
L5.1

Embedded Software Spring 2019

Lab 5 – RTOS

Real-Time Operating System.

Introduction

An RTOS is often used in a “hard” real-time system – i.e. a system in which

threads have to perform not only correctly but also in a timely fashion. You are

to use a simple multithreaded, pre-emptive, real-time operating system (RTOS)

that implements thread priority. The RTOS also provides services to threads for

communication, synchronization and coordination.

One of the problems of the current Lab 4 implementation is the use of callbacks

within ISRs. The callback functions could be complex functions that take a

significant amount of time complete. Since they are executed inside an ISR,

interrupts of the same or lower priority will not be serviced while they are

executing. We can get around this problem by putting the same functionality as

the callback into a background thread. The thread will wait for a semaphore to

be signalled by an ISR before it carries out its task, and then return to the

waiting state. Since threads can be interrupted, the interrupt latency of the

whole system is reduced and we are more likely to achieve hard real-time

constraints.

Objectives

1. To use an RTOS to implement a hard real-time system.

Equipment

 1 TWR-K70F120M-KIT – UTS

 1 USB cable – UTS

 NXP Kinetis Design Studio

Safety

This is a Category A laboratory experiment. Please adhere to the Category A

safety guidelines (issued separately).

Cat. A lab

L5.2

Embedded Software Spring 2019

Software Requirements

1. A simple RTOS is to be used to implement the same functionality as Lab 4.

2. The main application is to be architecturally structured around the use of an

RTOS. In particular, multiple threads should be used for the various

background tasks.

3. Function modules need to be rewritten so that they can be incorporated into

the overall software architecture that uses an RTOS. In particular, you will

need to carefully consider the use of interrupts, semaphores, critical

sections and priority inversion.

4. Git must be used for version control. Note that version control will be

assessed in Lab 5 based on the development of the software from Lab 1

through to Lab 5.

L5.3

Embedded Software Spring 2019

Hints

1. Think about the overall architecture in a multi-threaded environment – lots

of small tasks work cooperatively to achieve the overall functionality.

2. Write modules that “block” when they can’t proceed. A “blocking”

function means that the thread is suspended if it can’t carry out its intended

function. For example, a call to FIFO_Get should suspend a thread if the

buffer is empty. This can be achieved by “waiting” on a semaphore that

keeps track of the number of items in the FIFO buffer.

3. We haven’t used interrupt priorities yet, so all interrupts have “priority 0”.

This means that interrupts cannot be interrupted, except by a HardFault

exception (which shouldn’t occur). In other words, interrupts are “off”

during an ISR. ISRs therefore need to be quick to reduce the latency of the

system (the time it takes for the system to respond to an event).

4. It makes no sense for ISRs to call functions which “block”, since an ISR is

not a thread – it has no thread control block (TCB), and no private stack. It

cannot be suspended, scheduled, etc. by an operating system. It is therefore

a mistake to call OS_SemaphoreWait inside an ISR. You also need to

watch out for implicit blocking functions, e.g. a call to a blocking

implementation of FIFO_Get inside an ISR is also a mistake.

5. ISRs are allowed to signal, so calls to OS_SemaphoreSignal are valid.

Indeed, this is the way that ISRs communicate with other threads, (which

may be in a suspended state and should become ready to run after the ISR

has handled the hardware event). For example, a UART ISR triggered from

an RDRF event should signal a waiting thread whose only job is to process

the arrival of characters. Similarly, a callback function can be replaced with

a waiting thread which is signalled by a semaphore in an ISR.

6. Be careful about the identification of critical sections of code. They can

now be protected in two ways: 1) pairs of EnterCritical and

ExitCritical function calls; and 2) a binary semaphore (a mutex).

L5.4

Embedded Software Spring 2019

7. There are many areas where a mutex makes sense – putting a packet (so no

other thread can interfere with the placement of 5 bytes into the transmit

queue), I2C or SPI reads and writes (so no other thread can disturb the

current I2C or SPI transaction), etc. Be aware though that use of a mutex

semaphore requires the operating system to be running, i.e. calls to

OS_SemaphoreWait and OS_SemaphoreSignal will enable

interrupts and reschedule threads if necessary. Therefore, you can’t use

mutex semaphores in hardware initialisation code which runs before the OS

starts. In these cases, you will need to create a thread of high priority that

does the initialization work, then deletes itself.

