
S.1

PMcL Contents Index

2017 S - Software Style Guide

S Software Style Guide

Contents

Introduction ... S.2

S.1 Quality Programming .. S.2

S.2 Naming Conventions ... S.4

S.3 Code Style Structure (the .c file) ... S.7

S.4 Header Style Structure (the .h file) .. S.10

S.5 Formatting ... S.12

S.6 Code Structure ... S.15

S.7 Comments .. S.23

S.8 Doxygen .. S.26

S.8.1 Special Comment Blocks .. S.27

S.8.2 Doxygen Commands .. S.29

S.9 Compiler Specific Coding Style .. S.30

S.9.1 Result of function-call is ignored ... S.30

S.9.2 Condition always TRUE ... S.31

S.9.3 C99 .. S.32

S.2

Index Introduction PMcL

S - Software Style Guide 2017

Introduction

This document gives an overview of the software style to be used when

programming in C for an embedded system.

S.1 Quality Programming

Software engineering is like other fields of engineering. Engineering is about

implementing the solutions to important problems by creatively applying

methods from sound bodies of scientific theory and by experimentation – and

doing it for the benefit of members of society (with minimal impact in terms of

economic, environmental, and societal cost). The fact that engineers need to be

creative to find solutions to problems leads to many interesting and novel ideas

– which generally advances the state-of-the-art. This creativity is the very

reason that engineering is carried out by humans (at the present).

Creativity leads to one major problem: there are a very large number of ways to

implement a solution to a problem. We need to be guided by theory, practice

and past experience in seeking out whether a particular solution meets the

specifications.

Large systems, especially software systems, tend to involve a level of

complexity that is beyond the capability of one person. The only way to build

and maintain large, complex systems is by following well-defined procedures

during the engineering development cycle. One of those procedures is

engineering design. There are many procedures we can use for software

engineering design – block diagrams, data flow graphs, UML etc.

The most important phase of the engineering development cycle is

implementation. In an embedded system this involves both hardware and

software. The ultimate goal of an embedded system is to meet the stated

objectives such as functionality, input/output relationships, stability and

accuracy. Nevertheless it is appropriate to separately evaluate the individual

components of a system. Software quality is one key area that needs to be

evaluated.

S.3

PMcL Quality Programming Index

2017 S - Software Style Guide

There are two categories of performance criteria with which we evaluate

software. Quantitative criteria include static efficiency (e.g., memory

requirements), dynamic efficiency (e.g., speed of execution), and accuracy of

the results. Qualitative criteria centre around ease of understanding. If your

software is easy to understand then it will be:

 Easy to debug (fix mistakes)

 Easy to verify (prove correctness)

 Easy to maintain (add features)

Since there is no “best way” to write software, this document simply outlines

techniques, based on experience, that you should try to adopt when forming

your own software style. In particular, the style of writing software presented

leads to code that is: self-documenting, modular, and layered.

You can tell if you write good software if:

1) you can understand your own code one year later

2) others can make changes to your code.

(S.1)

The two tests of
writing good
software

S.4

Index Naming Conventions PMcL

S - Software Style Guide 2017

S.2 Naming Conventions

1. Names should have meaning

If we observe a name out of the context of the program in which it exists, the

meaning of the object should be obvious. The object TxFIFO is clearly the

transmit first-in first-out circular buffer. The function LCD_OutString will

output a string to the LCD display.

2. Avoid ambiguities

Don't use variable names that are vague or have more than one meaning. For

example, it is vague to use temp, because there are many possibilities for

temporary data, in fact, it might even mean temperature. Don't use two names

that look similar, but have different meanings.

3. Give hints about the type

We can further clarify the meaning of a variable by including phrases in the

variable name that specify its type. For example, dataPtr, timePtr,

putPtr are pointers. Similarly, voltageBuf, timeBuf,

pressureBuf, are data buffers. Other good phrases include Flag, Mode,

U, L, Index, Nb, which refer to boolean flag, system state, unsigned 16-bit,

signed 32-bit, index into an array, and a number (counter) respectively. Don’t

use the abbreviation No for number, as you might create variables like

NoItems, which can be misread. Instead, use the abbreviation Nb – the

variable then becomes NbItems.

