
R.1

PMcL Contents Index

2018 RTOS Reference

RTOS Reference

Contents

Introduction ... R.3

R.1 RTOS Services .. R.3

R.2 RTOS Structure ... R.4
R.2.1 Critical Sections .. R.5

R.2.2 Threads ... R.5
R.2.3 Thread States .. R.7
R.2.4 Thread Control Blocks .. R.8
R.2.5 Thread Priority .. R.10

R.2.6 Thread Scheduling .. R.10
R.2.7 Idle Thread .. R.10

R.3 Interrupt Processing .. R.11
R.3.1 Clock Tick .. R.13

R.4 Interthread Communication & Synchronization R.14
R.4.1 Semaphores ... R.14

R.4.2 Creating a Semaphore, OS_SemaphoreCreate() R.15

R.4.3 Signalling a Semaphore, OS_SemaphoreSignal() R.16

R.4.4 Waiting on a Semaphore, OS_SemaphoreWait() R.16

R.5 Initialization and Configuration .. R.18

R.5.1 RTOS Initialization ... R.18
R.5.2 Starting the RTOS... R.19

R.2

Index Contents PMcL

RTOS Reference 2018

R.6 RTOS Reference for Applications ... R.20

OS_DisableInterrupts() and OS_EnableInterrupts() .. R.21

OS_Init() ... R.22

OS_ISREnter() ... R.23

OS_ISRExit() ... R.24

OS_SemaphoreCreate() .. R.25

OS_SemaphoreSignal() .. R.26

OS_SemaphoreWait() ... R.28

OS_Start() .. R.30

OS_ThreadCreate() ... R.31

OS_ThreadDelete() ... R.34

OS_TimeDelay() ... R.36

OS_TimeGet() ... R.37

OS_TimeSet() ... R.38

R.3

PMcL Introduction Index

2018 RTOS Reference

Introduction

You have access to a multithreaded, preemptive, real-time operating system

(RTOS) that implements thread priority. The RTOS also provides services to

threads for communication, synchronization and coordination. The RTOS has

been designed for use in a “hard” real-time system – i.e. where threads have to

execute not only correctly but also in a timely fashion.

R.1 RTOS Services

The following list shows the services that the RTOS provides to applications.

Name Service

OS_DisableInterrupts() Disables interrupts

OS_EnableInterrupts() Enables interrupts

OS_Init() Initialize the RTOS

OS_ISREnter() Signal ISR entry

OS_ISRExit() Signal ISR exit

OS_SemaphoreCreate() Create a semaphore

OS_SemaphoreSignal() Signal semaphore

OS_SemaphoreWait() Wait on semaphore

OS_Start() Start multithreading

OS_ThreadCreate() Create a thread

OS_ThreadDelete() Delete a thread

OS_TimeDelay() Delay a thread for n system ticks

OS_TimeGet() Get the system time, in ticks

OS_TimeSet() Set the system time

R.4

Index RTOS Structure PMcL

RTOS Reference 2018

R.2 RTOS Structure

This section describes some of the structural aspects of the RTOS:

 how the RTOS handles access to critical sections of code

 how the RTOS knows about your threads

 how threads are scheduled

 how to write Interrupt Service Routines (ISRs)

 what a clock tick is and how the RTOS handles it

 how to initialize the RTOS

 how to start multithreading

 This section also describes the following application services:

 OS_DisableInterrupts() and OS_EnableInterrupts()

 OS_Init()

 OS_Start()

 OS_ISREnter() and OS_ISRExit()

R.5

PMcL RTOS Structure Index

2018 RTOS Reference

R.2.1 Critical Sections

The RTOS, like all real-time kernels, needs to disable interrupts in order to

access critical sections of code and to reenable interrupts when done. This

allows the RTOS to protect critical code from being entered simultaneously

from either multiple threads or ISRs. The interrupt disable time is one of the

most important specifications of a RTOS because it affects the responsiveness

of your system to real-time events. The RTOS defines two macros to disable

and enable interrupts:

 OS_ DisableInterrupts() and

 OS_ EnableInterrupts(),

respectively.

R.2.2 Threads

A thread is typically an infinite loop function (2) as shown in Listing R.1.

A thread looks just like any other C function containing a return type and an

argument, but it never returns. The return type must always be declared

void (1).

void YourThread(void* pData) (1)
{
 for (;;) (2)
 {
 // User Code
 // Call one of the RTOS's services:
 OS_SemaphoreWait(...);
 ...
 // Call another of the RTOS's services:
 OS_TimeDelay(...);
 // User Code
 ...
 }
}

Listing R.1 – A thread is an infinite loop

R.6

Index RTOS Structure PMcL

RTOS Reference 2018

Alternatively, the thread can delete itself upon completion as shown in Listing

R.2. Note that the thread code is not actually deleted; the RTOS simply doesn't

know about the thread anymore, so the thread code will not run. Also, if the

thread calls OS_ThreadDelete(), the thread never returns.

