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Preface 

These notes comprise part of the learning material for 48434 Embedded 

Software. They are not a complete set of notes. Extra material and examples 

may also be presented in the face-to-face activities. 

 

Using the electronic version of these notes 

These notes are hyperlinked. All green text is a link to somewhere else within 

this document. For example, the contents page links to the appropriate page in 

the text, and the page numbers in the header on each page link back to the 

contents page. There are also some internal linked words that take you to the 

relevant text.  

Links to external web pages are red in colour. Provided your PDF reader (e.g. 

Adobe Acrobat Reader) is set up correctly these links should open the 

appropriate page in your web browser. 
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If you discover any errors or feel that some sections need clarifying, please do 

not hesitate in contacting me: 

Peter McLean 

School of Electrical, Mechanical and Mechatronic Systems 

Faculty of Engineering and Information Technology 

University of Technology Sydney 

 

Office: CB11.11.405 - Building 11 (Broadway), Level 11, Room 11.405 

Voice : +61-2-9514-2339 

Email : peter.mclean@uts.edu.au 

Web : http://www.uts.edu.au/staff/peter.mclean 
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Introduction 

Computing systems are everywhere. Billions of computing systems are built 

every year that are embedded within larger electronic devices, repeatedly 

carrying out a particular function, often going completely unrecognized by the 

device’s user. 

A quick look around our environment turns up embedded systems in a surprising 

number of places. The picture below shows just a few such systems in common 

environments. 

 

 

 

Figure 1.1 – Examples of Embedded Systems 

Examples of 
embedded systems 
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A listing of these systems is given below: 

Outdoors 

1. Helicopter: control, navigation, 

communication , etc. 

2. Medicine administering systems 

3. Smart hospital bed with sensors and 

communication 

4. Patient monitoring system 

5. Surgical displays 

6. Ventilator 

7. Digital thermometer 

8. Portable data entry systems 

9. Pacemaker 

10. Automatic door 

11. Electric wheelchair 

12. Smart briefcase with fingerprint 

enabled lock 

13. Ambulance: medical and 

communication equipment 

14. Automatic irrigation systems 

15. Jet aircraft: control, navigation, 

communication, autopilot, collision-

avoidance, in-flight entertainment, 

passenger telephones, etc. 

16. Laptop computer (contains embedded 

systems) 

17. Mobile telephone 

18. Portable stereo 

19. Satellite receiver system 

20. Credit / debit card reader 

21. Barcode scanner 

22. Cash register 

23. Automatic teller machine 

24. Car (engine control, cruise control, 

temperature control, music system, 

anti-lock brakes, active suspension, 

navigation, toll transponder, etc.) 

25. Automatic lighting 

26. Pump monitoring system 

27. Lottery ticket dispenser 

28. Pager 

29. Traffic light controller 

Indoors 

34. Cordless phone 

35. Coffee maker 

36. Rice cooker 

37. Portable radio 

38. Programmable oven 

39. Microwave oven 

40. Smart refrigerator 

41. In-home computer network router 

42. Clothes dryer 

43. Clothes washing machine 

44. Portable MP3 player 

45. Digital camera 

46. Electronic book 

47. Garbage compactor 

48. Hearing aid 

49. Dishwasher 

50. Electronic clock 

51. Video camera 

52. Electronic wristwatch 

53. Pager 

54. Mobile phone 

55. CD player 

56. DVD player 

57. Smart speakers 

58. Stereo receiver 

59. TV set-top box 

60. Television 

61. PVR 

62. TV-based Web access box 

63. House temperature control 

64. Home alarm system 

65. Point-of-sale system 

66. Video-game console 

67. TV remote control 

68. Electronic keyboard 

69. Fax machine 

70. Scanner 
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30. Police car (data lookup, 

communication, sirens, radar, etc.) 

31. Mobile phone base station 

32. Hand-held communicator (walkie-

talkie) 

33. Fire-control onboard computer 

71. Wireless networking 

72. Telephone modem 

73. ADSL modem 

74. Printer 

75. Portable video game 

76. Personal digital assistant 

77. Portable digital picture viewer 

78. Phone with answering machine 

 

Nearly any device that runs on electricity either already has or soon will have a 

computing system embedded within it. In 2015, 1.43 billion smart phones, 212 

million tablet PCs and 20 million eReaders were shipped.1 

  

                                                 

1http://www.idc.com/getdoc.jsp?containerId=prUS40664915 

 http://www.idc.com/getdoc.jsp?containerId=prUS25867215  

 (Accessed 2016-02-19) 

http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.idc.com/getdoc.jsp?containerId=prUS25867215
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1.1 Embedded Systems Characteristics 

Embedded systems have several common characteristics that distinguish such 

systems from other computing systems: 

1. Single-functioned: An embedded system usually executes a specific program 

or set or prgorams repeatedly. 

2. Tightly constrained: Embedded systems often must cost just a few dollars, 

must be sized to fit into compact spaces, must perform fast enough to process 

data in real time, must consume minimum power, and must be designed 

rapidly to capture market windows. 

3. Reactive and real-time: Many embedded systems must continually react to 

changes in the system’s environment and must compute certain results in real 

time without delay. 

1.2 Microcontrollers 

A microcontroller is an integrated circuit that has a microprocessor connected 

up to various peripherals such as timers, serial ports, analog-to-digital 

converters, etc. You can think of a microcontroller as a “system-on-a-chip”. An 

embedded system is usually made from a microcontroller and associated 

electronic circuitry that deals with interfacing the microcontroller to the “real 

world”. The “art” of embedded systems programming is to write an application 

that utilises the hardware peripherals and interacts with the outside world in a 

manner which meets constraints 2 and 3 listed above. This requires a 

rudimentary understanding of the microcontroller architecture, the nature of the 

on-board peripherals, as well as understanding how the microcontroller 

interfaces with the real world. Invariably this means that an embedded software 

engineer must have a basic ability to interpret an electrical schematic diagram. 
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1.3 Development Boards 

A microcontroller development board is a printed circuit board (PCB) containing 

a microcontroller and the minimal support logic needed for an engineer or 

hobbyist to become acquainted with the microprocessor on the board and to learn 

to program it. It also serves as a method to prototype applications before full 

product development.  

