
L4.1

Embedded Software Spring 2019

Lab 4 – SPI and ADC

Serial peripheral interface. Analog-to-digital converter.

Introduction

The Serial Peripheral Interface (SPI) is a popular 3-wire interface that is used

for synchronous high-speed serial communication with local peripherals. Many

peripherals, such as analog-to-digital converters, digital-to-analog converters,

Flash memory, real-time clocks, temperature monitors, etc. come with built-in

SPI interfaces, making it easy for them to connect to a variety of

microcontrollers.

An analog-to-digital converter (ADC) is used to quantize an external analog

signal so as to represent it digitally. If the samples of an analog signal are taken

at a sufficiently high rate, then the samples furnish enough information for the

analog signal to be reconstructed exactly. Once the analog signal has been

converted to a digital form, it can be filtered, manipulated, and processed. The

processed signal can then be converted back to an analog signal through the use

of a digital-to-analog converter (DAC).

The LTC1859 is an 8-channel, low power, 16-bit ADC that can sample at up to

100 kilosamples per second (ksps). It can be software-programmed for different

input voltage ranges. The internal 8-channel multiplexer can be programmed

for single-ended inputs or pairs of differential inputs or combinations of both.

The LTC1859 communicates with microprocessors via a SPI interface.

Objectives

1. To implement a hardware abstraction layer for the Serial Peripheral

Interface.

2. To use an analog-to-digital converter to acquire an analog signal.

3. To perform simple signal processing on a signal.

4. To expand the implementation of the Tower serial protocol.

L4.2

Embedded Software Spring 2019

Equipment

 1 TWR-K70F120M-KIT – UTS

 1 TWR-ADCDAC-LTC board – UTS

 2 USB cables – UTS

 1 function generator – UTS

 1 oscilloscope - UTS

 NXP Kinetis Design Studio

Safety

This is a Category A laboratory experiment. Please adhere to the Category A

safety guidelines (issued separately).
Cat. A lab

L4.3

Embedded Software Spring 2019

Software Requirements

1. The software is to incorporate all the features of Lab 3. You should also

implement or update the public functions and variables, as “advertised” in

the supplied header files.

2. A hardware abstraction layer (HAL) is to be written for the Serial

Peripheral Interface (SPI) module. The HAL should support the setting up

of the SPI module for various modes of operation, including: master / slave;

active low / high clock; even / odd edge clocking; LSB / MSB first; frame

size; and baud rate.

The SPI is to be set up with the following parameters:

SPI Parameter Value

Master / Slave Master

Continuous clock false

Clock polarity Inactive low

Clock phase Data is captured

on leading edge

LSB / MSB first MSB

Frame size 16 bits

Baud rate 1 Mbit/s

For reasons of speed (the SPI operates at 1 Mbps), in this application there

is no need to utilise FIFO buffers to communicate with the SPI hardware.

Also, it is acceptable for a thread to wait for a SPI operation to finish.

Therefore, you do NOT need to implement a SPI interrupt service routine.

3. The analog-to-digital conversion is to be handled by the external Tower

TWR-ADCDAC-LTC board, NOT the analog-to-digital converter (ADC)

internal to the K70. The external ADC communicates with the K70 via a

SPI interface.

L4.4

Embedded Software Spring 2019

Refer to the Tower schematics (TWRADCDACLTCSCH.pdf) to determine

how the LTC1859 has been set up, and to determine appropriate ports and

pins to manipulate on the K70.

Jumpers on the TWR-ADCDAC-LTC board have been set up so that:

1. The TWR-K70 Board uses SPI2 from PTD11-15 which goes to the

elevator SPI0.

2. The elevator SPI0 becomes the TWR-ADCDAC-LTC SPI0.

3. Jumper J14 has been set to 1-2 to set SPI CS encoding Bit 2 to 3V3.

An “analog” software module should be written that uses the SPI to initiate

and read an ADC conversion result from the LTC1859. The ADC is to be

used in single-ended mode, with a voltage range of ±10 V.

The analog module should capture a “sliding window” of sample values

and provide support to filter the sampled values using a median filter.