4. Use the same name to refer to the same type of object

For example, everywhere we need a local variable to store an ASCII

character we could use the name letter. Another common example is to

use the names i, j, k for indices into arrays. The names V1 and R1 might

refer to a voltage and a resistance. The exact correspondence is not part of the

policies presented in this section, just the fact that a correspondence should

exist. Once another programmer learns which names we use for which types

of object, understanding our code becomes easier.

S.5

PMcL Naming Conventions Index

2017 S - Software Style Guide

5. Use a prefix to identify public objects

An underline character should separate the module name from the function

name. As an exception to this rule, we can use the underline to delimit words

in an all upper-case name (e.g., #define MIN_PRESSURE 10).

Functions that can be accessed outside the scope of a module should begin

with a prefix specifying the module to which it belongs. It is poor style to

create public variables, but if they need to exist, they too would begin with

the module prefix. The prefix matches the file name containing the object.

For example, if we see a function call, LCD_OutString("Hello

world"); we know the public function belongs to the LCD module, where

the policies are defined in LCD.h and the implementation in LCD.c. Notice

the similarity between this syntax (e.g., LCD_Init()) and the

corresponding syntax we would use if programming the module as a class in

C++ (e.g., LCD.Init()). Using this convention, we can easily distinguish

public and private objects. If the variable is public, because the name has an

underline, then the first letter of the name after the underline should be

capitalized (e.g., Logger_Count is a public variable belonging to the

module “Logger” and defined in the header file Logger.h).

6. Use upper- and lower-case to specify the scope of an object

We will define I/O ports, internal registers and constants using upper-case

letters. In other words, names with upper-case letters refer to objects with

fixed addresses or values. TRUE, FALSE and NULL are good examples of

fixed-valued objects. As mentioned earlier, constant names formed from

multiple words will use an underline character to delimit the individual

words, e.g., MAX_VOLTAGE, UPPER_BOUND, FIFO_SIZE. Global objects

will begin with a capital letter, but include some lower-case letters. Local

variables will begin with a lower-case letter, and may or may not include

upper-case letters. Since all functions are global, we can start function names

with either an upper-case or lower-case letter. Using this convention, we can

distinguish constants, globals and locals.

S.6

Index Naming Conventions PMcL

S - Software Style Guide 2017

7. Use capitalization to delimit words

Names that contain multiple words should be defined using a capital letter to

signify the first letter of the word. Recall that the case of the first letter

specifies whether it is local or global. Some programmers use the underline

as a word-delimiter, but except for constants we will reserve underline to

separate the module name from the variable name.

type Examples

constant CR, SAFE_TO_RUN, PORTA, STACK_SIZE, START_OF_RAM

local variable maxTemperature, lastCharTyped, errorCount

private global variable MaxTemperature, LastCharTyped, ErrorCount

public global variable DAC_MaxTemperature, Key_LastCharTyped,
Network_ErrorCount, File_OpenFlag

private function ClearTime, wrapPointer, InChar

public function Timer_ClearTime, FIFO_Put, Key_InChar

Table S.1 – Examples of naming conventions

S.7

PMcL Code Style Structure (the .c file) Index

2017 S - Software Style Guide

S.3 Code Style Structure (the .c file)

Maintaining a consistent style will help us locate and understand the different

components of our software, as well as prevent us from forgetting to include a

component (or worse, including it twice). The following regions should occur

in this order in every code file (e.g., file.c).

1. Opening comments

The opening comments will be duplicated in the corresponding header file

(e.g., file.h) and are intended to be read by the client, the one who will use

these functions. If major portions of the software are copied from copyrighted

sources, then we must satisfy the copyright requirements of those sources.

The opening comments should include:

 a reference to the file name

 the overall purpose of the software module,

 the names of the programmers,

 the creation (optional) and last update dates,

 the hardware/software configuration required to use the module, and

 any copyright information.

2. Including .h files

Next, we will place the #include statements that add the necessary header

files. Normally the order doesn't matter, so we will list the include files in a

hierarchical fashion starting with the lowest level and ending at the highest. If

the order of these statements is important, then write a comment describing

both what the proper order is and why the order is important. Putting them

together at the top will help us draw a call-graph, which will show us how our

modules are connected. In particular, if we consider each code file to be a

separate module, then the list of #include statements specifies which other

modules can be called from this module. Of course one header file is allowed

to include other header files. Be careful to include only those files that are

absolutely necessary. Adding unnecessary include statements will make our

system seem more complex than it actually is.

