
L2.1

Embedded Software Spring 2019

Lab 2 – MCG and Flash Memory

Multipurpose clock generator. Flash memory. Serial protocol.

Introduction

The Multipurpose Clock Generator (MCG) module is responsible for the

setting up of various system-wide clocks. Flash is a non-volatile memory

technology that allows data to be stored when power to the K70 is removed.

Objectives

1. To use “Processor Expert” to safely transition the bus clock from an

internal source to an external source when booting.

2. To write a hardware abstraction layer (HAL) for Flash memory.

3. To expand the implementation of the Tower serial protocol.

Equipment

 1 TWR-K70F120M-KIT – UTS

 1 USB cable – UTS

 NXP Kinetis Design Studio

Safety

This is a Category A laboratory experiment. Please adhere to the Category A

safety guidelines (issued separately).
Cat. A lab

L2.2

Embedded Software Spring 2019

Memory Overview

There are two types of memory on board the K70 microcontroller – random

access memory (RAM) and non-volatile memory (NVM). The type of RAM

used is static RAM, which means it is made up of flip-flops and does not need

to be refreshed (as opposed to dynamic RAM or DRAM, which stores bits of

information in capacitors with sensing transistors – eventually the charge on the

capacitor leaks away and the DRAM needs to be refreshed). RAM can be read

and written to at any time – it is the place where variables are stored, as well as

the stack and the heap.

The NVM is based on Flash technology. Flash is a memory technology that

allows for bulk erasure, random writing, fast read access, and dense

implementation (small silicon area). There are two styles of Flash memory used

in the K70 family of MCUs. The first is called “Program flash memory” and

consists of large blocks of memory – it normally holds the program code and

constants. The second style is referred to as “FlexNVM”. The FlexNVM

memory has the capability to emulate electrically erasable programmable read-

only memory (EEPROM). EEPROM refers to a now out-dated memory

technology, so its name is a carry-over from previous generations of

microcontrollers. FlexNVM has a built-in filing system and provides a high-

endurance, byte-writeable, non-volatile memory that is specifically intended to

hold non-volatile variables such as modes of program operation, flags,

calibration constants, user options, etc.

In the MCU used on the Tower board (the MK70FN1M0VMJ12), we only

have “Program flash memory”. Therefore, we will store our non-volatile

variables in a Flash block that we know will not be used by our program (our

program is small so it leaves plenty of “Program flash” available for data).

The Flash can be read just like normal RAM – no special procedure is needed.

However, unlike RAM, when writing to the Flash a special procedure is

required. Writing to the Flash requires various tasks to be carried out under

certain timing constraints – if the tasks are not carried out in strict order, at

strict voltages, then damage to the silicon can occur. Some of the tasks needed

EEPROM is
emulated with Flash

Non-volatile memory
is implemented with
Flash technology

Flash requires a
special procedure
when written to

L2.3

Embedded Software Spring 2019

to write to the memory are: applying a high programming voltage to a

particular row; selecting a particular cell; pulsing the memory etc. All these

tasks are carried out by an on-chip state machine that hides the complexity of

this writing process. All we have to do is interact with a few control registers to

be able to write to the Flash.

Programming Model of the Flash

A programming model of the Flash is shown below:

Command Interface

FCNFG Flash Configuration

FSEC Flash security

Flash Status

FCCOB0 Flash Common Command
Object Registers

FCCOBB

Program flash

4 x 256 KiB blocks

Block 0

Block 1

Block 2

Block 3

FSTAT

FOPT Flash option

(12 Registers)

Figure L2.1

The Flash command interface consists of several registers that enable the Flash

to be erased and written. In summary, they are:

 FSTAT – a status register to indicate the state-machine status.

 FCNFG – a configuration register to allow interrupts to be generated

under certain conditions.

 FSEC – a read-only security register used to indicate the state of the

built-in security features such as mass erase enable/disable.

 FOPT – a read-only register used to indicate the Flash options applied at

boot time, such as whether to boot into low-power mode.

 FCCOB0-B – twelve registers that hold the Flash interface’s command,

address, data and other parameters associated with a particular Flash

operation.