void YourThread(void *pData)
{
 // User Code
 ...
 OS_ThreadDelelete(OS_PRIORITY_SELF);
}

Listing R.2 – A thread that deletes itself when done

The argument (1) is passed to your thread code when the thread first starts

executing. Notice that the argument is a pointer to a void. This allows your

application to pass just about any kind of data to your thread. The pointer is a

"universal" vehicle used to pass your thread the address of a variable, a

structure, or even the address of a function if necessary! It is possible to create

many identical threads, all using the same function (or thread body). For

example, you could have two serial ports that each are managed by their own

thread. However, the thread code is actually identical. Instead of copying the

code twice, you can create a thread that receives a pointer to a data structure

that defines the serial port's parameters (baud rate, I/O port addresses, interrupt

vector number, etc.) as an argument.

The RTOS manages up to 32 threads; however, the RTOS uses one thread (the

Idle() thread) for system use. Therefore, you can have up to 31 application

threads. Each thread of your application must be assigned a unique priority

level from 0 to 31. The lower the priority number, the higher the priority of the

thread. The RTOS always executes the highest priority thread ready to run. The

thread priority number also serves as the thread identifier. The priority number

(i.e., thread identifier) is used by some kernel services such as

OS_ThreadDelete().

In order for the RTOS to manage your thread, you must ''create" a thread by

passing its address along with other arguments to the function

OS_ThreadCreate().

R.7

PMcL RTOS Structure Index

2018 RTOS Reference

R.2.3 Thread States

Figure R.1 shows the state transition diagram for the threads. At any given

time, a thread can be in any one of four states.

READY RUNNING

WAITING

INTERRUPTED
OS_ISRExit()

Interrupt

OS_Start()

OS_ISRExit()

ThreadSwitch()

OS_SemaphoreWait()

OS_TimeDelay()

TimeTick()

OS_SemaphoreSignal()

OS_ThreadCreate()

OS_ThreadDelete()

OS_ThreadDelete()Thread is
preempted

Figure R.1 – Thread states

A thread is made available to the RTOS by calling OS_ThreadCreate().

When a thread is created, it is made READY to run. Threads may be created

before multithreading starts or dynamically by a running thread. If a thread

created by another thread has a higher priority than its creator, the created

thread is given control of the CPU immediately. A thread can return itself or

another thread to the dormant state by calling OS_ThreadDelete().

Multithreading is started by calling OS_Start(). OS_Start() runs the

highest priority thread that is READY to run. This thread is thus placed in the

RUNNING state. Only one thread can be running at any given time. A ready

thread will not run until all higher priority threads are either placed in the wait

state or are deleted.

The running thread may delay itself for a certain amount of time by calling

OS_TimeDelay(). This thread is WAITING for some time to expire and the

next highest priority thread that is ready to run is given control of the CPU

immediately. The delayed thread is made ready to run by the RTOS when the

desired time delay expires.

R.8

Index RTOS Structure PMcL

RTOS Reference 2018

The running thread may also need to wait until an event occurs by calling

OS_SemaphoreWait(). The thread is thus WAITING for the occurrence of

the event. When a thread waits on an event, the next highest priority thread is

given control of the CPU immediately. The thread is made ready when the

event occurs. The occurrence of an event may be signalled by either another

thread or an ISR.

A running thread can always be INTERRUPTED, unless the thread or the

RTOS disables interrupts. When an interrupt occurs, execution of the thread is

suspended and the ISR takes control of the CPU. The ISR may make one or

more threads ready to run by signalling one or more events. In this case, before

returning from the ISR, the RTOS determines if the interrupted thread is still

the highest priority thread ready to run. If a higher priority thread is made

ready to run by the ISR, the new highest priority thread is resumed; otherwise,

the interrupted thread is resumed.

When all threads are waiting either for events or for time to expire, the RTOS

executes the idle thread, Idle().

R.2.4 Thread Control Blocks

When a thread is created, it is assigned a Thread Control Block, TCB

(Listing R.3). A thread control block is a data structure that is used by an

RTOS to maintain the state of a thread when it is preempted. When the thread

regains control of the CPU, the thread control block allows the thread to

resume execution exactly where it left off. All TCBs reside in RAM. A TCB is

initialized when a thread is created.

typedef struct tcb
{
 void* pStack; // Pointer to current top of stack
 uint8_t priority; // Thread priority (0 = highest)
 OS_STATE state; // Thread state
 Uint32_t delay; // Number of ticks to delay or timeout
 OS_ECB* pEvent; // Pointer to event control block
 struct tcb* next; // Pointer to next TCB in TCB list
 struct tcb* prev; // Pointer to previous TCB in TCB list
} OS_TCB;

Listing R.3 – An RTOS thread control block

R.9

PMcL RTOS Structure Index

2018 RTOS Reference

.pStack contains a pointer to the current top-of-stack for the thread. The dot

(.) in front of the variable name indicates that it is part of a structure, and not a

global variable. The RTOS allows each thread to have its own stack, but just as

important, each stack can be any size.