S.8

Index Code Style Structure (the .c file) PMcL

S - Software Style Guide 2017

3. #define and const statements

Next, we place the #define macros and constants. Since these definitions

are located in the code file (e.g., file.c), they will be private. This means

they are available within this file only. If the client does not need to use or

change the macro or constant, then it should be made private by placing it

here in the code file. Conversely, if we wish to create a public constant or

macro, then we place it in the header file for this module.

4. struct, union, enum statements

After the #define statements, we should create the necessary data

structures using struct, union and enum. Again, since these definitions

are located in the code file (e.g., file.c), they will be private.

5. Global variables and constants

After the structure definitions, we should include the global variables and

constants. If we specify the global as static then it will be private, and can

only be accessed by functions in this file. If we do not specify the global as

static then it will be public, which means it could be accessed by any

other module (that other module defines it as extern and the linker will

resolve the reference). Therefore, we should use static declarations as the

norm.

We put all the globals together before any function definitions to symbolize

the fact that any function in this file has access to these globals. If we have a

permanent variable that is only accessed by one function, then it should be

defined as a static local. The scope of a variable includes all the software

in the system that can access it. In general, we wish to minimize the scope of

our data.

S.9

PMcL Code Style Structure (the .c file) Index

2017 S - Software Style Guide

declaration accessibility
short file_PublicGlobal;

by any function via extern declaration

static short PrivateGlobal; in this file only
void function()
{
 static short staticLocal;
}

by this function only, but persistent

(not on stack and initialised once only)

Table S.2 – Accessibility of variables

6. Prototypes of private functions

After the globals, we should add any necessary prototypes. Just like global

variables, we can restrict access to private functions by defining them as

static. Prototypes for the public functions will be included in the

corresponding header file. In general, we will arrange the code

implementations in a bottom-up fashion. Although not necessary, we will

include the parameter names with the prototypes. Descriptive parameter

names will help document the usage of the function.

7. Implementations of the functions

The heart of the implementation file will be, of course, the implementations.

Again, private functions should be defined as static. The functions should

be sequenced in a logical manner. The most typical sequence is bottom-up,

meaning we begin with the lowest level and finish with the highest level.

Another appropriate sequence mirrors the manner in which the functions will

be used. For example, start with the initialization functions, followed by the

operations, and end with the shutdown functions. For example:

open();
input();
output();
close();

S.10

Index Header Style Structure (the .h file) PMcL

S - Software Style Guide 2017

S.4 Header Style Structure (the .h file)

Once again, maintaining a consistent style facilitates understanding and helps

to avoid errors of omission. Definitions made in the header file will be public,

i.e., accessible by all modules. As stated earlier, it is better to make global

variables private rather than placing them in the header file. Similarly, we

should avoid placing actual code in a header file.

There are two types of header files. The first type of header file has no

corresponding code file. In other words, there is a file.h, but no file.c.

In this type of header, we can list global constants and helper macros.

Examples of global constants are I/O port addresses (e.g., MK70F12.h) and

calibration coefficients. Debugging macros could be grouped together and

placed in a debug.h file. We will not consider software in these types of

header files as belonging to a particular module.

The second type of header file does have a corresponding code file. The two

files, e.g., file.h, and file.c, form a software module. In this type of

header, we define the prototypes for the public functions of the module. The

file.h contains the policies (behaviour or what it does) and the file.c file

contains the mechanisms (functions or how it works.) The following regions

should occur in order in every header file (e.g., file.h).

1. Opening comments

The opening comments will be duplicated in the corresponding code file

(e.g., file.c) and are intended to be read by the client, the one who will use

the functions and variables. We should repeat copyright information as

appropriate. The opening comments should include:

 a reference to the file name

 the overall purpose of the software module,

 the names of the programmers,

 the creation (optional) and last update dates,

 the hardware/software configuration required to use the module, and

 any copyright information.

S.11

PMcL Header Style Structure (the .h file) Index

2017 S - Software Style Guide

2. Including .h files

Nested includes in the header file should be avoided. Nested includes obscure

the manner in which the modules are interconnected. The only exception is if

data structures or functions depend on definitions made in other modules,

such as typedefs.