The number of samples in the “sliding window” is a constant set by the

application – we will choose a size of 5. The implementation of the “sliding

window” should be optimised for speed (i.e. minimize the CPU time taken

to implement).

The datasheet for the ADC is readily available on the Internet.

Only Channels 0 & 1 of the LTC1859 will be used.

4. A median filter module should be written that can find the median of an

array of signed 16-bit numbers, of a length up to 1024. The median is the

“middle score”, which involves sorting the array of numbers into ascending

(or descending) order, and then choosing the middle number. If the length

of the array is even, then the average of the two middle sorted values is

taken.

The sorting of the array is to be efficient. Note that a “bubble sort” is not

efficient for large arrays.

L4.5

Embedded Software Spring 2019

5. In the main program, two different modes of communicating analog

information via packets are to be implemented: synchronous and

asynchronous (the default mode).

 Asynchronous mode: the Tower should initiate the sending of data

packets to the PC when any of its analog values changes. It is

important to only send data packets to the PC when a change in

analog value occurs, rather than continuously, so that the PC is not

bombarded with extraneous packets. Therefore, at intervals of

10 ms, the Tower will send an analog value packet only if the analog

value has changed.

 In synchronous mode, analog values from Channels 0 & 1 should be

sent to the PC at intervals of 10 ms, regardless of whether the

analog values have changed or not.

The Tower should still respond to packets sent from the PC whilst in

either mode.

6. The main application will take analog samples at intervals of 10 ms.

7. Extra commands of the Tower serial protocol to be implemented are:

Tower to PC PC to Tower

0x0A Protocol – Mode 0x0A Protocol – Mode

0x50 Analog Input – Value

8. On startup, or in response to reception of a “0x04 Special –Startup” packet

from the PC, the Tower should send, in addition to all other “startup”

packets:

 a “0x0A – Protocol – Mode” packet

9. The Tower PC Interface has a tab specifically for Lab 4. It graphs the

values sent back by the Tower. You should use this to verify that your

software is working correctly.

L4.6

Embedded Software Spring 2019

10. Git must be used for version control. Note that version control will be

assessed in Lab 5 based on the development of the software from Lab 1

through to Lab 5.

L4.7

Embedded Software Spring 2019

Hints

1. To initialise the SPI module, you will need to:

(i) Enable the clock gates to the SPI2, Port D and Port E modules.

(ii) Set up the Module Configuration Register (MCR).

(iii) Set up a Control and Transfer Attributes Register (CTAR).

(iv) Initialise values on any chip select pins.

2. In setting MCR in this application, the following fields are fixed:

DCONF 00

FRZ 1

MTFE 0

PCSSE 0

ROOE 0

PCSIS 000001

DOZE 0

MDIS 0

DIS_TXF 1

DIS_RXF 1

Other bits may be set by the user / module as necessary.

3. The SPI module is very flexible and can “talk” in many different ways – it

uses a CTAR to define different transfer attributes. In our application we

are using CTAR0 only. It is acceptable to set up this register once in

SPI_Init(). In setting CTAR0 in this application, the following fields are

fixed:

DBR 0

FMSZ 15

PCSSCK 00

PASC 00

PDT 00

CSSCK 0000

ASC 0000

DT 0000

Other bits may be set by the user / module as necessary.

L4.8

Embedded Software Spring 2019

4. To set the baud rate (i.e. the bits per second), see section 54.3.3 of the K70

Reference Manual. For a list of values corresponding to each PBR setting,

see the field descriptions on p.1817. For a list of values corresponding to

each BR setting, see Table 54-38. Do an exhaustive search to find an

achievable baud rate that is closest to the requested baud rate.

5. To transmit SPI data, you need to perform a 32-bit write into the PUSHR

register. The top half-word contains command information, such as what

the peripheral chip select signal should be doing, which CTAR to use, etc.

For this application, these fields should be set as follows:

CONT 0

CTAS 000

EOQ 0

CTCNT 0

Reserved 0000

PCS 000001

SPI2 in the K70 has two Peripheral Chip Select signals, called

SPI_PCS[1:0] (see Table 3-78). The hardware jumpers on the TWR-

ADCDAC-LTC are set up to only utilise PCS[0]. As the table shows,

CONT and PCS need to be set in the top half-word of the SPI2_PUSHR

register when you are transmitting data.