.priority contains the thread priority. A high-priority thread has a low

.priority value (i.e., the lower the number, the higher the actual priority).

.state contains the state of the thread. When .state is

OS_STATE_READY, the thread is ready to run. Other values can be assigned

to .state, and these values are described in OS.h.

.delay is used when a thread needs to be delayed for a certain number of

clock ticks or a thread needs to wait for an event to occur with a timeout. In

this case, this field contains the number of clock ticks the thread is allowed to

wait for the event to occur. When this variable is 0, the thread is not delayed or

has no timeout when waiting for an event.

.pEvent is a pointer to an event control block.

.next and .prev are used to doubly link TCBs. This chain of TCBs is used

by the RTOS to update the .delay field for each thread. The TCB for each

thread is linked when the thread is created, and the TCB is removed from the

list when the thread is deleted. A doubly linked list permits an element in the

chain to be quickly inserted or removed.

The maximum number of threads (OS_MAX_USER_THREADS) that an

application can have is specified in OS.h and determines the number of TCBs

allocated by the RTOS for your application. You can reduce the amount of

RAM needed by setting OS_MAX_USER_THREADS to the actual number of

threads needed in your application.

R.10

Index RTOS Structure PMcL

RTOS Reference 2018

R.2.5 Thread Priority

Each thread is assigned a unique priority level between 0 and

OS_LOWEST_PRIORITY, inclusive (see OS.h). Thread priority

OS_LOWEST_PRIORITY is always assigned to the Idle() thread when the

RTOS is initialized. Note that OS_MAX_USER_THREADS and

OS_LOWEST_PRIORITY are unrelated. You can have only 5 threads in an

application while still having 8 priority levels (if you set

OS_LOWEST_PRIORITY to 7).

R.2.6 Thread Scheduling

The RTOS always executes the highest priority thread ready to run. The

determination of which thread has the highest priority, and thus which thread

will be next to run, is determined by the RTOS’s scheduler.

R.2.7 Idle Thread

An RTOS always creates an idle thread that is executed when none of the other

threads is ready to run. The idle thread Idle() is always set to the lowest

priority, OS_LOWEST_PRIORITY. The idle thread can never be deleted by

application software.

R.11

PMcL Interrupt Processing Index

2018 RTOS Reference

R.3 Interrupt Processing

The C code for an ISR is shown in Listing R.4.

void __attribute__ ((interrupt)) MyISR(void)
{
 OS_ISREnter(); (1)
 // Clear interrupt flag (2)
 ...
 // Execute user code to service ISR (3)
 ...
 OS_ISRExit(); (4)
} (5)

Listing R.4 – An ISR using the RTOS

On entry into the ISR, the RTOS needs to know that you are servicing an ISR,

so you need to call OS_ISREnter() (1). Then, you should clear the interrupt

flag (2); otherwise, your interrupt will be re-entered at the end of the ISR and

your application will be trapped in an endless loop! The function

OS_ISREnter() increments a counter to tell how many interrupts have been

“nested”.

Once the previous two steps have been accomplished, you can start servicing

the interrupting device (3). This section is obviously application specific. The

RTOS allows you to nest interrupts because it keeps track of nesting in

OS_ISREnter().

The conclusion of the ISR is marked by calling OS_ISRExit() (4), which

decrements the interrupt nesting counter. When the nesting counter reaches 0,

all nested interrupts have completed and the RTOS needs to determine whether

a higher priority thread has been awakened by the ISR (or any other nested

ISR). If a higher priority thread is ready to run, the RTOS returns to the higher

priority thread rather than to the interrupted thread. If the interrupted thread is

still the most important thread to run, OS_ISRExit() returns to its caller (4).

At that point an exception return instruction is executed (5).

The above description is further illustrated in Figure R.2. The interrupt is

received (1) but is not recognized by the CPU, either because interrupts have

been disabled by the RTOS or your application or because the CPU has not

completed executing the current instruction. Once the CPU recognizes the

R.12

Index Interrupt Processing PMcL

RTOS Reference 2018

interrupt (2), the CPU vectors to the ISR (3). Once this is done, your ISR

notifies the RTOS by calling OS_ISREnter() (4). Your ISR code then gets

to execute (5). Your ISR should do as little work as possible and defer most of

the work to a thread. A thread is notified of the ISR by calling

OS_SemaphoreSignal(). The receiving thread may or may not be waiting

for the semaphore when the ISR occurs and the signal is made. Once the user

ISR code has completed, you need to call OS_ISRExit() (6). As can be seen

from the timing diagram, OS_ISRExit() takes less time to return to the

interrupted thread when there is no higher priority thread (HPT) readied by the

ISR. Furthermore, in this case, an exception return instruction is

executed (7). If the ISR makes a higher priority thread ready to run, then

OS_ISRExit() (8) takes longer to execute because a context switch is now

needed (9), and an exception return instruction is executed (10).