3. #define and const statements

Public constants and macros are next. Special care is required to determine if

a definition should be made private or public. One approach to this question

is to begin with everything defined as private, and then shift definitions into

the public category only when deemed necessary for the client to access in

order to use the module. If the parameter relates to what the module does or

how to use the module, then it should probably be public. On the other hand,

if it relates to how it works or how it is implemented, it should probably be

private.

4. struct, union, enum statements

The definitions of public structures allow the client software to create data

structures specific for this module.

5. Global variables and constants

If at all possible, public global variables should be avoided. Public constants

follow the same rules as public definitions. If the client must have access to a

constant to use the module, then it could be placed in the header file.

6. Prototypes of public functions

The prototypes for the public functions are last. Just like the implementation

file, we will arrange the functions in a sequence which mirrors the manner in

which the functions will be used. Comments should be directed to the client,

and these comments should clarify what the function does and how the

function can be used.

S.12

Index Formatting PMcL

S - Software Style Guide 2017

S.5 Formatting

Formatting is a matter of personal preference, but the following section lists

techniques that can make your software easier to understand, debug and

change.

1. Make the software easy to read

We should develop and debug software by observing it on the computer

screen. In order to eliminate horizontal scrolling, no line of code should be

wider than the window or pane that it resides in.

2. Indentation should be set at 2 spaces

When transporting code from one computer to another, the tab settings may

be different. So, what looks good on one computer may look ugly on another.

For this reason, we should avoid tabs and use just spaces. Function

parameters can go on the same line as the function definition, or aligned

under the function’s opening parenthesis “(“ when it makes sense to list the

parameters on separate lines (if there are many of them).

3. Be consistent about where we put spaces

Similar to English punctuation, there should be no space before a comma or a

semicolon, but there should be at least one space or a carriage return after a

comma or a semicolon. There should be no space before or after open or

close parentheses. Assignment and comparison operations should have a

single space before and after the operation. One exception to the single space

rule is if there are multiple assignment statement. In this case we can line up

the operators and values. For example:

Data = 1;
pressure = 100;
voltage = 5;

S.13

PMcL Formatting Index

2017 S - Software Style Guide

4. Be consistent about where we put braces {}

Misplaced braces cause both syntax and semantic errors, so it is critical to

maintain a consistent style. Place the opening brace on a new line directly

underneath the code that opens the scope of the compound statement. Placing

the open brace at the beginning of a new line provides a visual clue that a

new code block has started. Place the closing brace on a separate line to give

a vertical separation showing the end of the compound statement. The

horizontal placement of the close brace should line up with the opening brace,

giving a visual clue that the enclosed code is a compound statement. For

example

void main(void)
{
 int i, j, k;

 j = 1;

 if (sub0(j))
 {
 for (i = 0; i < 6; i++)
 sub1(i);
 k = sub2(i, j);
 }
 else
 k = sub3();
}

S.14

Index Formatting PMcL

S - Software Style Guide 2017

Use braces after all if-else, for, do-while, case and switch

commands where the following statement is a compound statement. For the

case of single statements, it is acceptable to leave out the braces, but we must

be careful when editing and adding statements. For example, assume we start

with the following code:

if (flag)
 n = 0;

Now, we add a second statement that we also want to execute if the flag is

true. The following error might occur if we just add the new statement.

if (flag)
 n = 0;
 c = 0;

We get the correct software if we enclose the two statements in braces:

if (flag)
{
 n = 0;
 c = 0;
}

Leaving out braces for single statements increases our code density and is

much more readable. For example:

if (flag)
 n = 0;
else
 n = 1;

is better than:

if (flag)
{
 n = 0;
}
else
{
 n = 1;
}

S.15

PMcL Code Structure Index

2017 S - Software Style Guide

S.6 Code Structure

1. Make the presentation easy to read

We define presentation as the look and feel of our software as displayed on

the screen. If at all possible, the size of our functions should be small enough

so the majority of the code fits on a single computer screen. We must

consider the presentation as a two-dimensional object. Consequently, we can

reduce the 2-D area of our functions by encapsulating components and

defining them as private functions.

Do not list multiple statements on the same line. The compiler often places

debugging information on each line of code. Breakpoints in some systems

can only be placed at the beginning of a line.

Consider the following two presentations. Since the compiler generates

exactly the same code in each case, the computer execution will be identical.

Therefore, we will focus on the differences in style.