Unlike a general-purpose system such as a personal computer, a development 

board usually contains little or no hardware dedicated to a user interface. In terms 

of the human machine interface (HMI), there may be only a few buttons and 

LEDs. They all have the provision to accept and run a user-supplied program, 

such as downloading a program through a serial port to Flash memory. Usually 

there is no enclosure or power supply. 

 

 

 

Figure 1.2 – Various Microcontroller Development Boards 

Debugging (the process of running a program and validating its functionality) 

with a development board invariably involves connecting the development board 

to a personal computer. The personal computer runs an integrated development 

environment (IDE) which has a cross-compiler and linker and which can 

generate machine code for the embedded target chip. Development boards 

generally support advanced debugging capabilities of the target system. 

  

Various 
microcontroller 
development boards 
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1.3.1 The NXP FRDM-K64F 

The NXP Freedom Boards are small, low-cost, Arduino® UNO Rev3 form-

factor, development boards that support a variety of microcontrollers and 

peripheral boards that can be mixed-and-matched. The NXP FRDM-K64F 

development board (we will call it “the Freedom board”) carries a Kinetis 

MK64FN1M0VLL12 microcontroller unit (MCU), an on-board JTAG debug 

circuit with a virtual serial port, 1Mib2 of Flash memory, 256 kib of static RAM, 

a six-axis accelerometer and magnetometer, a tri-color LED, two pushbuttons, 

an Ethernet interface and a Micro-SD card slot: 

 

 
 

Figure 1.3 – The FRDM-K64F Development Board 

Refer to NXP’s FRDM-K64F Freedom Modules User’s Guide for more 

information. 

                                                 

2 The mebibit, abbreviated Mib, is a multiple of the unit “bit” used to quantify digital information. 

It is a member of the set of units with binary prefixes defined by the International 

Electrotechnical Commission (IEC). The prefix mebi (symbol Mi) represents 10242, 

or 1 048 576. 

https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/webapp/Download?colCode=FRDMK64FUG
https://en.wikipedia.org/wiki/Gibibit
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1.3.2 The Kinetis MK64FN1M0VLL12 Microcontroller Unit (MCU) 

Kinetis is a family of NXP microcontroller units (MCUs) that are based on the 

extremely popular 32-bit ARM® Cortex®-M series of embedded processors. 

The Kinetis MK64FN1M0VLL12 (hereafter abbreviated “K64”) is based on the 

Cortex®-M4F, which implements the ARMv7E-M architecture. This is a “high-

end” processor (for a microcontroller) that supports digital signal processing 

(DSP) instructions, single instruction multiple data (SIMD) instructions, and 

contains a hardware single precision floating-point unit (FPU). For more 

information on the ARM® Cortex®-M4, see: 

http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php 

The following figure shows the block diagram for the K64 family:  

 

 

 

Figure 1.4 – Kinetis K64 Block Diagram 

The Kinetis K64 MCU family offers low power and mixed-signal analog 

integration for applications such as industrial control panels, navigational 

displays, point-of-sale terminals, and medical monitoring equipment. 

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k-series-cortex-m4/k6x-ethernet/kinetis-k64-120-mhz-256-kb-sram-microcontrollers-mcus-based-on-arm-cortex-m4-core:K64_120
http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php
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The K64 boasts an impressive array of system features and peripherals: 

Module Brief Description 

Core 

ARM Cortex-M4 A high-end member of ARM’s Cortex®-M 

series of processors. 

Floating point unit (FPU) A single-precision FPU that is compliant to the 

IEEE Standard for Floating-Point Arithmetic 

(IEEE 754). 

Nested Vectored Interrupt 

Controller (NVIC) 

The NVIC supports many interrupts, 

exceptions, and priority levels. 

AWIC The AWIC detects wake-up events. 

Debug Interface Four debug interfaces are supported. 

System 

System integration module 

(SIM) 

System integration logic and module settings. 

System mode controller (SMC) Provides control and protection on entry and 

exit to each power mode, and for resets. 

Power management controller 

(PMC) 

Provides the user with multiple power options. 

Low-leakage wakeup unit 

(LLWU) 

Allows the device to wake from low leakage 

power modes. 

Miscellaneous control module 

(MCM) 

Includes integration logic and embedded trace 

buffer details. 

Crossbar switch (XBS) The XBS connects bus masters and bus slaves. 

Memory protection unit (MPU) The MPU provides memory protection and task 

allocation. 

Peripheral bridge Allows the XBS to interface peripherals. 

Direct memory access (DMA) 

controller 

Provides for data movement without the CPU. 

DMA multiplexer (DMAMUX) Selects from many DMA requests down to a 

smaller number for the DMA controller. 

External watchdog monitor 

(EWM) 

Monitors both internal and external system 

operation for fail conditions. 

Software watchdog (WDOG) Monitors internal system operation and forces a 

reset in case of failure. 

Table continues on the next page…  
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Memories and Memory Interfaces 

Flash memory Program flash memory – non-volatile memory 

that can execute program code. 

Flash memory controller Manages the interface between the device and 

the on-chip flash memory. 

Static Random Access Memory 

(SRAM) 

Internal system RAM. 

System register file 32-byte register file power by VDD. 

VBAT register file 32-byte register file power by VBAT. 

Serial programming interface 

(EzPort) 

Provides the ability to read, erase, and program 

Flash memory and to reset and boot the system 

after flash programming. 

FlexBus External bus interface that support SRAM, 

PROM, EPROM, EEPROM, Flash and other 

peripherals. 