Return from interrupt
(7)

Thread 2

Thread 1

Time

Vectoring
(3)

The interrupt is recognised
(2)

OS_ISREnter()

(4)

Notify kernel:

User ISR code

OS_ISRExit()
(6)

Notify kernel:

ISR signals a thread

(5)

Thread 1

Interrupt Recovery

Thread Response

No new HPT

OS_ISRExit()
(8)

Notify kernel:

Context switch
(9)

Return from interrupt
(10)New HPT

Interrupt Recovery

Thread Response

Interrupt Response

Interrupt Request
(1)

Figure R.2 – Interrupt operation of the RTOS

R.13

PMcL Interrupt Processing Index

2018 RTOS Reference

R.3.1 Clock Tick

The RTOS provides a periodic time source to keep track of time delays and

timeouts. The faster the tick rate, the higher the overhead imposed on the

system. The actual frequency of the clock tick depends on the desired tick

resolution of your application.

The RTOS uses the Cortex®-M4’s internal SysTick timer to generate ticks, so

it cannot be used by the user. For this implementation, the clock tick period has

been fixed at:

Clock Tick Period = 10 ms (R.1)

R.14

Index Interthread Communication & Synchronization PMcL

RTOS Reference 2018

R.4 Interthread Communication & Synchronization

An RTOS normally provides many mechanisms to protect shared data and

provide interthread communication. One simple way is to disable and

enable interrupts through the macros OS_EnterCritical() and

OS_ExitCritical(), respectively. You use these macros when two

threads or a thread and an ISR need to share data.

This section discusses semaphores, which are normally used for

synchronization and coordination. Operating systems also normally provide

services to exchange information, such as message mailboxes and message

queues.

R.4.1 Semaphores

A semaphore needs to be created before it can be used. Create a semaphore by

calling OS_SemaphoreCreate() and specifying the initial count of the

semaphore. The initial value of a semaphore can be between 0 and

4294967295. If you use the semaphore to signal the occurrence of one or more

events, initialize the semaphore to 0. If you use the semaphore to access a

shared resource, initialize the semaphore to 1 (i.e., use it as a binary

semaphore). Finally, if the semaphore allows your application to obtain any

one of n identical resources, initialize the semaphore to n and use it as a

counting semaphore.

The RTOS provides three services to access semaphores:

OS_SemaphoreCreate(), OS_SemaphoreSignal() and

OS_SemaphoreWait(). Figure R.3 shows a flow diagram to illustrate the

relationship between threads, ISRs, and a semaphore.

R.15

PMcL Interthread Communication & Synchronization Index

2018 RTOS Reference

THREAD
OS_SemaphoreWait()

Timeout

ISR

semaphore

THREAD

OS_SemaphoreCreate()

OS_SemaphoreSignal()

OS_SemaphoreSignal()

Figure R.3 – Relationships between threads, ISRs and a semaphore

As you can see from Figure R.3, a thread or an ISR can call

OS_SemaphoreSignal(). However, only threads are allowed to call

OS_SemaphoreWait().

R.4.2 Creating a Semaphore, OS_SemaphoreCreate()

OS_SemaphoreCreate() returns a pointer that must be used in subsequent

calls to manipulate the semaphore. The pointer is basically used as the

semaphore's handle. If the RTOS cannot create the semaphore (because it has

run out of internal resources), OS_SemaphoreCreate() returns a NULL

pointer.

You should note that once a semaphore has been created, it cannot be deleted.

It would be dangerous to delete a semaphore object if threads were waiting on

the semaphore and / or relying on the presence of the semaphore.

R.16

Index Interthread Communication & Synchronization PMcL

RTOS Reference 2018

R.4.3 Signalling a Semaphore, OS_SemaphoreSignal()

OS_SemaphoreSignal() checks to see if any threads are waiting on the

semaphore. The highest priority thread waiting for the semaphore is made

ready to run. The RTOS then checks to see if the thread made ready is now the

highest priority thread ready to run. If it is, a context switch results (only if

OS_SemaphoreSignal() is called from a thread) and the readied thread is

executed. If the readied thread is not the highest priority thread, the thread that

called OS_SemaphoreSignal() continues execution. If there are no

threads waiting on the semaphore, the semaphore count simply gets

incremented.

Note that a context switch does not occur if OS_SemaphoreSignal() is

called by an ISR because context switching from an ISR can only occur when

OS_ISRExit() is called at the completion of the ISR from the last nested

ISR.

R.4.4 Waiting on a Semaphore, OS_SemaphoreWait()

OS_SemaphoreWait() starts by checking if the semaphore is available (its

count is nonzero), in which case the count is decremented and the function

returns to its caller with an error code indicating success. Obviously, if you

want the semaphore, this is the outcome you are looking for.