The first example has an horrific style.

void testFilter(short start, short stop, short step)
 { short x, y; initFilter(); UART_OutString("x(n) y(n)");
 UART_OutChar(CR); for(x=start; x<=stop; x=x+step)
 { y=filter(x); UART_OutUDec(x); UART_OutChar(SP);
 UART_OutUDec(y); UART_OutChar(CR);} }

The second example places each statement on a separate line.

void testFilter(short start, short stop, short step)
{
 short x, y;

 initFilter();
 UART_OutString("x(n) y(n)");
 UART_OutChar(CR);

 for (x = start; x <= stop; x += step)
 {
 y = filter(x);
 UART_OutUDec(x);
 UART_OutChar(SP);
 UART_OutUDec(y);
 UART_OutChar(CR);
 }
}

S.16

Index Code Structure PMcL

S - Software Style Guide 2017

2. Employ modular programming techniques

Complex functions should be broken into simple components, so that the

details of the lower-level operations are hidden from the overall algorithms at

the higher levels.

3. Minimize scope

In general, we hide the implementation of our software from its usage. The

scope of a variable should be consistent with how the variable is used. In a

military sense, we ask the question, "Which software has the need to know?"

Global variables should be used only when the lifetime of the data is

permanent, or when data needs to be passed from one thread to another.

Otherwise, we should use local variables. When one module calls another, we

should pass data using the normal parameter-passing mechanisms. As

mentioned earlier, we consider I/O ports in a manner similar to global

variables. There is no syntactic mechanism to prevent a module from

accessing an I/O port, since the ports are at fixed and known absolute

addresses. Some processors do have a complex hardware system known as a

memory protection unit (MPU) to prevent unauthorized software from

accessing I/O ports, but the details are beyond the scope of this document.

For embedded software, we must rely on the does-access rather than the can-

access method. In other words, we must have the discipline to restrict I/O

port access to the module that is designed to access it.

For similar reasons, we should consider each interrupt service routine

separately, grouping it with the corresponding I/O module if possible. In

particular, rather than having one long list of interrupt service routines for the

entire system, each interrupt service routine should be separately defined

along with the software that supports the other I/O hardware of the module.

For example, the serial port interrupt service routine should be specified in

the same file that handles setting up and using the serial port.

S.17

PMcL Code Structure Index

2017 S - Software Style Guide

4. Use types

Using a typedef will clarify the format of a variable. It is another example

of the separation of mechanism and policy. New data types and structures

will begin with an upper case letter, or end in _t. The typedef allows us to

hide the representation of the object and use an abstract concept instead. For

example

 typedef short Temperature;
 void main(void)
 {
 Temperature lowT, highT;
 }

This allows us to change the representation of temperature without having to

find all the temperature variables in our software. Not every data type

requires a typedef. We will use types for those objects of fundamental

importance to our software, and for those objects for which a change in

implementation is anticipated. As always, the goal is to clarify. If it doesn't

make it easier to understand, easier to debug, or easier to change, don't do it.

5. Minimise function prototypes

Public functions obviously require a prototype in the header file. In the

implementation file, we will organize the software in a bottom-up or by-use

hierarchical fashion. Since the highest level functions go last, prototypes for

the lower-level private functions will not be required.

If we need to make a function prototype, then we include both the type and

name of the input parameters. Specify the function as (void) if it has no

parameters.

These prototypes are easy to understand:

void start(unsigned short period, void(*functionPt)(void));
short divide(short dividend, short divisor);
void UART_Init(void);

These prototypes are harder to understand:

start(unsigned short, (*)());
short divide(short, short);
UART_Init();

S.18

Index Code Structure PMcL

S - Software Style Guide 2017

6. Declare function return types explicitly

In general, we can remove ambiguities by clarifying exactly what we want.

Unless the number of parameters is large, we will place the return type, the

function name, and the input parameters on a single line. The following are

good examples of the first line of several functions.

void main(void)
void UART_OutUDec(unsigned short number)
unsigned short UART_InUHex(void)
int RxFIFO_Put(char data)

7. Declare data and parameters as const whenever possible

Declaring an object as const has two advantages. The compiler can produce

more efficient code when dealing with parameters that don't change. The

second advantage is to catch software bugs, i.e., situations where the program

incorrectly attempts to modify data that it should not modify.