Clocks 

Multi-clock generator (MCG) Provides several clock sources for the MCU 

including: 

- a phase-locked loop (PLL) 

- a frequency-locked loop (FLL) 

- internal reference clocks 

48 MHz Internal Reference 

Clock (IRC48M) 

Provides an internally generated clock source 

which can be used as a reference of MCG or 

crystal-less FS USB implementation. 

System oscillator The system oscillator, in conjunction with an 

external crystal or resonator, generates a 

reference clock for the MCU. 

Real-time clock (RTC) 

oscillator 

The RTC oscillator has an independent power 

supply and supports a 32 kHz crystal oscillator. 

Table continues on the next page… 
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Security and Integrity Modules 

Cryptographic acceleration unit 

(CAU) 

Supports DES, 3DES, AES, MD5, SHA-1, and 

SHA-256 algorithms via simple C calls. 

Random number generator 

(RNG) 

Supports the key generation algorithm defined 

in the Digital Signature Standard. 

Cyclic Redundancy Check 

(CRC) 

The CRC generator can be used for error 

detection for all single, double, odd, and most 

multi-bit errors. 

Analog Modules 

16-bit analog-to-digital 

converter (ADC) 

16-bit successive-approximation ADC. 

Analog comparator (CMP) Compares two analog input voltages across the 

full range of the supply voltage. 

6-bit digital-to-analog converter 

(DAC) 

Provides a selectable voltage reference. 

12-bit digital-to-analog 

converter (DAC) 

Low-power general-purpose DAC, whose 

output can be placed on an external pin. 

Voltage reference (VREF) Supplies an accurate voltage output that is 

trimmable in 0.5 mV steps. 

Timer Modules 

Programmable delay block 

(PDB) 

16-bit counter that is initiated by a trigger event 

and provides for flexible delayed output 

signals. 

Flexible timer module (FTM) 16-bit counter flexible counter with input 

capture, output compare and PWM. 

Periodic interrupt timers (PIT) 32-bit general purpose interrupt timer. 

Low-power timer (LPTimer) 16-bit time or pulse counter with compare. 

Carrier modulator timer (CMT) Provides the means to generate the protocol 

timing and carrier signals for a wide variety of 

encoding schemes. 

Real-time clock (RTC) 32-bit and 64-bit real-time clock with alarm. 

IEEE 1588 timers The 10/100 Ethernet module contains timers to 

provide IEEE 1588 time stamping. 

Table continues on the next page… 
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Communication Interfaces 

Ethernet MAC with IEEE 1588 

capability (ENET) 

10/100 Mbps Ethernet MAC with hardware 

support for IEEE 1588. 

USB On-The-Go (OTG) (low-

/full-speed) 

USB 2.0 compliant module with support for 

host, device, and On-The-Go modes. 

USB Device Charger Detect 

(USBDCD) 

Detects a smart charger meeting the USB 

Battery Charging Specification Rev 1.2. 

USB voltage regulator Powers on-chip USB subsystem. 

Controller Area Network (CAN) Supports the full implementation of the CAN 

Specification Version 2.0, Part B. 

Serial peripheral interface (SPI) Synchronous serial bus for communication to 

an external device. 

Inter-integrated circuit (I2C) Allows communication between a number of 

devices. 

Universal asynchronous receiver 

/ transmitter (UART) 

Asynchronous serial bus communication 

interface with support for CEA709.1-B (Lon 

works) and the ISO 7816 smart card interface. 

Secure Digital host controller 

(SDHC) 

Interface between the host system and the SD, 

SDIO, MMC, or CE-ATA cards. 

Inter-IC Sound (I2S) Provides a synchronous audio interface (SAI) 

that supports full duplex serial interfaces such 

as AC97 and codec / DSP interfaces. 

Human-Machine Interface 

General purpose input/output 

(GPIO) 

General purpose pins. 

Table 1.1 – K64 Modules Grouped by Functional Categories 

For more information, see the K64 Sub-Family Reference Manual. 

https://www.nxp.com/webapp/Download?colCode=K64P144M120SF5RM
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1.4 ARM Microcontrollers 

ARM is an acronym which stands for Advanced RISC Machine. RISC is another 

acronym which stands for Reduced Instruction Set Computing. 

RISC is, in its broadest form, a design philosophy for processors. It stems from 

a belief that a processor with a relatively simple instruction set will be more 

efficient than one which is more complex. The term originally came into use 

back in the 1980s with a research project called Berkeley RISC that investigated 

the possibilities of this approach to design and then created processors based on 

it. 

All ARM processors are considered RISC designs. Processors that have a RISC 

architecture typically require fewer transistors than those with a complex 

instruction set computing (CISC) architecture (such as the x86 processors found 

in most personal computers), which improves cost, power consumption, and heat 

dissipation. These characteristics are desirable for light, portable, battery-

powered devices – including smartphones, laptops and tablet computers, and 

other embedded systems. 

A company called ARM Holdings is responsible for ARM, and it is only a design 

company. They manage the instruction set and design new versions of the core 

architecture and then license it to other companies. Those companies can then 

improve it and pair it with whatever hardware seems appropriate. 

ARM’s core architecture is only a processor. It doesn’t handle wireless 

connectivity. It doesn’t handle graphics. It doesn’t handle USB or other forms of 

wired connectivity. All the peripherals on a chip are the responsibility of silicon 

vendors. Companies like Apple, NXP, Texas Instruments, ST etc. employ in-

house engineering teams to create ARM-based microcontrollers – they add the 

desired peripherals around the ARM processor and package it as a 

microcontroller or as a “system-on-a-chip”. 