If the semaphore count is zero, the calling thread needs to be put to sleep until

another thread (or an ISR) signals the semaphore. OS_SemaphoreWait()

allows you to specify a timeout value as one of its arguments (i.e., timeout).

This feature is useful to avoid waiting indefinitely for the semaphore. If the

value passed is nonzero, OS_SemaphoreWait() suspends the thread until

the semaphore is signalled or the specified timeout period expires. Note that a

timeout value of 0 indicates that the thread is willing to wait forever for the

semaphore to be signalled.

Because the calling thread is no longer ready to run, the RTOS’s scheduler is

called to run the next highest priority thread that is ready to run. When the

semaphore is signalled (or the timeout period expires) and the thread that called

R.17

PMcL Interthread Communication & Synchronization Index

2018 RTOS Reference

OS_SemaphoreWait() is again the highest priority thread, the RTOS then

checks to see if the thread is waiting for the semaphore. If the thread is still

waiting for the semaphore, it must not have been signalled by an

OS_SemaphoreSignal() call. Instead, the timeout period must have

expired. In this case, the thread is removed from the wait list for the semaphore

and an error code is returned to the thread that called

OS_SemaphoreWait() to indicate that a timeout occurred. If the

semaphore was signalled, then the thread that called OS_SemaphoreWait()

can now conclude that it has the semaphore.

R.18

Index Initialization and Configuration PMcL

RTOS Reference 2018

R.5 Initialization and Configuration

The RTOS needs a few constants declared in its OS.h file:

OS_IDLE_THREAD_STACK_SIZE declares the number of bytes used for the

idle thread stack. Sufficient stack space must be allocated to accommodate for

maximum interrupt nesting.

OS_MAX_USER_THREADS defines the number of user threads that you wish

the RTOS to manage.

OS_MAX_EVENTS defines the maximum number of “event control blocks”

that your application will create. Each semaphore requires an “event control

block”.

R.5.1 RTOS Initialization

A requirement of the RTOS is that you call OS_Init() before you call any

of its other services. OS_Init() initializes all the RTOS variables and data

structures.

OS_Init() creates the idle thread Idle(), which is always ready to run.

The priority of Idle() is always set to OS_LOWEST_PRIORITY.

R.19

PMcL Initialization and Configuration Index

2018 RTOS Reference

R.5.2 Starting the RTOS

You start multithreading by calling OS_Start(). However, before you start

the RTOS, you must create at least one of your application threads as shown in

Listing R.5.

void main(void)
{
 // Initialize the RTOS
 OS_Init(CPU_CORE_CLK_HZ, true);
 ·
 ·
 // Create at least 1 thread using OS_ThreadCreate();
 .
 ·
 // Start multithreading!
 OS_Start();
 // OS_Start() will not return
}

Listing R.5 – Initializing and starting the RTOS

When called, OS_Start() finds the TCB (from the ready list) of the highest

priority thread that you have created. Then, OS_Start() executes a context

switch, which forces the CPU to execute your thread's code.

R.20

Index RTOS Reference for Applications PMcL

RTOS Reference 2018

R.6 RTOS Reference for Applications

This section provides a reference guide to the RTOS services that are provided

to applications. Each of the user-accessible kernel services is presented in

alphabetical order and the following information is provided for each of the

services.

 The function prototype

 From where it is called

 A brief description

 A description of the arguments passed to the function

 A description of the return value(s)

 Specific notes and warnings on using the service

 An example of how to use the function

R.21

PMcL OS_DisableInterrupts() and OS_EnableInterrupts() Index

2018 RTOS Reference

OS_DisableInterrupts() and

OS_EnableInterrupts()

Prototype:

Macros

Called from:

Thread or ISR

Description:

OS_DisableInterrupts() and OS_EnableInterrupts() are

macros used to disable and enable, respectively, the processor's interrupts.

Arguments:

None

Return Value:

None

Notes / Warnings:

These macros must be used in pairs.

Example:

void ThreadX(void* pData)
{
 for (;;)
 {
 .
 OS_DisableInterrupts(); // Disable interrupts
 .
 . // Access critical code
 .
 OS_EnableInterrupts(); // Enable interrupts
 .
 }
}

R.22

Index OS_Init() PMcL

RTOS Reference 2018

OS_Init()

Prototype:

void OS_Init(const uint32_t cpuCoreClk, const bool toggleLED);

Called from:

Startup code only

Description:

OS_Init() initializes the RTOS and must be called prior to calling

OS_Start(), which actually starts multithreading.

Arguments:

cpuCoreClk is the value of the CPU core clock. This is used to set up the OS

clock tick interrupt.

toggleLED will let the OS toggle the orange LED every second if true.

Return Value:

None

Notes / Warnings:

OS_Init() must be called before OS_Start().