8. Be aware of the “priority inversion” problem of using mutex semaphores to

control access to a critical section, e.g. the internal FIFO array. What would

happen if a low-priority thread acquires a mutex semaphore and an ISR

occurs which makes a higher priority thread run which also requires access

to the resource? The higher priority thread would be “blocked” which may

violate a hard real-time constraint of the system.

9. If you find that your code crashes inside OS.c, it may be that:

 you have inadvertently modified the vector table (e.g. through using

Processor Expert). Make sure that the vector table has the following:

 (tIsrFunc)&Cpu_Interrupt, /* 0x0D Reserved13 */
 (tIsrFunc)&OS_ContextSwitchISR, /* 0x0E PendableSrvReq */
 (tIsrFunc)&OS_SysTickISR, /* 0x0F SysTick */
 (tIsrFunc)&Cpu_Interrupt, /* 0x10 DMA0_DMA16 */

 you may be inadvertently waiting on a semaphore within an ISR. You

should check carefully that any functions you are calling, both

explicitly and implicitly, from within the ISR are not “blocking

functions”.

 you may have a stack overflow – in this case simply increase the size

of the thread’s stack.

10. Doxygen will not compile due to the declaration style of the thread stacks.

L5.5

Embedded Software Spring 2019

Marking

1. The software to be assessed must reside in the remote git repository

before the start of your timetabled activity on the date specified in the

Timetable in the Learning Guide.

2. Please create a “tag” called “Lab5Submission” (no spaces allowed) to

the particular commit that you want marked. Markers will then create

a branch from this tag called “Lab5Marking” in order to assess it.

3. Software marking will be carried out in the laboratory, in the format

of a code review.

4. Refer to the document “Software Style Guide” for more details of some

of the assessment criteria.

L5.6

Embedded Software Spring 2019

Assessment Criteria

Your lab will be assessed according to the following criteria:

Item Detail Evaluation Mark

Opening comments /

function descriptions

File headers and function

descriptions are correct.

E G A P N /0.5

Naming conventions /

code structure

Names and code structure

conform to the Software Style

Guide.

E G A P N /0.5

Version Control History of development from

Lab 1 through to Lab 5.

Appropriate and relevant

comments for code changes.

E G A P N /2

RTOS Framework Software designed to use an

RTOS. Appropriate software

architecture. Use of threads.

Thread priorities.

E G A P N /2

RTOS Function

Integration

Module functions re-designed

to utilise an RTOS.

Appropriate identification of

critical sections, use of

semaphores, interrupts, etc.

E G A P N /3

TOTAL /8

L5.7

Embedded Software Spring 2019

When we evaluate an assessment item, we will use the following criteria:

Evaluation Mark (%) Description

Excellent 100 All relevant material is presented in a logical manner showing clear understanding, and sound reasoning.

For software – correct coding style, correct software architecture including: modularity; functions; parameters;

and types, very efficient implementation (code and time) and/or novel (and correct) code.

Good 75 Nearly all relevant material is presented with good organisation and understanding.

For software – mostly correct coding style, mostly correct software architecture including: modularity; functions;

parameters; and types, reasonably efficient implementation (code and time).

Acceptable 50 Most relevant material is presented with acceptable organisation and understanding.

For software – inconsistent coding style, reasonable software architecture (but could show improvement in

modularity, use of functions, parameters, or types), some code may be prone to errors under certain operating

conditions (e.g. input parameters) or usage, occasional inefficient or incorrect code.

Poor 25 Little relevant material is presented and/or poor organisation or understanding.

For software – Conceptual difficulty of the underlying concepts, numerous coding style errors, functionality

missing, poor software architecture, inappropriate or incorrect use of functions, parameters or types. Very

inefficient and / or incorrect code.

No attempt 0 No attempt.

For software – missing modules and/or functionality.

Oral Defence

During the assessment of your work you will be asked questions based on material which you have learnt in the subject and then used to

implement the assessment task. You are expected to know exactly how your implementation works and be able to justify the design choices

which you have made. If you fail to answer the questions with appropriate substance then you will be awarded zero for that component.

