
L1.1

Embedded Software Spring 2019

Lab 1 – Tower Serial Communications

Port access. UART initialization. Polling. Circular buffer. Packet decoding.

Introduction

The Universal Asynchronous Receiver / Transmitter (UART) is a simple yet

extremely important peripheral of the K70 microcontroller. On the Tower

board it is connected to a serial-to-USB chip that enables the board to

communicate to a PC running Windows 10. The Tower board is to implement

the serial communication protocol as outlined in the separate document entitled

Tower Serial Communication Protocol.

Objectives

1. To set up a UART on a microcontroller.

2. To implement a circular buffer in the C language.

3. To decode and respond to packets according to a defined protocol.

Equipment

 1 TWR-K70F120M-KIT

 1 USB cable

 NXP Kinetis Design Studio

Safety

This is a Category A laboratory experiment. Please adhere to the Category A

safety guidelines (issued separately).
Cat. A lab

L1.2

Embedded Software Spring 2019

Software Overview

The serial communication between the Tower board and the PC uses 5-byte

packets. The task of the Tower software is to receive and send packets of

information asynchronously.

This is a classic producer-consumer problem. One solution to the asynchronous

nature of the communication is to implement a first-in first-out (FIFO) buffer

between the producer and consumer. This is shown diagrammatically below:

TDRE

Set

UART_InChar

consumer

Packet

RxFIFO
RxFIFO_Get

TxFIFO
TxFIFO_Put

producer

RxFIFO_Put

TxFIFO_Get

RDRF

Set

consumer

producer

UART
input

UART
output

UART
interrupt
or polling

UART_OutChar

Figure L1.1

A simple (but inefficient) way of handling the asynchronous nature of the

UART communication is to check the status of the UART hardware repeatedly

by calling a function in the main loop of the program that polls the status of the

UART, and calls RxFIFO_Put or TxFIFO_Get as required.

Data flow graph
showing two FIFOs
that buffer data
between producers
and consumers

L1.3

Embedded Software Spring 2019

Receiving Data

When the packet module wishes to receive input, it calls UART_InChar,

which will attempt to get data from the RxFIFO (it will fail if the FIFO buffer

is empty). How does data get in the RxFIFO?

The incoming serial data will set the Receive Data Register Full (RDRF) flag in

the UART Status Register 1 (UART_S1) register, indicating that the receiver

hardware has just received a byte of data. In the main loop, a poll of the RDRF

flag is performed. If it is set, then the program tries to accept the data and put it

in the RxFIFO. The RxFIFO buffers data between the input hardware and the

main program that processes the data. If the RxFIFO becomes full, then data

will be lost. This is illustrated below:

Read data
from input

InCharRDRF set

FIFO
buffer

Return data
to caller

Get

no

yes

return

FIFO_Get

FIFO
empty?

Error

return

Put

yes

no

FIFO_Put

FIFO
full?

Error

Figure L1.2

FIFO full errors will always occur if the average input rate (number of bytes

arriving per second from the input hardware) exceeds the average processing

rate (number of bytes processed per second by the main program). In this

situation, either the output rate must be increased (by using a faster computer

In this lab, the
receive interrupt
service routine is
replaced by a polling
operation

A FIFO queue can
be used to pass
data between an
input device and a
main thread

L1.4

Embedded Software Spring 2019

or by writing a better software processing algorithm), or the input rate must be

decreased (by slowing down the arrival rate of data). The second way the

RxFIFO could become full is if there is a temporary increase in the arrival rate

or a temporary decrease in the processing rate. For this situation, the full errors

could be eliminated by increasing the size of the RxFIFO.

It is inefficient, but not catastrophic, for the main program to wait on an empty

RxFIFO in some cases. Efficiency can be improved for the buffered input

problem by performing other tasks while waiting for data.

Sending Data

When the packet module wishes to output, it calls UART_OutChar, which

will put the data in the TxFIFO and arm the output device.

The setting of the Transmit Data Register Empty (TDRE) flag by the UART

hardware signals that the output shift register is idle and ready to output more

data. In the main loop, a poll of the TDRE flag is performed. If it is set, then the

program tries to retrieve the data in the TxFIFO., and send it out the serial

port. If the TxFIFO becomes empty, then no data will be sent out the serial

port. This is illustrated below:

OutChar

return

Write data
to output

TDRE set

Get

no

yes

return

FIFO_Get

FIFO
empty?

Error

Put

yes

no

FIFO_Put

FIFO
full?