Example:

void main (void)
{
 // User code
 .
 // Initialize the RTOS
 OS_Init(CPU_CORE_CLK_HZ, true);
 // User code
 .
 // Start multithreading
 OS_Start();
}

R.23

PMcL OS_ISREnter() Index

2018 RTOS Reference

OS_ISREnter()

Prototype:

void OS_ISREnter(void);

Called from:

ISR only

Description:

OS_ISREnter() notifies the RTOS that an ISR is being processed. This

allows the RTOS to keep track of interrupt nesting. OS_ISREnter() is used

in conjunction with OS_ISRExit().

Arguments:

None

Return Value:

None

Notes / Warnings:

This function must not be called by thread-level code. The interrupt flag should

be cleared immediately after calling this function as a matter of style.

Example:

void interrupt MyISR(void)
{
 // Notify RTOS of start of ISR
 OS_ISREnter();
 // Clear interrupt flag
 .
 .
 .
 OS_ISRExit();
}

R.24

Index OS_ISRExit() PMcL

RTOS Reference 2018

OS_ISRExit()

Prototype:

void OS_ISRExit(void);

Called from:

ISR only

Description:

OS_ISRExit() notifies the RTOS that an ISR has completed. This allows

the RTOS to keep track of interrupt nesting. OS_ISRExit() is used in

conjunction with OS_ISREnter(). When the last nested interrupt completes,

the RTOS calls the scheduler to determine if a higher priority thread has been

made ready to run, in which case, the interrupt returns to the higher priority

thread instead of the interrupted thread.

Arguments:

None

Return Value:

None

Notes / Warnings:

This function must not be called by thread-level code.

Example:

void interrupt MyISR(void)
{
 // Notify RTOS of start of ISR
 OS_ISREnter();
 // Clear interrupt flag
 .
 .
 .
 OS_ISRExit();
}

R.25

PMcL OS_SemaphoreCreate() Index

2018 RTOS Reference

OS_SemaphoreCreate()

Prototype:

OS_ECB* OS_SemaphoreCreate(const uint32_t value);

Called from:

Thread or startup code

Description:

OS_SemaphoreCreate() creates and initializes a semaphore. A

semaphore:

 allows a thread to synchronize with either an ISR or a thread,

 gains exclusive access to a resource, and

 signals the occurrence of an event.

Arguments:

value is the initial value of the semaphore and can be between 0 and

4294967295.

Return Value:

A pointer to the event control block allocated to the semaphore. If no event

control block is available, a NULL pointer is returned.

Notes / Warnings:

Semaphores must be created before they are used.

Example:

OS_ECB* UARTInUse

void main(void)
{
 . // User code
 OS_Init(CPU_CORE_CLK_HZ, true); // Initialize RTOS
 .
 UARTInUse = OS_SemaphoreCreate(1);// Create UART semaphore
 OS_Start(); // Start multithreading
}

R.26

Index OS_SemaphoreSignal() PMcL

RTOS Reference 2018

OS_SemaphoreSignal()

Prototype:

OS_ERROR OS_SemaphoreSignal(OS_ECB* const pEvent);

Called from:

Thread or ISR

Description:

A semaphore is signalled by calling OS_SemaphoreSignal().

If the semaphore value is 1 or more, it is incremented and

OS_SemaphoreSignal() returns to its caller. If threads are waiting for the

semaphore to be signalled, OS_SemaphoreSignal() removes the highest

priority thread pending for the semaphore from the waiting list and makes this

thread ready to run. The scheduler is then called to determine if the awakened

thread is now the highest priority thread ready to run.

Arguments:

pEvent is a pointer to the semaphore. This pointer is returned to your

application when the semaphore is created [see OS_SemaphoreCreate()].

Return Value:

OS_SemaphoreSignal() returns one of two error codes:

 OS_NO_ERROR if the semaphore was signalled successfully.

 OS_SEMAPHORE_OVERFLOW if the semaphore count overflowed.

Notes / Warnings:

Semaphores must be created before they are used.

R.27

PMcL OS_SemaphoreSignal() Index

2018 RTOS Reference

Example:

OS_ECB* UARTInUse

void UARTThread(void* pData)
{
 OS_ERROR error;

 for (;;)
 {
 // User code
 .
 .
 error = OS_SemaphoreSignal(UARTInUse);
 if (error == OS_NO_ERROR)
 {
 // Semaphore signalled
 .
 .
 }
 else
 {
 // Semaphore has overflowed
 .
 .
 }
 }
}

R.28

Index OS_SemaphoreWait() PMcL

RTOS Reference 2018

OS_SemaphoreWait()

Prototype:

OS_ERROR OS_SemaphoreWait(OS_ECB* const pEvent, const uint32_t timeout);

Called from:

Thread only

Description:

OS_SemaphoreWait() is used when a thread wants exclusive access to a

resource, needs to synchronize its activities with an ISR or a thread, or is

waiting until an event occurs. If a thread calls OS_SemaphoreWait() and

the value of the semaphore is greater than 0, OS_SemaphoreWait()

decrements the semaphore and returns to its caller. However, if the value of the

semaphore is equal to 0, OS_SemaphoreWait() places the calling thread in

the waiting list for the semaphore. The thread will thus wait until a thread or an

ISR signals the semaphore or the specified timeout expires. If the semaphore is

signalled before the timeout expires, the RTOS resumes the highest priority

thread waiting for the semaphore.