A complete description of the Flash memory module can be found in Chapter

30 of NXP’s K70 Sub-Family Reference Manual.

Programming model
of the Flash

L2.4

Embedded Software Spring 2019

Using the Program Flash for Data Storage

Our device has four 256 KiB Flash blocks labelled Block0-3. You cannot read

from a Flash block while it is being erased or written. However, the internal

architecture of the K70 allows it to operate (i.e. read instructions from) one

“bank” of Flash memory (Blocks0-1) while programming the other “bank”

(Blocks2-3). We can therefore use Blocks2-3 as “data flash”.

The Flash memory is mapped into the MCU 32-bit address space as follows:

0x000C_0000

0x000B_FFFF

0x0008_0000

0x0007_FFFF

0x0004_0000

0x0003_FFFF

0x0000_0000

address Flash memory

0x000F_FFFF

Block 0

Block 1

Block 2

Block 3

bank 1

bank 2

Figure L2.2

All K70 parts have “Program flash memory” in the range 0x0000_0000 to

0x0007_FFFF. The memory starting at address 0x0000_0000, which is in

Block0, is actually a “vector table” that is used by the Nested Vectored

Interrupt Controller (NVIC) to get the initial stack pointer, initial program

counter, and interrupt service routine addresses. Storage for our program, and

KDS’s startup code, then follows the vector table and resides in Block 0. Since

we will execute code from Block0, we have chosen to use Flash Block2 in the

other “bank” to store our non-volatile data.

L2.5

Embedded Software Spring 2019

Inside each block, the Flash memory is further divided into sectors, which is

the smallest unit that can be erased. Our device has 4 KiB sectors:

0x000B_F000

0x0008_2000

0x0008_1FFF

0x0008_1000

0x0008_0FFF

0x0008_0000

address Block 2 Flash

0x000B_FFFF

Sector 0

Sector 1

Sector 63

Figure L2.3

One aspect of Flash technology that should be remembered is that it must be

erased before it is written to. Failure to do so may damage the Flash array.

This means that if we want to change just 1 byte in a 4 KiB sector, the entire

sector contents must be read into a RAM buffer, and the 1 byte changed in the

RAM buffer. Then the Flash sector must be erased, turning all 0’s into 1’s.

Finally, we must write the entire new 4 KiB sector from the RAM buffer to the

Flash sector.

That’s why NXP’s other K70 part has FlexNVM which emulates single-byte

access non-volatile data storage!

Another complicating factor in using Program flash to store data is that the

smallest unit of data we can write to the Flash array is 8 bytes, which is called a

phrase. The phrase must be aligned on an 8-byte address, i.e. 0x0008_0000,

0x0008_0010, 0x0008_0018, etc.

Flash memory is
organised into
erasable units called
sectors

Flash memory must
be erased before it
is written to!

Phrases are aligned
to 8-byte boundaries

L2.6

Embedded Software Spring 2019

To ease the burden of operating the Program flash memory as a data storage

area, we will further restrict ourselves to only operating in the first “phrase” of

sector 0 of Flash Block2:

0x0008_0007

0x0008_0001

0x0008_0000

absolute address

Byte 0

Byte 1

Byte 7

Block 2
Sector 0

16-bit address offset
from Block 2 address

Byte 40950x0008_0FFF

0x0000

0x0001

0x0007

0x0FFF

phrase

Flash

Figure L2.4

The Tower Serial Communication Protocol supports commands to program

bytes into the Flash memory and to read bytes from the Flash memory. One of

the parameters in the packet is used as the address offset into our 8-byte storage

area. i.e. we can only program and read bytes with an offset between 0 and 7.

Careful reading of the Tower Serial Communication Protocol reveals that if the

PC sends a packet to program a byte into Flash at address offset 8, then the

Tower firmware is to treat this as a command to erase the entire sector, thus

erasing all bytes in our phrase.

Software Modularity

We will write a Flash memory hardware abstraction layer (HAL) that is

modular. In particular, the HAL will make public functions available for

writing data to the Flash, and for bulk erasing. It will also be responsible for

allocating Flash memory to non-volatile variables required by the user.