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Arm_Holdings
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1.4.1 The ARM® Cortex®-M Series of Processors 

There are 3 families of ARM processor, each designed for a specific market: 

 

 

 

Figure 1.5 – The ARM® Cortex®-M series of Embedded Processors 

ARM developed the popular 32-bit ARM® Cortex®-M series of embedded 

processors primarily for the microcontroller domain where the need for fast, 

highly deterministic interrupt management is coupled with extremely low gate 

count and lowest possible power consumption. For more information on the 

ARM® Cortex®-M Series of processors, see: 

http://www.arm.com/products/processors/cortex-m/index.php 

ARM states that: 

The Cortex-M family is optimized for cost and power sensitive MCU and 

mixed-signal devices for applications such as Internet of Things, 

connectivity, motor control, smart metering, human interface devices, 

automotive and industrial control systems, domestic household 

appliances, consumer products and medical instrumentation.3 

                                                 

3 http://www.arm.com/products/processors/cortex-m/index.php (Accessed 2015-07-24) 

http://www.arm.com/products/processors/cortex-m/index.php
http://www.arm.com/products/processors/cortex-m/index.php
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There is a huge “ecosystem” surrounding ARM® processors because of their 

popularity – most mobile phones have an ARM® processor (based on the 

Cortex®-A Series), as does the Microsoft Surface, the Apple iPad, and the 

Raspberry Pi. 

In summary, there are many variants of ARM on the market and they all perform 

differently. However, if you are familiar with the ARM core, you should be able 

to move easily from chip to chip and vendor to vendor – this is the advantage of 

learning about and using a chip from the ARM ecosystem. 

Between 1991 and 2013, ARM shipped 50 billion units. By 2005, ARM was 

producing a billion units per year, and by 2009 the company was shipping a 

billion units every quarter. To date, ARM has 100 billion units in the market; by 

2021, the company expects to have shipped 100 billion more.4 

                                                 

4 https://www.tomshardware.com/news/arm-dynamiq-multicore-microachitecture,33947.html 

(Accessed 2018-04-26) 

https://www.tomshardware.com/news/arm-dynamiq-multicore-microachitecture,33947.html
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1.5 Embedded Systems Programming Languages 

There are just a handful of computer programming languages suitable for 

embedded systems. The requirements for a language to be suitable for embedded 

systems are: 

 Efficient compilation (small code size) 

 Portability (between devices) 

 Sufficient low-level operations (e.g. bit manipulation) 

 High-level constructs (e.g. pointers, strong types) 

 Availability of software libraries (e.g. math, signal processing) 

In all these respects, and for historical reasons, the C language is dominant in 

embedded systems programming. An IEEE survey from 2019 shows the top 10 

programming languages used in industry: 

 

 

 

Figure 1.6 – The Top 10 Embedded Systems Programming Languages 
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In Figure 1.6, note that Python does not have the smartphone symbol which 

represents “embedded systems”. You can see that the C family of languages (C, 

C++ and C#) are the most popular languages for embedded systems in industry, 

although Python variants, such as a MicroPython, are starting to become more 

popular. 

In this subject, we will be using just plain old C, and specifically C11 which is a 

superseded international standard (ISO/IEC 9899:2011). C18 is now the current 

standard (ISO/IEC 9899:2018), but compiler support in the “embedded world” 

for this standard is minimal at this time. 

If you are comfortable and proficient in the C language (i.e. you consider 

yourself an advanced C programmer), you are welcome to program in C++. 
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1.6 The Apollo Guidance Computer (AGC) 

A generation ago, in the 1960’s, humans decided to go to the moon – this was 

dubbed the “Apollo program” by the United Stated of America’s National 

Aeronautics and Space Administration (NASA). This was an audacious goal, 

and to get there demanded huge technological advancements. One of the key 

technologies developed in that era was the Apollo Guidance Computer (AGC) – 

the very first silicon integrated circuit based computer. It was developed by a 

team at the Massachusetts Institute of Technology (MIT) Instrumentation Lab in 

the 1960’s. Without it, humans would not have made it to the moon. The design 

and programming of the AGC set the stage for the development of embedded 

systems and computers – just about every principle and architecture of the 

hardware and software has been adopted by subsequent technology. The 

influence of the AGC cannot be overstated! 

 

Wikimedia Commons 

You have to remember that when the Apollo program began, computers were 

still gigantic machines that took up whole rooms. The task of the MIT team 

(which ultimately expanded to over 400 engineers and programmers) was to 

handle the complexity of space navigation with a digital computer that weighed 

only 32 kg, consumed only 55 W of power, had the computing power of a 

modern hand-held calculator and the dimensions of 61 x 32 x 17 cm. 

The AGC was the 
first ever digital 
computer based on 
silicon integrated 
circuits – and the 
first to run a real-
time operating 
system 



1.19 

PMcL The Apollo Guidance Computer (AGC) Index 

2020  1 - Embedded Systems 

Each Apollo mission to the Moon carried two AGCs, one in the Command and 

Service Module (CSM) and the other in the Lunar Module (LM). In their 

hardware the two machines were nearly identical; software tailored them to their 

distinctive functions. 

For a taste of what the computers were asked to accomplish, consider the 

workload of the lunar module’s AGC during a critical phase of the flight – the 

powered descent to the Moon’s surface. The first task was navigation: measuring 

the craft’s position, velocity, and orientation, then plotting a trajectory to the 

target landing site. Data came from the gyroscopes and accelerometers of an 

inertial guidance system, supplemented in the later stages of the descent by 

readings from a radar altimeter that bounced signals off the Moon’s surface. 

  Wikimedia Commons 

After calculating the desired trajectory, the AGC had to swivel the nozzle of the 

rocket engine to keep the capsule on course. At the same time it had to adjust the 

magnitude of the thrust to maintain the proper descent velocity. These guidance 

and control tasks were particularly challenging because the module’s mass and 

centre of gravity changed as fuel was consumed and because a spacecraft sitting 

atop a plume of rocket exhaust is fundamentally unstable – like a broomstick 

balanced upright on the palm of your hand. 