Arguments:

pEvent is a pointer to the semaphore. This pointer is returned to your

application when the semaphore is created [see OS_SemaphoreCreate()].

timeout allows the thread to resume execution if the semaphore is not

acquired within the specified number of clock ticks. A timeout value of 0

indicates that the thread will wait forever for the message. The maximum

timeout is 4294967295 clock ticks. The timeout value is not synchronized

with the clock tick. The timeout count begins decrementing on the next clock

tick, which could potentially occur immediately.

R.29

PMcL OS_SemaphoreWait() Index

2018 RTOS Reference

Return Value:

OS_SemaphoreWait() returns one of two error codes:

 OS_NO_ERROR if the semaphore was available.

 OS_TIMEOUT if the semaphore was not signalled within the specified

timeout.

Notes / Warnings:

Semaphores must be created before they are used. This function cannot be

called from an ISR.

Example:

OS_ECB* UARTInUse

void UARTThread(void* pData)
{
 OS_ERROR error;

 for (;;)
 {
 // User code
 .
 .
 error = OS_SemaphoreWait(UARTInUse, 0);
 // User code
 .
 .
 }
}

R.30

Index OS_Start() PMcL

RTOS Reference 2018

OS_Start()

Prototype:

void OS_Start(void);

Called from:

Startup code only

Description:

OS_Start() starts the RTOS multithreading.

Arguments:

None

Return Value:

None

Notes / Warnings:

OS_Init() must be called prior to calling OS_Start(). OS_Start()

should only be called once by your application code. If you do call

OS_Start() more than once, it will not do anything on the second and

subsequent calls. OS_Start() will never return to its caller.

Example:

void main (void)
{
 // User code
 .
 // Initialize the RTOS
 OS_Init(CPU_CORE_CLK_HZ, true);
 // User code
 .
 // Start multithreading
 OS_Start();
}

R.31

PMcL OS_ThreadCreate() Index

2018 RTOS Reference

OS_ThreadCreate()

Prototype:

OS_ERROR OS_ThreadCreate(void (*thread)(void* pd),

 void* pData, void* pStack, const uint8_t priority);

Called from:

Thread or startup code

Description:

OS_ThreadCreate() creates a thread so it can be managed by the RTOS.

Threads can be created either prior to the start of multithreading or by a

running thread. A thread cannot be created by an ISR. A thread must be written

as an infinite loop, as shown below, and must not return.

Arguments:

thread is a pointer to the thread's code.

pData is a pointer to an optional data area used to pass parameters to the

thread when it is created. Where the thread is concerned, it thinks it was

invoked and passed the argument pData as follows:

void Thread(void* pData)
{
 . // Do something with 'pData'
 for (;;)
 {
 // Thread body, always an infinite loop.
 .
 .
 // Must call one of the following services:
 // OS_SemaphoreWait()
 // OS_TimeDelay()
 // OS_ThreadDelete() // (Delete self)
 .
 .
 }
}

R.32

Index OS_ThreadCreate() PMcL

RTOS Reference 2018

pStack is a pointer to the thread's top-of-stack. The stack is used to store

local variables, function parameters, return addresses, and CPU registers during

an interrupt. The size of the stack is determined by the thread's requirements

and the anticipated interrupt nesting. Determining the size of the stack involves

knowing how many bytes are required for storage of local variables for the

thread itself and all nested functions, as well as requirements for interrupts

(accounting for nesting). pStack thus needs to point to the highest valid

memory location on the stack.

priority is the thread priority. A unique priority number must be assigned

to each thread and the lower the number, the higher the priority.

Return Value:

OS_ThreadCreate() returns one of the following error codes:

 OS_NO_ERROR if the function was successful.

 OS_PRIORITY_EXISTS if the requested priority already exists.

 OS_PRIORITY_INVALID if priority is higher than

OS_LOWEST_PRIORITY.

 OS_NO_MORE_TCBS if the RTOS doesn't have any more TCBs to

assign.

Notes / Warnings:

A thread cannot be created by an ISR.

A thread must always invoke one of the services provided by the RTOS to

either wait for time to expire, or wait for an event to occur (wait on a

semaphore). This allows other threads to gain control of the CPU.

You should not use thread priority OS_LOWEST_PRIORITY because it is

reserved for use by the RTOS for the idle thread. This leaves you with up to 31

application threads.