6. An example SPI timing diagram is given in Figure 6b of the LTC1859

datasheet. This is what the SPI hardware will do for you when you

transmit/receive data (once it is set up correctly). You will need to set up a

“Delay After Transfer” of 5 µs to allow the ADC to complete the

conversion before interrogating the ADC for the result. See the K70

reference manual for details, specifically the CTAR fields PDT and DT.

You should do an “exhaustive search” to achieve a delay that achieves the

smallest positive error between actual and desired delay.

L4.9

Embedded Software Spring 2019

Note that the K70 reference manual has an error in it. The reference

manual refers to the protocol clock period, with symbol pf1 , when in fact

it should refer to the module clock.

7. The SPI_SR_TFFF bit is used to determine whether the SPI bus is idle.

You should check this before you initiate a communication, and clear it

straight after (by writing a 1 to it). The SPI_SR_RFDF bit is used to

indicate that the hardware RX FIFO has entries that need to be removed.

You should use this to wait for a SPI transaction to complete, and then clear

it (by writing a 1 to it).

8. Note that if the Receive FIFO Overflow Overwrite Enable (ROOE) bit is

clear in the MCR (as it is for our setup), then you will need to always read

the SPI_POPR register after each SPI transaction – otherwise no new data

will be written into the Receive FIFO Registers. This will need to be done

even if the dataRx parameter is NULL.

L4.10

Embedded Software Spring 2019

Marking

1. The software to be assessed must reside in the remote git repository

before the start of your timetabled activity on the date specified in the

Timetable in the Learning Guide.

2. Please create a “tag” called “Lab4Submission” (no spaces allowed) to

the particular commit that you want marked. Markers will then create

a branch from this tag called “Lab4Marking” in order to assess it.

3. Software marking will be carried out in the laboratory, in the format

of a code review.

4. Refer to the document “Software Style Guide” for more details of some

of the assessment criteria.

L4.11

Embedded Software Spring 2019

Assessment Criteria

Your lab will be assessed according to the following criteria:

Item Detail Evaluation Mark

Opening comments /

function descriptions

File headers and function

descriptions are correct.

E G A P N /0.5

Naming conventions /

code structure

Names and code structure

conform to the Software Style

Guide.

E G A P N /0.5

Doxygen comments Comments for all functions,

variables and modules.

E G A P N /0.5

SPI HAL Public and private functions. E G A P N /3

Analog HAL Public and private functions. E G A P N /1.5

Median filtering Efficient implementation. E G A P N /1

Application Architecture and

implementation. Protocol

expanded.

E G A P N /1

TOTAL /8

L4.12

Embedded Software Spring 2019

When we evaluate an assessment item, we will use the following criteria:

Evaluation Mark (%) Description

Excellent 100 All relevant material is presented in a logical manner showing clear understanding, and sound reasoning.

For software – correct coding style, correct software architecture including: modularity; functions; parameters;

and types, very efficient implementation (code and time) and/or novel (and correct) code.

Good 75 Nearly all relevant material is presented with good organisation and understanding.

For software – mostly correct coding style, mostly correct software architecture including: modularity; functions;

parameters; and types, reasonably efficient implementation (code and time).

Acceptable 50 Most relevant material is presented with acceptable organisation and understanding.

For software – inconsistent coding style, reasonable software architecture (but could show improvement in

modularity, use of functions, parameters, or types), some code may be prone to errors under certain operating

conditions (e.g. input parameters) or usage, occasional inefficient or incorrect code.

Poor 25 Little relevant material is presented and/or poor organisation or understanding.

For software – Conceptual difficulty of the underlying concepts, numerous coding style errors, functionality

missing, poor software architecture, inappropriate or incorrect use of functions, parameters or types. Very

inefficient and / or incorrect code.

No attempt 0 No attempt.

For software – missing modules and/or functionality.

Oral Defence

During the assessment of your work you will be asked questions based on material which you have learnt in the subject and then used to

implement the assessment task. You are expected to know exactly how your implementation works and be able to justify the design choices

which you have made. If you fail to answer the questions with appropriate substance then you will be awarded zero for that component.