Error

FIFO
buffer

Figure L1.3

In this lab, the
transmit interrupt
service routine is
replaced by a polling
operation

A FIFO queue can
be used to pass
data between a
main thread and an
output device

L1.5

Embedded Software Spring 2019

It is inefficient, but not catastrophic, for the main program to wait on a full

TxFIFO. Efficiency can be improved for the buffered output problem by

increasing the TxFIFO size.

Software Modules

Various modules should be written to support the serial communication

protocol, in such a way that modules build upon one another in a hierarchy.

The graph below shows the software module dependency – each layer abstracts

away the “nuts and bolts” so that at the top of the hierarchy (in main.c, which

is your application) you can simply call high-level Packet module routines

without knowing any details of how packets are received and transmitted.

FIFO

packet

UART2_D

UART

main

UART_Poll

only

only to configure
peripheral and pin
functions

UART2_C1
UART2_C2
UART2_C3
UART2_C4

UART2_S1
UART2_S2

UART2_BDH
UART2_BDL
UART2_MODEM

UART2_C5

PORTE_PCR16
PORTE_PCR17
SIM_SCGC4
SIM_SCGC5

Figure L1.4

The concept of a software module “abstracting away” the hardware is known

as a hardware abstraction layer (HAL). As you work up the software module

hierarchy (from the bottom hardware layer to the top application layer) the

software modules present more abstract (and powerful) functions to the layer

above, until you arrive at the penultimate top layer which is, in effect, an

application programming interface (API).

Software module
dependency

L1.6

Embedded Software Spring 2019

Labs/Project Workflow

The labs have been designed so that you will progressively build up various

low-level modules in preparation to undertake the final project. The following

diagram shows a typical timeline of Git commits heading towards this goal:

0.0.0

1.0.0

2.0.0

3.0.0

C0

C10

C21

C27

C1

C2

C5

C7

C9

C11

C13

C19

C20

C22

C28

C6

C15

C8

C18

C17

C12

C14

C25

master develop

feature branches

Time

tags

C16

C3

C4

C23

C24

C26

lab templates

Provided

templates

User

development

 Figure L1.5

Major
feature for

next release

Feature
for future
release

Incorporate
feature in

develop

Lab 1
solution from

develop

Lab 1
template

Lab 2
template

Lab 3
template

Lab 4
template

First
(empty)
“release”

Lab 2
solution from

develop

Incorporating
Lab 2

template

Incorporating
Lab 3

template

Incorporating
Lab 4

template

L1.7

Embedded Software Spring 2019

Software Requirements

1. You should implement the public functions and variables, as “advertised”

in the supplied header files.

2. The serial-to-USB bridge uses UART2. The baud rate is to be 38400 baud,

with an 8N1 frame. You are required to set/clear individual bits in the

UART’s control registers, based on this software requirements

specification (SRS).

3. The CPU bus clock frequency can be found in “CPU.h”. The CPU bus

clock is supplied to UART2 as its “module clock” (see Table 5-2 in

K70P256M150SF3RM.pdf). The UART2 module clock is needed for

baud rate divisor calculations.

4. A frequent polling operation in the main loop should be used to check the

status of the serial port.

5. The commands of the Tower serial protocol to be implemented (with

packet acknowledgement) are:

Tower to PC PC to Tower

0x04 Tower startup 0x04 Special – Get startup values

0x09 Special – Tower version 0x09 Special – Get version

0x0B Tower number 0x0B Tower number (get & set)

6. In response to reception of a “0x04 Special – Get startup values” packet

from the PC, the Tower should transmit three packets:

 a “0x04 Tower startup” packet

 a “0x09 Special – Tower version” packet

 a “0x0B Tower number” packet

7. Upon power up, the Tower should send the same 3 packets as above.

8. Use the last 4 digits of your student number to initialise the Tower number.

Note that it may be changed via the “0x0B Tower number” packet at a

later time.

9. The “0x09 Special – Tower Version” should be V1.0.

L1.8

Embedded Software Spring 2019

10. Git must be used for version control. Note that version control will be

assessed in Lab 5 based on the development of the software from Lab 1

through to Lab 5.