R.33

PMcL OS_ThreadCreate() Index

2018 RTOS Reference

Example:

You can create a generic thread that can be instantiated more than once. For

example, a thread that handles a serial port could be passed the address of a

data structure that characterizes the specific port (i.e., port address, baud rate).

uint32_t UART2Stack[1024];

// Data structure containing COM port
// specific data for UART2
UART_DATA UART2Data;

uint32_t UART3Stack[1024];

// Data structure containing COM port
// specific data for UART3
UART_DATA UART3Data;

void main(void)
{
 OS_ERROR error;
 .
 // Initialize the RTOS
 OS_Init(CPU_CORE_CLK_HZ, true);
 .
 error = OS_ThreadCreate(UARTThread,
 (void*)&UART2Data,
 &UART2Stack[1023],
 10);
 error = OS_ThreadCreate(UARTThread,
 (void*)&UART3Data,
 &UART3Stack[1023],
 11);
 .
 // Start multithreading
 OS_Start();
}

// Generic UART thread
void UARTThread(void* pData)
{
 for (;;)
 {
 . // Thread code
 .
 }
}

R.34

Index OS_ThreadDelete() PMcL

RTOS Reference 2018

OS_ThreadDelete()

Prototype:

OS_ERROR OS_ThreadDelete(uint8_t priority);

Called from:

Thread only

Description:

OS_ThreadDelete() deletes a thread by specifying the priority number of

the thread to delete. The calling thread can be deleted by specifying its own

priority number or OS_PRIORITY_SELF (if the thread doesn't know its own

priority number). The deleted thread is returned to the dormant state. The

deleted thread can be created by calling OS_ThreadCreate() to make the

thread active again.

Arguments:

priority is the priority number of the thread to delete. You can delete the

calling thread by passing OS_PRIORITY_SELF, in which case, the next

highest priority thread is executed.

R.35

PMcL OS_ThreadDelete() Index

2018 RTOS Reference

Return Value:

OS_ThreadDelete() returns one of the following error codes:

 OS_NO_ERROR if the thread was deleted.

 OS_THREAD_DELETE_ERROR if the thread to delete does not exist.

 OS_THREAD_DELETE_IDLE if you tried to delete the idle thread.

 OS_PRIORITY_INVALID if you specified a thread priority higher

than OS_LOWEST_PRIORITY.

 OS_THREAD_DELETE_ISR if you tried to delete a thread from an

ISR.

Notes / Warnings:

OS_ThreadDelete() verifies that you are not attempting to delete the

RTOS idle thread.

You must be careful when you delete a thread that owns resources.

Example:

void ThreadX(void* pData)
{
 OS_ERROR error;

 for (;;)
 {
 .
 .
 // Delete thread with priority 10
 error = OS_ThreadDelete(10);
 if (error == OS_NO_ERR)
 {
 // Thread was deleted
 .
 }
 .
 .
 }
}

R.36

Index OS_TimeDelay() PMcL

RTOS Reference 2018

OS_TimeDelay()

Prototype:

void OS_TimeDelay(const uint32_t ticks);

Called from:

Thread only

Description:

OS_TimeDelay() allows a thread to delay itself for a number of clock ticks.

Rescheduling always occurs when the number of clock ticks is greater than

zero. Valid delays range from 0 to 4294967295 ticks. A delay of 0 means

that the thread is not delayed and OS_TimeDelay() returns immediately to

the caller. The actual delay time depends on the tick rate.

Arguments:

ticks is the number of clock ticks to delay the current thread.

Return Value:

None

Notes / Warnings:

To ensure that a thread delays for the specified number of ticks, you should

consider using a delay value that is one tick higher. For example, to delay a

thread for at least 10 ticks, you should specify a value of 11.

Example:

void ThreadX(void* pData)
{
 for (;;)
 {
 .
 // Delay thread for at least 10 clock ticks
 OS_TimeDelay(11);
 .
 }
}

R.37

PMcL OS_TimeGet() Index

2018 RTOS Reference

OS_TimeGet()

Prototype:

uint32_t OS_TimeGet(void);

Called from:

Thread or ISR

Description:

OS_TimeGet() obtains the current value of the system clock. The system

clock is a 32-bit counter that counts the number of clock ticks since power was

applied or since the system clock was last set.

Arguments:

None

Return Value:

The current system clock value (in number of ticks).

Notes / Warnings:

None

Example:

void ThreadX(void* pData)
{
 uint32_t clock;

 for (;;)
 {
 .
 // Get current value of system clock
 clock = OS_TimeGet();
 .
 }
}

R.38

Index OS_TimeSet() PMcL

RTOS Reference 2018

OS_TimeSet()

Prototype:

void OS_TimeSet(const uint32_t ticks);

Called from:

Thread or ISR

Description:

OS_TimeSet() sets the system clock. The system clock is a 32-bit counter

that counts the number of clock ticks since power was applied or since the

system clock was last set.

Arguments:

ticks is the desired value for the system clock, in ticks.

Return Value:

None

Notes / Warnings:

None

Example:

void ThreadX(void* pData)
{
 for (;;)
 {
 .
 // Reset the system clock
 OS_TimeSet(0);
 .
 }
}