Along with the primary tasks of navigation, guidance, and control, the AGC also 

had to update instrument displays in the cockpit, respond to commands from the 

astronauts, and manage data communications with ground stations. Such 

multitasking is routine in computer systems today. In the early 1960s, however, 

the tools and techniques for creating an interactive, “real-time” computing 

environment were in a primitive state. 

The lunar module 
returning from the 
moon to rendezvous 
with the Apollo 11 
command module 
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Hardware 

The AGC’s processor specifications don’t seem impressive today: 

 34 instructions 

 2048 words of erasable memory 

 36864 words of read-only memory 

 16-bit word format (15 data + 1 parity) 

 1.024 MHz clock 

The hardware was built from just one type of logic gate – the 3-input NOR gate. 

There were only 2800 integrated circuits (ICs) used in the design – each IC was 

a dual 3-input NOR gate. 

 

Charles Stark Draper Laboratory Archives, Photograph Number 40589-C 

They were connected on the back of a flat panel via welds and wire wrap, and 

then cast in epoxy resin. 

 

Wikimedia Commons 

The AGC hardware 
logic was built 
entirely from 3-input 
NOR gates 

https://en.wikipedia.org/wiki/Wire_wrap
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In the CSM the AGC was connected to an inertial measurement unit (IMU), a 

hand controller, a telemetry receiver and transmitter, an engine command unit, a 

reaction control system, a VHF communication system, an optics subsystem 

with a sextant and a telescope, various analog displays, and a display/keyboard 

unit. 

 

The peripherals were fed directly into memory-mapped I/O channels that were 

accessible only by special I/O instructions. There were 7 input channels and 14 

output channels, all 16-bits wide. 

There were 20 “involuntary counters” which were memory locations which 

functioned as up/down counters or shift registers. Hardware, such as the Inertial 

Measurement Unit, were fed directly into the counters which then represented 

accelerometer and gimbal changes. The counters were updated directly by 

hardware, so the software was not interrupted. Only when a counter overflowed 

would an interrupt be triggered. 

The AGC also had a power-saving mode for use in midcourse flight, but this was 

never used (it was left on full power for all phases of the mission). 

  

The AGC interfaced 
to many types of 
peripherals in real-
time. This picture 
shows the 
peripherals it 
connected to in the 
Command and 
Service Module. 
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In the Lunar Module the AGC was connected to a similar set of peripherals, but 

this time also had a landing radar, a rendezvous radar, and 2 engine control units 

– one for descent and one for ascent. 

 

The AGC system had an interface for the astronaut to communicate directly with 

it. Engineer Ramon Alonso came up with a simple display and keyboard, named 

the “DSKY” (pronounced DIS-kee), where two-digit numbers represent 

programs, verbs and nouns. The astronaut punched data and commands into the 

system. When the computer requested the astronaut to take some action, the 

numbers would flash to attract attention. 

  NASA 

The AGC and 
peripherals for the 
Lunar Module. 

The DSKY shown at 
the bottom of the 
control panel in the 
Lunar Module used 
in Apollo 16. Note 
the detailed 
information available 
on the fold-down 
pallet at the bottom 
of the image. 
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Software 

The fact that the AGC had such limited computing power meant the software 

had to be very special. When the design requirements for the AGC were defined, 

software programming techniques did not exist so it had to be designed from 

scratch. A real-time operating system (RTOS) was designed by Hal Laning, with 

no prior examples to guide him. The AGC effectively prioritised certain “tasks”, 

and let the “unimportant” ones languish whilst carrying out the vital control and 

navigation tasks as the lunar module landed. 

The bulk of the software was stored in read-only rope memory and thus couldn't 

be changed in operation, but some key parts of the software were stored in 

standard read-write magnetic-core memory and could be overwritten by the 

astronauts using the DSKY interface. 

 Raytheon 

During the Apollo 14 mission, a faulty abort switch would have caused an 

aborted landing attempt when the lunar descent was begun. The hardware error 

was detected shortly before descent. In less than 2 hours, the problem was 

diagnosed and a software patch was developed, tested, and relayed to the 

astronauts to key in by hand using the DSKY – resulting in a successful lunar 

landing! 

The RTOS in the AGC became foundational to software engineering. It 

consisted of the Exec, a batch job-scheduler using cooperative multi-tasking, and 

an interrupt-driven pre-emptive scheduler called the Waitlist which could 

schedule multiple timer-driven 'tasks'. All work was assigned a priority. The 

Exec selected the job with the highest priority to run. Every 20 ms, the job queue 

was checked for the highest priority task, which was then executed. A “night 

watchman”, which executed every 1.2 s, verified that a job was not looping and 

new work was being scheduled. 

The AGC’s core 
rope memory – a 
technique of 
physically weaving 
software into high-
density storage 

https://en.wikipedia.org/wiki/J._Halcombe_Laning
https://en.wikipedia.org/wiki/Rope_memory
https://en.wikipedia.org/wiki/Magnetic-core_memory
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If errors were encountered, a “Program Alarm” was issued, and depending on 

the severity of the error, could force a computer “restart” – in which all critical 

data was saved, jobs were terminated, hardware was reinitialized, and programs 

were re-entered at predefined restart points. The whole process of error recovery 

took only a few seconds. If you watch a video of the Apollo 11 moon landing, 

you can hear the call of “1201” and “1202” master alarms, indicating the AGC 

was overloaded. The design of the AGC software, functioning exactly as it was 

designed to do (by restarting), is the reason Neil Armstrong and Buzz Aldrin 

were able to land on the moon on 20 July 1969, despite experiencing the 

hardware fault that led to the master alarms. 

An interrupt system was implemented in the AGC via five “vectored interrupts”. 

The AGC responded to each interrupt by temporarily suspending the current 

program, executing a short interrupt service routine, and then resuming the 

interrupted program. 

