.

These branches are not “special” from a technical perspective – they are

normal Git branches. The branch types are categorized by how we use them.

G.6

Index Supporting Branches PMcL

G - Git Workflow 2018

G.2.1 Feature Branches

May branch off from:

develop

Must merge back into:

develop

Branch naming convention:

feature/{name}

C1

C2

C3

C6

C5

C4

develop feature branch

Time

C7

C8

Figure G.3

Feature branches are used to develop new features for the upcoming or a

distant future release. When starting development of a feature, the target

release in which this feature will be incorporated may well be unknown at

that point. The essence of a feature branch is that it exists as long as the

feature is in development, but will eventually be merged back into develop

(to definitely add the new feature to the upcoming release) or discarded (in

the case of a disappointing experiment).

G.7

PMcL Supporting Branches Index

2018 G - Git Workflow

Creating a Feature Branch

When starting work on a new feature, branch off from the develop branch.

Ending a Feature Branch

Finished features may be merged into the develop branch to definitely add

them to the upcoming release.

Always use the “no fast forward” option (--no-ff flag) when merging back

into develop. The --no-ff flag causes the merge to always create a new

commit object, even if the merge could be performed with a fast-forward.

This avoids losing information about the historical existence of a feature

branch and groups together all commits that together added the feature.

Compare:

C1

C2

C6

C4

C3

develop feature branch

Time

C5

feature

git merge --no-ff

C1

C2

C5

develop

feature

git merge

C3

C4

Figure G.4

In the latter case, it is impossible to see from the Git history which of the

commit objects together have implemented a feature – you would have to

manually read all the log messages. Reverting a whole feature (i.e. a group of

commits), is time consuming in the latter situation, whereas it is easily done if

the --no-ff flag was used. This workflow will create a few more (empty)

commit objects, but the gain is much bigger than the cost.

G.8

Index Supporting Branches PMcL

G - Git Workflow 2018

G.2.2 Hotfix Branches

May branch off from:

master

Must merge back into:

develop and master

Branch naming convention:

hotfix-{version ID}

1.2.0

1.2.1

C21

C20

C27

C24

master hotfixes develop

Time

tags

C22

C23

C25

C26

C28

Figure G.5

Hotfix branches arise from the necessity to act immediately upon an

undesired state of a live production version. When a critical bug in a

production version must be resolved immediately, a hotfix branch may be

branched off from the corresponding tag on the master branch that marks the

production version.

The idea behind a hotfix branch is that work on the develop branch

(which may be many commits ahead of the current release), can continue

while another person is preparing a quick production fix.

Severe bug
fixed for

production:
hotfix-1.2.1

G.9

PMcL Supporting Branches Index

2018 G - Git Workflow

Creating a Hotfix Branch

Hotfix branches are created from the master branch, since changes on

develop are potentially unstable. When branching off, the hotfix branch

name needs to take on the next version ID, but with the patch “bumped” by 1,

e.g. in fixing a bug in 1.2.0, the hotfix branch name is hotfix-1.2.1.

Ending a Hotfix Branch

When finished, the bugfix needs to be merged back into master, but also

needs to be merged back into develop, in order to ensure that the bugfix is

included in the next release as well.

Always use the “no fast forward” option (--no-ff flag) when merging back

into the master branch to ensure the merge always creates a new commit

object. When hotfix is merged into master, the master should be tagged

with the new version ID.

There is no need to use the “no fast forward” option when merging back into

the develop branch (hotfix branched from master, not develop, so

there is no possibility of a fast-forward merge in this case).

G.10

Index Versioning PMcL

G - Git Workflow 2018

G.3 Versioning

Utilize semantic versioning for your releases.

For Embedded Software, the software modules and programs we write will

also attain the following attributes:

Hardware Interaction

Type Abbrev. Description Example

None N No interaction with the

hardware.

A data structure such as

a FIFO.

Direct D Writing or reading directly

to or from H/W, which will

always respond.

Writing to a PORTx

register.

Polling P H/W can only be accessed

when ready, and the H/W

status is determined by

polling status flags.

Reading received data

from the UART.

Interrupts I H/W will assert an interrupt

when it is ready.

Received UART data is

processed in an

interrupt service

routine.

Software Framework

Type Abbrev. Description Example

Polling P S/W has “busy waiting”

loops while polling H/W

status flags.

Waiting for data to be

received by the UART.

Interrupts I S/W is built around

interrupt service routines

(ISRs) and may require

“critical sections”.

An ISR stores received

UART data in a FIFO

for later processing.

RTOS R S/W is multi-threaded and

relies on RTOS functions

and ISRs that may

“suspend” or “block” the

caller.

A FIFO module that

“blocks” callers if it is

full, empty, or being

accessed by another

thread.

Any A The S/W does not rely on a

particular framework.

A module that performs

data processing, such

as finding the average

or median.

http://semver.org/

G.11

PMcL Versioning Index

2018 G - Git Workflow

Semantic Version Control

For Embedded Software, we will slightly modify the semantic version control

rules:

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you:

make incompatible API changes

or

change the software framework

2. MINOR version when you:

add functionality in a backwards-compatible manner

3. PATCH version when you:

 make backwards-compatible bug fixes.

EXAMPLE G.1 UART Module

A module which implements communications via a UART has the following

version numbering, where the abbreviation “H-S” stands for the Hardware

Interaction-Software Framework:

H-S Version ID Summary

P-P 1.0.0 Uses H/W polling in a S/W architecture where

interrupts are not used (or off).

P-P 1.1.0 Same as above, but adds additional functionality, but

which can be “used in a 1.0.0 role” if necessary.

I-I 2.0.0 Uses ISRs to respond to H/W events in a S/W

architecture that uses interrupts. There are critical

sections.

I-R 3.0.0 Uses ISRs to respond to H/W events in a S/W

architecture that uses an RTOS. There are operating

system calls within the module implementation.

G.12

Index Summary PMcL

G - Git Workflow 2018

G.4 Summary

There is no definitive workflow model, but the one presented here is ideal for

development in small teams. It forms an elegant mental model that is easy to

comprehend and allows team members to develop a shared understanding of

the branching and releasing processes.

Keep Figure G.1 handy and use it as a quick reference!

G.5 References

https://nvie.com/posts/a-successful-git-branching-model/

(Accessed 2018-07-14)

https://github.com/chrisjlee/git-style-guide (Accessed 2018-07-14)

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

(Accessed 2018-07-14)

https://nvie.com/posts/a-successful-git-branching-model/
https://github.com/chrisjlee/git-style-guide
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

G.13

PMcL Exercise Index

2018 G - Git Workflow

Exercise

1.

Recreate the workflow structure and commits shown in Figure G.1.

G.14

Index Answer PMcL

G - Git Workflow 2018

Answer

1.

Some “snapshots” of the revision log are shown below using TortoiseGit:

After commit 16:

After commit 25 and the 2.0.0 tag:

Note that a revision log in TortoiseGit only shows the “parent” commits, unless

you check the option for “All Branches” in the bottom left of the Log Messages

dialog box:

G.15

PMcL Answer Index

2018 G - Git Workflow

A snapshot of the graph in GitLab is shown below:

Note that GitLab shows the entire history of commits, not just the parents (this

graph was generated from the perspective of the master branch).

The solution can be cloned from the Git repository at:

http://git.pmcl.net.au/48434_Public/GitWorkflow.git

http://git.pmcl.net.au/48434_Public/GitWorkflow.git