S.19

PMcL Code Structure Index

2017 S - Software Style Guide

8. goto statements are not allowed

Debugging is hard enough without adding the complexity generated when

using goto. When developing assembly language software, we should

restrict the branching operations to the simple structures allowed in C.

9. ++ and -- should appear once in complex statements

These operations should only appear as commands by themselves. Also, the

compiler tends to generate more efficient code when they are separated. More

importantly, the issue is readability. The statement:

*(--pt) = buffer[n++];

should be written as:

--pt;
*(pt) = buffer[n++];

or as:

*(--pt) = buffer[n];
n++;

10. Be a parenthesis zealot

When mixing arithmetic, logical, and conditional operations, explicitly

specify the order of operations. Do not rely on the order of precedence. As

always, the major issue is clarity. Even if the following code were actually to

perform the intended operation (which in fact it does not),

if (x + 1 & 0x0F == y | 0x04)

the programmer assigned to modify it in the future will have a better chance

if we had written:

if (((x + 1) & 0x0F) == (y | 0x04))

S.20

Index Code Structure PMcL

S - Software Style Guide 2017

11. Use enum instead of #define or const.

The use of enum allows for consistency checking during compilation, and

provides for easy to read software. A good optimizing compiler will create

the same object code for the following four examples. So once again, we

focus on style.

In the first example, we need comments to explain the operations:

int Mode;
void function1(void)
{
 Mode = 1; // no error
}

void function2(void)
{
 if (Mode == 0)
 // error?
 UART_OutString("error");
 Mode = 3; // This line will compile
 Mode = 256; // This line will compile
}

In the second example, no comments are needed:

#define NOERROR 1
#define ERROR 0

int Mode;

void function1(void)
{
 Mode = NOERROR;
}

void function2(void)
{
 if (Mode == ERROR)
 UART_OutString("error");
 Mode = 3; // This line will compile
 Mode = 256; // This line will compile
}

S.21

PMcL Code Structure Index

2017 S - Software Style Guide

In the third example, the compiler performs a type-match, making sure Mode,

NOERROR, and ERROR are the same type:

const unsigned char NOERROR = 1;
const unsigned char ERROR = 0;

unsigned char Mode;

void function1(void)
{
 Mode = NOERROR;
}

void function2(void)
{
 if (Mode == ERROR)
 UART_OutString("error");
 Mode = 3; // This will compile
 Mode = 256; // This line will *NOT* compile (Mode>255)
}

Enumeration provides a check of both type and value, if the compiler

supports it. Standard C compilers do NOT support it, but C++ compilers do.

However, in C it is good programming practice to see the type required by a

variable or function parameter, and provide the necessary enumerated type.

We can explicitly set the values of the enumerated types if needed.

enum ModeState {ERROR, NOERROR};
enum ModeState Mode;

void function1(void)
{
 Mode = NOERROR;
}

void function2(void)
{
 if (Mode == ERROR)
 UART_OutString("error");
 Mode = 3; // This will *NOT* compile in C++ (out of range)
 Mode = 256; // This line will *NOT* compile (out of range)
}

S.22

Index Code Structure PMcL

S - Software Style Guide 2017

12. Don't use bit-shift for arithmetic operations

Microprocessor architectures and compilers used to be so limited that it made

sense to perform multiply/divide by 2 using a shift operation. For example,

when multiplying a number by 4, we might be tempted to write data << 2.

This is wrong; if the operation is multiply, we should write data * 4.

Compiler optimization has developed to the point where the compiler can

choose to implement data * 4 as either a shift or multiply depending on

the instruction set of the computer. When we use data * 4, we have code

that is easier to understand than data << 2.

S.23

PMcL Comments Index

2017 S - Software Style Guide

S.7 Comments

Comments are an important aspect of writing quality software. They often tell

the reader why something is done, rather than how (which should be apparent

from reading the actual code).

The beginning of every file should include the file name, purpose, author,

date, and copyright.

The beginning of every function should include a comment block outlining

the purpose, input parameters, output parameters, and special conditions that

apply. The comments at the beginning of the function explain the policies

(e.g., how to use the function.)