The AGC also had a sophisticated software interpreter that implemented a virtual 

machine with more complex and capable pseudo-instructions than the native 

AGC. These instructions simplified the navigational programs. Interpreted code, 

which featured double precision trigonometric, scalar and vector arithmetic (16 

and 24-bit), and even a (matrix × vector) instruction, could be mixed with native 

AGC code. While the execution time of the pseudo-instructions was increased 

(due to the need to interpret these instructions at runtime) the interpreter 

provided many more instructions (more than 100) than the AGC natively 

supported (34). The use of pseudo-instructions lowered the memory (at that time 

memory was very expensive) and eased the burden of programming complex 

mathematical and logical operations. 

  

https://youtu.be/xc1SzgGhMKc?t=852
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine
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Margaret Hamilton 

Margaret Hamilton, who ended up leading the on-board flight software team for 

both the CSM and LM, said this of the software: 

The biggest challenge: The astronauts’ lives depended on our systems and 

software being man-rated. Not only did it have to work, it had to work the 

first time. Because of the never-ending focus on making everything as 

perfect as possible, anything to do with the prevention of errors was not 

only not off the table, but it was top priority both during development and 

in real-time. Not only did the software itself have to be ultra-reliable, but 

the software would need to have the flexibility to detect anything 

unexpected and recover from it in real-time; that is, at any time during the 

entirety of a real mission. To meet the challenge, the software was 

developed with an ongoing, overarching focus on finding ways to 

capitalize on the asynchronous and distributed functionality of the system 

at large, in order to perfect the more systems-oriented aspects of the flight 

software. 

Our software was designed to be asynchronous to have the flexibility to 

handle the unpredictable, and so that higher-priority jobs would have the 

capability to interrupt lower-priority jobs, based on events as they 

happened, especially in the case of an emergency. This goal was 

accomplished by our correctly (and wisely) assigning a unique priority to 

every process in the flight software, to ensure that all the events in the 

flight software would take place in the correct order and at the right time 

relative to everything else that was going on. Steps taken earlier within the 

software to create solutions within an asynchronous software environment 

became a basis for solutions within a distributed systems-of-systems 

environment. 

The responsibilities of the people within the on-board flight software 

group (the software engineers) included: the development of software 

algorithms designed by various senior scientists for the Apollo Command 

Module and Lunar Lander; the overall design of the structure (the "glue") 

of the software as an integrated system-of-systems; ensuring that all the 

modules within the flight software – including all aspects of the modules 

such as those related to timing, data and priority – were completely 

integrated; the design and development of the "systems-software"; and the 

design of the "software engineering" techniques, which included rules, 

methods, tools, and processes for ensuring that the software being 

developed would result in an ultra-reliable system (i.e., making sure that 

the software would have no errors, both during development and in real-

time). Because of these requirements, the team developed and evolved 

"software engineering" techniques for both the development of the 

software, the testing of the software (included 6 formal levels of testing) 

within a system-of-systems environment, and the management of evolving 

and daily releases that contained and documented everyone's most recent 

changes (and the reason for the changes) for each and every mission. 

Methods and tools evolved for these kinds of software-management 

techniques as well. 

Margaret Hamilton 
started on the Apollo 
program in a 
position 
programming the 
AGC – by the end of 
the program she 
was the director of 
software 
engineering of all 
on-board software. 

 
Wikimedia Commons 

https://en.wikipedia.org/wiki/Margaret_Hamilton_(scientist)
https://en.wikipedia.org/wiki/File:Margaret_Hamilton_-_restoration.jpg
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Legacy 

Being new and untested technology, NASA was reluctant to let the AGC be the 

primary means of control and navigation of the Command and Service Module 

(CSM) spacecraft. Ultimately, primary navigation of the CSM was performed 

using Earth-based radar systems during the majority of the moon mission (using 

Doppler shift radar for position and velocity). However, data generated by the 

AGC would provide critical navigational data to the crew about spacecraft 

position, direction, velocity and acceleration when they were completely cut off 

from ground radar and communications – while orbiting the far side of the moon. 

The AGC was, however, absolutely essential for the Lunar Module (LM). It 

carried programs for the three phases of landing – braking, approach, and final 

descent. In the final descent (started between 300 to 150 m altitude), the LM 

would be manually flown by the astronauts for about a minute. There was only 

one attempt at landing – if anything went wrong, astronauts would have to hit an 

abort button which would fire the ascent engines and return the LM to the 

orbiting CSM. 

At the time, the AGC was the latest and most advanced fly-by-wire and inertial 

guidance system, the first digital flight computer, the most advanced miniature 

computer, the first computer to use silicon chips, and the first on-board computer 

where the lives of crew depended on it functioning as advertised. 

By the end of the last Apollo mission in 1972, the AGC was hopelessly outdated. 

But it had flown on 15 manned missions, including nine moon flights, six lunar 

landings, and three Skylab missions. It was also used in experimental fly-by-

wire aircraft. It never failed. 

The design of the AGC has a powerful human resonance, and the history of its 

development offers a glimpse of the cultural milieu of a high-profile, high-risk, 

high-stress engineering project. I encourage you to delve deeper into its history. 

The AGC’s legacy lives on in every real-time embedded system. 
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Introduction 

This document gives a basic overview of programming in C for an embedded 

system – based on a specific 32-bit ARM® processor, NXP’s “K64”. 

2.1 Program Structure 

Some basic terms will be introduced so that you get a feel for the language. It is 

not important yet that you understand the example programs fully. The examples 

are included to illustrate particular features of the language. 

2.1.1 Case Study 1: Microcomputer-Based Lock 

To illustrate the software development process, we will implement a simple 

digital lock. The lock system has 7 toggle switches and a solenoid as shown in 

the following figure. 