L2.7

Embedded Software Spring 2019

Software Requirements

1. The software is to incorporate all the features of Lab 1. You should also

implement or update the public functions and variables, as “advertised” in

the supplied header files.

2. The Tower has a 50 MHz external clock which is connected to the

EXTAL0 pin of the MCU. Use Processor Expert to configure the CPU

clock to the following:

Clock Frequency

Core / system clock 50 MHz

Bus clock 25 MHz

External bus clock 10 MHz

Flash clock 12.5 MHz

Hint: The clock mode is Bypassed Low Power External (BLPE).

3. The baud rate is to be set to 115200 baud.

4. A HAL is to be written for the Flash for erase and write operations. The

write operations to be supported are 8-bit unsigned bytes at any address, 16-

bit unsigned half-words at an even address, and 32-bit unsigned words on

an address evenly divisible by 4.

5. The HAL should support the allocation of Flash memory at the user’s

request, up to a maximum of 8 bytes total, i.e. we are restricting Flash

memory allocation to one phrase.

L2.8

Embedded Software Spring 2019

6. Extra commands of the Tower serial protocol to be implemented are:

Tower to PC PC to Tower

 0x07 Flash – Program byte

0x08 Flash – Read byte 0x08 Flash – Read byte

0x0B Tower Number 0x0B Tower Number (get & set)

0x0D Tower Mode 0x0D Tower Mode (get & set)

7. The Tower response to a “0x04 Special – Get startup values” packet should

be the transmission of 4 packets:

 0x04 Special – Startup

 0x09 Special – Version number

 0x0B Tower Number

 0x0D Tower Mode

Upon power up, the Tower should send the same 4 packets as above.

8. The Tower number and mode are to be stored in Flash. If an

unprogrammed Tower number or mode are detected on startup (i.e. the

Flash has been erased so that the data is 0xFFFF), the application should

program the Tower number to the last four digits of your student number

and the Tower mode to 1.

9. If the Tower board is successful in starting up (i.e. Flash is initialized

successfully, UART is initialized successfully, etc.) then the orange LED

“D7” should be turned on.

10. Git must be used for version control. Note that version control will be

assessed in Lab 5 based on the development of the software from Lab 1

through to Lab 5.

L2.9

Embedded Software Spring 2019

Hints

1. packet.h has changed to facilitate manipulation of packet parameters.

2. Read section “30.4.10.1.3 Command Execution and Error Reporting” in the

K70 Reference Manual. Figure 30-34 on p. 806 is also useful.

3. Here’s an example of how the Flash functions would be used:

I want a uint16union_t variable to reside in Flash memory. I therefore

declare an uninitialised pointer to a uint16union_t :

// Prefix "Nv" stands for "non-volatile"
volatile uint16union_t *NvTowerNb; /*!< The non-volatile Tower number. */

At the moment, my pointer NvTowerNb doesn’t point to anything. I want

it to point to 16-bits of data in the Flash memory, so I call my Flash

variable allocation function:

success = Flash_AllocateVar(&NvTowerNb, sizeof(*NvTowerNb));

Now my pointer has an address (into Flash memory) where my data will

actually reside.

I have to use a special function to write to my non-volatile variable:

// Set new Tower number
success = Flash_Write16((uint16_t *)NvTowerNb, Packet_Parameter23);

Reading the variable doesn’t require any special functions. Here I am

reading my non-volatile Tower Number to send back in a packet:

Packet_Put(CMD_TOWER_NB, 1, NvTowerNb->s.Lo, NvTowerNb->s.Hi);

Notice how the union is very handy for handling data in different ways.

4. Make a struct to encapsulate what you want to put into the FCCOB

registers. When using the CCOB registers, note they are big-endian. See the

note on p. 790 in the K70 Reference Manual regarding FCCOB Endianness

and Multi-Byte Access.