Comments can be added to a variable or constant definition to clarify the

usage. In particular, comments can specify the units of the variable or

constant. For complicated situations, we can use additional lines and include

examples. For example,

short V1; // voltage at node 1 in mV,
 // range -5000 mV to +5000 mV

unsigned short Fs; // sampling rate in Hz

int FoundFlag; // 0 if keyword not yet found,
 // 1 if found

enum TMode // system states for the serial port
{
 IDLE,
 RECEIVE,
 TRANSMIT
};

enum TMode Mode; // determines serial port action

S.24

Index Comments PMcL

S - Software Style Guide 2017

Comments can be used to describe complex algorithms. These types of

comments are intended to be read by our coworkers. The purpose of these

comments is to assist in changing the code in the future, or applying this code

to a similar but slightly different application. Comments that restate the

function provide no additional information, and actually make the code

harder to read. Examples of bad comments include:

time++; // add one to time
mode = IDLE; // set mode to IDLE

Good comments explain why the operation is performed, and what it means:

time++; // maintain elapsed time in msec
mode = IDLE; // switch to idle mode
 // because no more data is available

We can add spaces so the comment fields line up. As stated earlier, we avoid

tabs because they often do not translate from one system to another. In this

way, the software is on the left and the comments can be read on the right.

S.25

PMcL Comments Index

2017 S - Software Style Guide

Alternatively, comments can appear on the line before the actual code: It is

also good practice to separate blocks of code by blank lines, making

“paragraphs” of code.

void main(void)
{
 // Initialise Tower
 Tower_Init();

 // Loop forever (embedded software never ends!)
 while (1)
 {
 // Debug pulse on entry
 if (~DEBUG)
 PTT |= 0x80;

 // Receive commands from the PC
 Tower_ReceiveFromPC();

 // Send status to the PC
 Tower_SendToPC();

 // Update motors in background
 Motors_Update();

 // Debug pulse on exit
 if (~DEBUG)
 PTT &= ~0x80;
 }
}

S.26

Index Doxygen PMcL

S - Software Style Guide 2017

S.8 Doxygen

Doxygen is a widely used and free documentation generator:

http://www.stack.nl/~dimitri/doxygen/

The documentation is written within code, and is thus relatively easy to keep

up to date. Doxygen can cross reference documentation and code, so that the

reader of a document can easily refer to the actual code.

Doxygen can generate an on-line documentation browser (in HTML) from a

set of documented source files. There is also support for generating output in

RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML, and

Unix man pages. The documentation is extracted directly from the sources,

which makes it much easier to keep the documentation consistent with the

source code.

You can also configure Doxygen to extract the code structure from

undocumented source files. This is very useful to quickly find your way in

large source distributions. Doxygen can also visualize the relations between

the various elements by means of include dependency graphs, inheritance

diagrams, and collaboration diagrams, which are all generated automatically.

http://www.stack.nl/~dimitri/doxygen/

S.27

PMcL Doxygen Index

2017 S - Software Style Guide

S.8.1 Special Comment Blocks

A special comment block is a C or C++ style comment block with some

additional markings, so doxygen knows it is a piece of structured text that

needs to end up in the generated documentation. There are various styles of

special comment block, we will use the following style:

/*! @file
 *
 * @brief I/O routines for UART communications on the TWR-K70F120M.
 *
 * This contains the functions for operating the UART.
 *
 * @author PMcL
 * @date 2015-07-23
 */

Note the exclamation mark (!) after the usual C opening comment marker

“/*”. This tells doxygen that it is the start of a special comment block. We

use the style of beginning each line with a space-asterisk-space (“ * ”).

Variables

If you want to document the variables of a file, or members of a struct, union,

or enum, it is sometimes desired to place the documentation block after the

declaration instead of before. For this purpose you have to put an additional <

marker in the comment block. Note that this also works for the parameters of

a function. For example:

uint8_t Packet_Command, /*!< The packet's command */
 Packet_Parameter1, /*!< The packet's 1st parameter */
 Packet_Parameter2, /*!< The packet's 2nd parameter */
 Packet_Parameter3, /*!< The packet's 3rd parameter */
 Packet_Checksum; /*!< The packet's checksum */

Functions

To document a function, we use something like:

/*! @brief Sets up the UART interface before first use.
 *
 * @param baudRate The desired baud rate in bits/sec.
 * @param moduleClk The module clock rate in Hz
 * @return BOOL - TRUE if the UART was successfully initialized.
 */
BOOL UART_Init(const uint32_t baudRate, const uint32_t moduleClk);

S.28

Index Doxygen PMcL

S - Software Style Guide 2017

Modules

Modules are a way to group things together on a separate page. Members of a

group can be files, functions, variables, enums, typedefs, and defines, and

also other groups.