The Project template (Labs 1 to 5 build towards a Project, so the template

is called “Project”) can be cloned from your private GitLab central

repository at:

http://git.pmcl.net.au/48434_YYYY_SSS/esXX.git where:

 YYYY is the year, e.g. 2019

 SSS is the first 3 letters of the session, e.g. AUT, SPR, SUM

 es stands for Embedded Software

 XX is the group number, always expressed as two digits

For example, the project template for Group 3, undertaking the subject in

Autumn 2019, can be retrieved from:

http://git.pmcl.net.au/48434_2019_AUT/es03.git

L1.9

Embedded Software Spring 2019

Hints

1. Together, a .h and .c file form a “module”. Recall that the header file (.h)

“advertises” the capabilities of the module by “exposing” or “making

available” public functions and variables. The implementation of the public

functions and variables occurs in the C file (.c), along with any other

private “helper” functions (which are not made public in the header file).

2. You need to enable the UART module in SIM_SCGC4.

3. To enable pin routing for Port E, you need to enable Port E in SIM_SCGC5.

4. For PIN multiplexing, see p. 280 of K70P256M150SF3RM.pdf. UART2

shares pins with PortE bits 16 and 17.

5. For the UART control registers, you only need to write code to change

individual bits from their reset state, if required by the SRS (in other words,

your software may assume that a valid reset has taken place before it is

executed). For every bit that is set or cleared, there should be one line of

code, with appropriate comments.

6. The Baud Rate Divisor Register and Fine Adjust are discussed on p. 1974

of K70P256M150SF3RM.pdf.

7. The project has automatically included MK70F12.h which defines all the

registers, such as UART2_S1, as well as the bit masks, such as

UART_S1_RDRF_MASK.

8. Valid commands also require valid parameters when handling a packet.

L1.10

Embedded Software Spring 2019

Marking

1. The software to be assessed must reside in the remote GitLab repository by

the time and date specified in the Timetable in the Learning Guide. Create a

merged commit from the develop branch to the master branch

(remember to use the --no-ff flag) and tag the commit with 1.0.0.

2. During marking, you may create a hotfix-1.0.1 branch in order to

develop a TODO list.

3. Software marking will be carried out in the laboratory, in the format of a

code review.

4. Refer to the document “Software Style Guide” for more details of some of

the assessment criteria.

L1.11

Embedded Software Spring 2019

Assessment Criteria

Your lab will be assessed according to the following criteria:

Item Detail Evaluation Mark

Opening comments File headers are correct. E G A P N /0.5

Function descriptions Function descriptions are

appropriate and correct.
E G A P N /0.5

Naming conventions Names conform to the

Software Style Guide.
E G A P N /0.5

Code structure Code structure conforms to the

Software Style Guide.
E G A P N /0.5

UART functions All control register bits are set

individually. Baud rate set

correctly. Correct use of

FIFOs. Polling is correct.

E G A P N /1

Packet functions Packet functionality is correct.

Errors are handled correctly.
E G A P N /1

FIFO implementation Functionally correct, easy to

modify (read) and efficient.
E G A P N /2

Protocol implementation Protocol response is correct,

including ACK/NAK.
E G A P N /2

TOTAL /8

L1.12

Embedded Software Spring 2019

When we evaluate an assessment item, we will use the following criteria:

Evaluation Mark (%) Description

Excellent 100 All relevant material is presented in a logical manner showing clear understanding, and sound reasoning.
For software – correct coding style, correct software architecture including: modularity; functions; parameters;

and types, very efficient implementation (code and time) and/or novel (and correct) code.

Good 75 Nearly all relevant material is presented with good organisation and understanding.
For software – mostly correct coding style, mostly correct software architecture including: modularity;

functions; parameters; and types, reasonably efficient implementation (code and time).

Acceptable 50 Most relevant material is presented with acceptable organisation and understanding.
For software – inconsistent coding style, reasonable software architecture (but could show improvement in

modularity, use of functions, parameters, or types), some code may be prone to errors under certain operating

conditions (e.g. input parameters) or usage, occasional inefficient or incorrect code.

Poor 25 Little relevant material is presented and/or poor organisation or understanding.
For software – Conceptual difficulty of the underlying concepts, numerous coding style errors, functionality

missing, poor software architecture, inappropriate or incorrect use of functions, parameters or types. Very

inefficient and / or incorrect code.

No attempt 0 No attempt.
For software – missing modules and/or functionality.

Oral Defence

During the assessment of your work you will be asked questions based on material which you have learnt in the subject and then used to

implement the assessment task. You are expected to know exactly how your implementation works and be able to justify the design choices

which you have made. If you fail to answer the questions with appropriate substance then you will be awarded zero for that component.

