
L3.1

Embedded Software Spring 2019

Lab 3 – Interrupts and Timers

Interrupts. Serial port. Periodic timers. Real-time clock. Flexible timer module.

Introduction

Interrupts are an essential feature of a microcontroller. They enable the

software to respond, in a timely fashion, to internal and external hardware

events. For example, the reception and transmission of bytes via the UART is

more efficient (in terms of processor time) using interrupts, rather than using a

polling method. Performance is improved because tasks can be given to

hardware modules which “report back” when they are finished.

The periodic interrupt timer (PIT) unit is also an essential feature of a

microcontroller that needs to operate as part of a real-time system. It enables

periodic tasks, such as real-time control, display updates, key scanning, etc. to

be carried out. The real time clock (RTC) operates off a different power-

domain to the rest of the K70 chip so that it can operate from a battery. This

allows us to maintain the time even when the main power (from the USB) is

off. The flexible timer module (FTM) gives us input capture, output compare,

and PWM waveform generation capabilities.

Objectives

1. To use interrupts with the serial communication interface.

2. To set up a periodic timer.

3. To implement a real-time clock function.

4. To set up a software interface to timer functions.

5. To expand the implementation of the Tower serial protocol.

Equipment

 1 TWR-K70F120M-KIT – UTS

 1 USB cable – UTS

 NXP Kinetis Design Studio

Safety

This is a Category A laboratory experiment. Please adhere to the Category A

safety guidelines (issued separately).
Cat. A lab

L3.2

Embedded Software Spring 2019

Software Requirements

1. The software is to incorporate all the features of Lab 2. You should also

implement or update the public functions and variables, as “advertised” in

the supplied header files.

2. A HAL should be written for the four LEDs on the TWR-K70F120M board

that allows them to be turned on, off, or toggled.

3. The UART software must use a fully interrupt-driven approach to sending

and receiving characters, using FIFO buffers.

4. A real-time clock must be implemented using the RTC module that keeps

track of the time-of-day. The user should be able to set the time via a PC

(using the Tower Serial Communication Protocol). The RTC should be set

up so that an interrupt occurs every second. The RTC ISR should invoke a

user callback function (declared in main.c) that toggles the yellow LED

and sends the current time to the PC.

5. A periodic interrupt must be implemented using the PIT with a period of

500 ms. The PIT ISR should invoke a user callback function (declared in

main.c) that toggles the green LED.

6. A HAL must be written for the flexible timer module (FTM) that supports

only simple output compare events for all 8 channels. The clock source for

the FTM should be the fixed frequency clock (MCGFFCLK).

7. On reception of a valid packet from the PC, the blue LED must be turned

on for a period of one second. This can be accomplished by using the

callback facility of the FTM module. As an example, you can set up channel

0 of the FTM to produce an output compare interrupt 1 second ahead of the

current value of CNT that invokes the user callback function (declared in

main.c) which turns off the LED. You can then turn the blue LED on

after a valid packet is received and start the timer linked to channel 0

(which will turn the LED off).

L3.3

Embedded Software Spring 2019

8. Extra commands of the Tower serial protocol to be implemented are:

Tower to PC PC to Tower

0x0C Time 0x0C Set Time

9. Git must be used for version control. Note that version control will be

assessed in Lab 5 based on the development of the software from Lab 1

through to Lab 5.

L3.4

Embedded Software Spring 2019

Hints

1. For the FTM, according to section 43.5 “Reset Overview”, there is a certain

sequence that should be followed after a reset condition. When your

program runs and initialises the FTM, the code sequence should be:

 Write to CNTIN.

 Write to MOD.

 Write to CNT.

 Write to CLKS[1:0] (in SC).

2. Read Example 5.1 of the Topic Notes. Pay particular attention to how it

satisfies the following:

 The hardware peripheral’s interrupt arm bit is set.

 The interrupt source is enabled in the NVIC.

 A function is declared to be an ISR.

 main enables interrupts via the __EI() macro, just before the

infinite loop.

 The vector table in vectors.c is manually modified to insert the

address of the ISR at the right location.

3. Here’s an example of how the user callback function for the PIT would be

used. In main.c, the user callback function needs to be defined:

void PITCallback(void* arg)
{
 ...
}

which is then passed as a parameter to initialise the PIT:

PIT_Init(CPU_BUS_CLK_HZ, PITCallback, NULL);

PIT_Init will store the callback parameters in private global variables

for later use.