To define a group, you should put the \addtogroup command in a special

comment block. The first argument of the command is a label that should

uniquely identify the group. The second argument is the name or title of the

group as it should appear in the documentation.

For example, to document a .c file as a module we use something like:

/*!
 * @addtogroup UART_module UART module documentation
 * @{
*/

...

/*!
 * @}
*/

You can group members together by the open marker “@{“ before the group

and the closing marker “@}” after the group. The markers can be put in the

documentation of the group definition or in a separate documentation block.

So in another file you could use:

/*!
 * @addtogroup UART_module
 * @{
*/

...

/*!
 * @}
*/

to add additional members to the UART_module group.

S.29

PMcL Doxygen Index

2017 S - Software Style Guide

S.8.2 Doxygen Commands

All doxygen commands in the comment block start with an at-sign (@).

Some of the more common doxygen commands are given below:

Command Usage

@addtogroup

<module_name>

[(title)]

A mechanism to group documentation together into a

single page called a module. The module name appears

after the command. The title is optional. The open marker

@{ and close marker @} are used to define the group.

@author Starts a paragraph where one or more author names may

be entered.

@brief Starts a paragraph that serves as a brief description.

@date Starts a paragraph where one or more dates may be

entered.

@file <name> Indicates that a comment block contains documentation

for a source or header file, with an optional <name>.

Note: This command must be present to document global

objects (functions, typedefs, enum, macros, etc.).

@param <name> Starts a parameter description for a function parameter

with <name>, followed by a description of the parameter.

@return Starts a return value description for a function.

For a complete list of doxygen commands, see:

http://www.stack.nl/~dimitri/doxygen/manual/commands.html

http://www.stack.nl/~dimitri/doxygen/manual/commands.html

S.30

Index Compiler Specific Coding Style PMcL

S - Software Style Guide 2017

S.9 Compiler Specific Coding Style

A compiler’s default settings may generate a warning on many instances of

correct code. Rather than turning off the warnings, which are designed to

catch our programming errors, we will adopt a coding style which

circumvents the creation of these warnings.

S.9.1 Result of function-call is ignored

This warning occurs because we should be using the result of a function-call.

If we do not wish to use the result of a function-call (for example, a function

returns an error number that we don’t wish to handle), then we can adopt one

of two strategies.

The first strategy is to typecast the function result to void. For example:

void main(void)
{
 // Initialise Tower
 (void)Tower_Init();
 ...

The second strategy is to set up your code structure in a form where you can

easily handle the expected result:

void main(void)
{
 // Initialise Tower
 if (!Tower_Init())
 {
 // Error handling goes here
 }
 ...

S.31

PMcL Compiler Specific Coding Style Index

2017 S - Software Style Guide

S.9.2 Condition always TRUE

This warning occurs when we implement our “loop forever” while loop

with an argument which is constant:

void main(void)
{
 // Loop forever (embedded software never ends!)
 while (1)
 {
 // Do our stuff...
 }
}

The way around this is to implement a for loop with no initialization,

condition and post-processing parts:

void main(void)
{
 // Loop forever (embedded software never ends!)
 for (;;)
 {
 // Do our stuff...
 }
}

S.32

Index Compiler Specific Coding Style PMcL

S - Software Style Guide 2017

S.9.3 C99

A subtle but important consideration in adopting a coding style is the version

of the C language used. Modern compilers support two main options – ANSI

C (commonly known as C89, and published as ISO/IEC 9899:1990) and C99

(ISO/IEC 9899:1999). C99 was recently withdrawn by the International

Standards Organisation in favour of C11 (a new standard ratified in 2011),

but compiler support for this standard is minimal at this time.

C99 brings valuable features to the C language, such as:

 The ability to mix declarations and code, i.e. to declare a variable at

any point in a function.

 The first expression in a for loop may be a declaration, as in C++.

 The inline keyword, which hints to the compiler that a function

should be included inline rather than called.

 Support for a Boolean type called bool, with values true and

false, which are defined in <stdbool.h>.

 C++ style // one line comments.

 More flexible initialisation of arrays and structs.

The utility of these features is seen as sufficient justification for the use of

C99.