 

K64

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

+5V

solenoid

+5V

 

 

Figure 2.1 – Digital lock hardware 

If the 7-bit binary pattern on Port A bits 6-0 becomes 0100011 for at least 

10 ms, then the solenoid will activate. The 10 ms delay will compensate for the 

switch bounce. We see that Port A bits 6-0 are input signals to the computer and 

Port A bit 7 is an output signal. 

A digital lock using a 
microcontroller 
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Before we write C code, we need to develop a software plan. Software 

development is an iterative process. The steps below are listed in a 1, 2, 3, … 

order, whereas in reality we iterate these steps over and over. 

1. We begin with a list of the inputs and outputs. We specify the range of 

values and their significance. In this example we will use GPIOA. Bits 6-

0 will be inputs. The 7 input signals represent an unsigned integer from 

0 to 127. Port A bit 7 will be an output. If GPIOA bit 7 is 1 then the 

solenoid will activate and the door will be unlocked. In C we use #define 

macros to assign symbolic names, GPIOA_PSOR, GPIOA_PCOR and 

GPIOA_PDDR, to the corresponding addresses of these registers, 

0x400FF004, 0x400FF008 and 0x400FF014. 

#define GPIOA_PSOR *(uint32_t volatile *)(0x400FF004) 
#define GPIOA_PCOR *(uint32_t volatile *)(0x400FF008) 
#define GPIOA_PDDR *(uint32_t volatile *)(0x400FF014) 

2. Next, we make a list of the required data structures. Data structures are 

used to save information. If the data needs to be permanent, then it is 

allocated in global space. If the software will change its value then it will 

be allocated in RAM. In this example we need a 16-bit unsigned counter.  

uint16_t Count; 

If a data structure can be defined at compile time and will remain fixed, 

then it can be allocated in Flash memory. In this example we will define 

an 8-bit fixed constant to hold the key code, which the operator needs to 

set to unlock the door. The compiler will place these lines with the 

program so that they will be defined in Flash memory.  

const uint8_t KEY = 0x23; /* key code */ 

It is not clear at this point exactly where in Flash this constant will be, 

but luckily for us, the compiler will calculate the exact address 

automatically. After the program is compiled, we can look in the listing 

file or in the map file to see where in memory each structure is allocated. 

  

Accessing 
microcontroller ports 
in C 

Iterative steps used 
to write software 
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3. Next we develop the software algorithm, which is a sequence of 

operations we wish to execute. There are many approaches to describing 

the algorithm. Experienced programmers can develop the algorithm 

directly in the C language. On the other hand, most of us need an abstract 

method to document the desired sequence of actions. Flowcharts and 

pseudo-code are two common descriptive formats. There are no formal 

rules regarding pseudo-code, rather it is a shorthand for describing what 

to do and when to do it. We can place our pseudo-code as documentation 

into the comment fields of our program. The following figure shows a 

flowchart on the left and pseudo-code and C code on the right for our 

digital lock example. 

Count = 4000;

1) initialize port A
PA6-PA0 inputs
PA7 output

2) turn off solenoid

3) set counter to 4000

4) repeat indefinitely

if switch matches key then

a) if counter > 0 then

decrement counter

turn on solenoid

else

a) turn off solenoid

b) set counter to 4000

Psuedo Code

InitPortA();

(1)

if

C Code

while
{

((GPIOA_PDIR & 0x7f) == KEY)
{
if (Count)

GPIOA_PSOR = 0x80;

Count = 4000;

}
else
{
GPIOA_PCOR = 0x80;

}
}

else
Count--;

else

GPIOA_PCOR = 0x80;

Initialize ports

Solenoid = off

Count = 4000

switches

match key

Count = Count - 1Count

Solenoid = on

different

> 0

0

main

Solenoid = off

Count = 4000

 
 

Figure 2.2 – Digital lock software 

Normally we place the programs in Flash memory. Typically, the 

compiler will initialize the stack pointer to the last location of RAM. On 

the K64, the stack is initialized to 0x20000000 (the starting address of the 

internal SRAM). Next we write C code to implement the algorithm as 

illustrated in the above flowchart and pseudo-code. 

4. The last stage is debugging. 

A flowchart and 
corresponding 
pseudo-code and C 
code 
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2.1.2 Case Study 2: A Serial Port K64 Program 

Let's begin with a small program. This simple program is typical of the 

operations we perform in an embedded system. This program will read 8-bit data 

from parallel port C and transmit the information in serial fashion using the 

Universal Asynchronous Receiver/Transmitter  number 2 (UART2). The 

numbers in the first column are not part of the software, but have been added to 

simplify our discussion. 

1   /* Translates parallel input data to serial outputs */ 
2 
3   #define GPIOC_PDIR *(uint32_t volatile *)(0x400FF090) 
4   #define GPIOC_PDDR *(uint32_t volatile *)(0x400ff094) 
5   #define UART2_BD   *(uint16_t volatile *)(0x4006C000) 
6   #define UART2_C2   *(uint8_t  volatile *)(0x4006C003) 
7   #define UART2_S1   *(uint8_t  volatile *)(0x4006C004) 
8   #define UART2_D    *(uint8_t  volatile *)(0x4006C007) 
9   #define TDRE 0x80 
10 
11  void UART_Init(void) 
12  {  
13    /* 9600 baud, 16 MHz Xtal assumed */ 
14    UART2_BD = 0x34; 
15    /* enable UART, no interrupts */ 
16    UART2_C2 = 0x0C;      
17  } 
18 
19  /* Data is 8 bit value to send out serial port */ 
20  void UART_Out(const uint8_t data) 
21  { 
22    /* Wait for TDRE to be set */ 
23    while ((UART2_S1 & TDRE) == 0); 
24    /* then output */ 
25    UART2_D = data; 
26  }               
27 
28  void main(void) 
29  { 
30    unsigned char info; 
31    /* initialise serial port */ 
32    UART_Init(); 
33    /* specify Port C as input */ 
34    GPIOC_PDDR = 0; 
35    while (1) 
36    { 
37      /* input 8 bits from parallel port C */ 
38      info = (unsigned char)GPIOC_PDIR; 
39      /* output 8 bits to serial port */ 
40      UART_Out(info); 
41    } 
42   }    

Listing 2.1 – Sample K64 Program 

Note: This program is vastly simplified and will not run on a K64. 