In PIT_ISR we must have the following code to call the user’s function

when the interrupt is triggered:

 ...
 // Call user function
 if (UserFunction)
 (*UserFunction)(UserArguments);

L3.5

Embedded Software Spring 2019

4. The UART transmitter is an output device that generates an interrupt

request when it is ready. Only enable interrupts when there is something to

output, otherwise you will create a “crash” because the interrupt will always

be triggered by the ready condition, and you can only clear the arm bit by

actually sending something.

5. The UART ISR is an example of a situation where we have to poll the

interrupt source. See section 5.2.3 of the Topic Notes.

6. Using interrupts means we are now in a “multi-threaded” environment.

Identify critical sections where an ISR may interrupt the work of main.

Don’t forget that main calls other module’s code too, so those functions in

other modules that operate in conjunction with ISRs will need careful

analysis. You will have to protect your critical sections – read section 5.10

of the Topic Notes.

7. For the RTC, read section 6.3 of the Notes to set the oscillator up. You will

need to refer to the top left corner of sheet 4 of the K70 Tower schematic

(available on UTSOnline) to determine the required load capacitance of the

32.768 kHz crystal. The text “DNP” next to the crystal load capacitors

stands for “Do Not Populate”, which is a directive to the printed circuit

assembly manufacturer to not “populate” (i.e. physically place) the load

capacitors onto the board. The intention of the Tower designer is for the

crystal load capacitance to be provided internally by the K70, at the value

as stated on the capacitor symbols. To read the RTC in software, see

p. 1400 of the K70 Reference Manual. To implement “waiting for the

oscillator to be stable”, you can just do a for-loop that does nothing except

waste the requisite amount of time. For the time to wait, see section 6.3.3.2

of the data sheet for the chip.

http://cache.freescale.com/files/microcontrollers/doc/data_sheet/K70P256M120SF3.pdf

L3.6

Embedded Software Spring 2019

Marking

1. The software to be assessed must reside in the remote git repository

before the start of your timetabled activity on the date specified in the

Timetable in the Learning Guide.

2. Please create a “tag” called “Lab3Submission” (no spaces allowed) to

the particular commit that you want marked. Markers will then create

a branch from this tag called “Lab3Marking” in order to assess it.

3. Software marking will be carried out in the laboratory, in the format

of a code review.

4. Refer to the document “Software Style Guide” for more details of some

of the assessment criteria.

L3.7

Embedded Software Spring 2019

Assessment Criteria

Your lab will be assessed according to the following criteria:

Item Detail Evaluation Mark

Opening comments /

function descriptions

File headers and function

descriptions are correct.

E G A P N /0.5

Naming conventions /

code structure

Names and code structure

conform to the Software Style

Guide.

E G A P N /0.5

Doxygen comments Comments for all functions,

variables and modules.

E G A P N /0.5

LED HAL Public functions. E G A P N /0.5

UART interrupts Interrupts and critical sections. E G A P N /1.5

RTC Public functions. E G A P N /1

PIT Public functions. E G A P N /1

FTM Public functions. E G A P N /1.5

Protocol implementation Protocol expanded. LED

indication.

E G A P N /1

TOTAL /8

L3.8

Embedded Software Spring 2019

When we evaluate an assessment item, we will use the following criteria:

Evaluation Mark (%) Description

Excellent 100 All relevant material is presented in a logical manner showing clear understanding, and sound reasoning.

For software – correct coding style, correct software architecture including: modularity; functions; parameters;

and types, very efficient implementation (code and time) and/or novel (and correct) code.

Good 75 Nearly all relevant material is presented with good organisation and understanding.

For software – mostly correct coding style, mostly correct software architecture including: modularity; functions;

parameters; and types, reasonably efficient implementation (code and time).

Acceptable 50 Most relevant material is presented with acceptable organisation and understanding.

For software – inconsistent coding style, reasonable software architecture (but could show improvement in

modularity, use of functions, parameters, or types), some code may be prone to errors under certain operating

conditions (e.g. input parameters) or usage, occasional inefficient or incorrect code.

Poor 25 Little relevant material is presented and/or poor organisation or understanding.

For software – Conceptual difficulty of the underlying concepts, numerous coding style errors, functionality

missing, poor software architecture, inappropriate or incorrect use of functions, parameters or types. Very

inefficient and / or incorrect code.

No attempt 0 No attempt.

For software – missing modules and/or functionality.

Oral Defence

During the assessment of your work you will be asked questions based on material which you have learnt in the subject and then used to

implement the assessment task. You are expected to know exactly how your implementation works and be able to justify the design choices

which you have made. If you fail to answer the questions with appropriate substance then you will be awarded zero for that component.