L2.10

Embedded Software Spring 2019

5. Be succinct about terminology in relation to type sizes in the ARM (and the

C compiler) and the definitions for the Flash:

Name C type Size (in bytes)

Byte uint8_t 1

Half-word uint16_t 2

Word uint32_t 4

Phrase uint64_t 8

6. Due to the nature of Flash memory, it needs to be bulk erased before being

written to. That means any change in data requires the entire contents of the

Flash memory to be copied out into RAM, the changes made in RAM, and

then the RAM “image” being written back to Flash memory. Thus, any call

to one of the “Write” functions in Flash.c will eventually lead to erasure

of the entire sector, before writing back the entire phrase that we are using.

7. You can structure your software so that Flash_Write8 calls

Flash_Write16 which calls Flash_Write32 which calls a private

function to write a phrase (after sector erasure).

8. There will be several private functions (not made public by Flash.h) that

need writing to support the public functions. Some suggested helper

functions are:

static BOOL LaunchCommand(TFCCOB* commonCommandObject);
static BOOL WritePhrase(const uint32_t address, const uint64union_t phrase);
static BOOL EraseSector(const uint32_t address);
static BOOL ModifyPhrase(const uint32_t address, const uint64union_t phrase);

9. The LEDs are connected to Port A. Check the Tower schematic to see

which pins they are connected to. Note what logic level (high or low) turns

the LEDs on/off. You will need to set up the correct Port A pins to be

general purpose outputs, with drive strength enabled.

L2.11

Embedded Software Spring 2019

Marking

1. The software to be assessed must reside in the remote Git repository

before the start of your timetabled activity on the date specified in the

Timetable in the Learning Guide.

2. Please create a “tag” called “Lab2Submission” (no spaces allowed) to

the particular commit that you want marked. Markers will then create

a branch from this tag called “Lab2Marking” in order to assess it.

3. Software marking will be carried out in the laboratory, in the format

of a code review.

4. Refer to the document “Software Style Guide” for more details of some

of the assessment criteria.

L2.12

Embedded Software Spring 2019

Assessment Criteria

Your lab will be assessed according to the following criteria:

Item Detail Evaluation Mark

Opening comments /

function descriptions

File headers are correct.

Function descriptions are

appropriate and correct.

E G A P N /0.5

Naming conventions /

code structure

Names and code structure

conform to the Software Style

Guide.

E G A P N /0.5

Doxygen comments Comments for all functions,

variables and modules are

present and informative.

Documentation compiles.

E G A P N /1

Initialization Multipurpose Clock Generator

/ Processor Expert is set up

correctly. LED turns on.

E G A P N /1

Flash HAL Functionally correct for public

functions. Private functions are

correct and robust.

E G A P N /4

Protocol implementation Protocol response is correct,

including ACK/NAK.

E G A P N /1

TOTAL /8

L2.13

Embedded Software Spring 2019

When we evaluate an assessment item, we will use the following criteria:

Evaluation Mark (%) Description

Excellent 100 All relevant material is presented in a logical manner showing clear understanding, and sound reasoning.

For software – correct coding style, correct software architecture including: modularity; functions; parameters;

and types, very efficient implementation (code and time) and/or novel (and correct) code.

Good 75 Nearly all relevant material is presented with good organisation and understanding.

For software – mostly correct coding style, mostly correct software architecture including: modularity; functions;

parameters; and types, reasonably efficient implementation (code and time).

Acceptable 50 Most relevant material is presented with acceptable organisation and understanding.

For software – inconsistent coding style, reasonable software architecture (but could show improvement in

modularity, use of functions, parameters, or types), some code may be prone to errors under certain operating

conditions (e.g. input parameters) or usage, occasional inefficient or incorrect code.

Poor 25 Little relevant material is presented and/or poor organisation or understanding.

For software – Conceptual difficulty of the underlying concepts, numerous coding style errors, functionality

missing, poor software architecture, inappropriate or incorrect use of functions, parameters or types. Very

inefficient and / or incorrect code.

No attempt 0 No attempt.

For software – missing modules and/or functionality.

Oral Defence

During the assessment of your work you will be asked questions based on material which you have learnt in the subject and then used to

implement the assessment task. You are expected to know exactly how your implementation works and be able to justify the design choices

which you have made. If you fail to answer the questions with appropriate substance then you will be awarded zero for that component.