Sample serial port 
program for the K64 
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The first line of the program is a comment giving a brief description of its 

function. Lines 3 through 8 define macros that provide programming access to 

ports and registers of the K64. These macros specify the format (unsigned 8, 16 

or 32 bit) and address (the K64 employs memory mapped I/O). For example, in 

line 3 the #define invokes the preprocessor to replace each instance of 

GPIOC_PDIR with *(uint32_t volatile *)(0x400FF090).  

Lines 11-17 define a function or procedure that when executed will initialize the 

UART port. The assignment statement is of the form value at address = data. 

In particular line 14 (UART2_BD = 0x34;) will output a hexadecimal 0x34 to I/O 

configuration register at location 0x4006C000. Similarly line 16 will output a 

hexadecimal 0x0C to I/O configuration register at location 0x4006C003. Notice 

that comments can be added virtually anywhere in order to clarify the software 

function. UART_Init is an example of a function that is executed only once at the 

beginning of the program. 

Line 9 is another #define that specifies the transmit data ready empty (TDRE) bit 

as bit 7. This #define illustrates the usage of macros that make the software more 

readable. Line 19 is a comment. Lines 20-26 define another function, UART_Out, 

having an 8-bit input parameter that when executed will output the data to the 

UART2 port. In particular line 23 will read the UART2 status register at 

0x4006C004 over and over again until bit 7 (TDRE) is set. Once TDRE is set, it is 

safe to start another serial output transmission. This is an example of I/O polling. 

Line 25 copies the input parameter, data, to the serial port, starting a serial 

transmission. Line 25 is an example of an I/O output operation.  

Lines 28 through 42 define the main program. After some brief initialization this 

is where the software will start after a reset or after being powered up. The 

sequence unsigned char info in line 30 will define a local variable. Notice that 

the size (char means 8-bit), type (unsigned) and name (info) are specified. Line 

32 calls the initialization function UART_Init. Line 34 writes a 0 to the I/O 

configuration register at 0x400ff094, specifying all 32 bits of PORTC will be inputs 

(writing ones to a direction register specifies the bits as outputs). The sequence 

while (1) {...} defines a control structure that executes forever and never 
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finishes. In particular lines 37 to 40 are repeated over and over without end. Most 

software on embedded systems will run forever (or until the power is removed). 

Line 38 will read Port C and copy the voltage levels into the variable info. This 

is an example of an I/O input operation. Each of the lower 8 lines of the 32-bit 

PORTC corresponds to one of the 8 bits of the variable info. A digital logic high 

(a voltage above 2 V), is translated into a 1. A digital logic low (a voltage less 

than 0.7 V) is translated into a 0. Line 40 will execute the function UART_Out that 

will transmit the 8-bit data via the UART2 serial port. 

With the MCUXpresso (MX) IDE, the system installs a reset vector address and 

will create code to initialize then jump to the main program automatically. 

2.1.3 Free field language 

In some programming languages the column position and line number affect the 

meaning. On the contrary, C is a free field language. Except for preprocessor 

lines (that begin with #), spaces, tabs and line breaks have the same meaning. 

The other situation where spaces, tabs and line breaks matter is string constants. 

We cannot type tabs or line breaks within a string constant. This means we can 

place more than one statement on a single line, or place a single statement across 

multiple lines. For example the function UART_Init could have been written 

without any line breaks 

void UART_Init(void){UART2_BD=0x34; UART2_C2=0x0C;} 

Since we never make hardcopy printouts of our software, 

it is not necessary to minimize the number of line breaks. 
(2.1) 

 

Use a programming 
style that is easy to 
read 
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Similarly we could have added extra line breaks: 

void UART_Init(void) 
{  
UART2_BD= 
   0x34; 
UART2_C2= 
   0x0C; 
} 

Just because C allows such syntax, it does not mean it is desirable. After much 

experience you will develop a programming style that is easy to understand. 

Although spaces, tabs, and line breaks are syntactically equivalent, their proper 

usage will have a profound impact on the readability of your software. 

A token in C can be a user defined name (e.g., the variable info and function 

UART_Init) or a predefined operation (e.g., *, unsigned, while). Each token must 

be contained on a single line. We see in the above example that tokens can be 

separated by white spaces (space, tab, line break) or by the special characters, 

which we can subdivide into punctuation marks and operations. Punctuation 

marks (semicolons, colons, commas, apostrophes, quotation marks, braces, 

brackets, and parentheses) are very important in C. It is one of the most frequent 

sources of errors for both beginning and experienced programmers. 

Punctuation Name Meaning 

; semicolon End of statement 

: colon Defines a label 

, comma Separates elements of a list 

( ) parentheses Start and end of a parameter list 

{ } braces Start and stop of a compound statement 

[ ] brackets Start and stop of an array index 

" " quotation marks Start and stop of a string 

' ' apostrophes Start and stop of a character constant 

Table 2.1 – Special characters can be punctuation marks 

Punctuation marks 
separate tokens 
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The next table shows the single character operators. 

Operation Name Meaning 

= equals Assignment statement 

@ at Address of 

? question mark Selection 

< less than Less than 

> greater than Greater than 

! exclamation mark Logical not (true to false, false to true) 

~ tilde 1's complement 

+ plus Addition 

- minus Subtraction 

* asterisk Multiplication or pointer dereference 

/ back slash division 

% percent Modulo, division remainder 

| pipe Bitwise OR 

& ampersand Bitwise AND, or address of 

^ hat Bitwise XOR 

. period Used to access parts of a structure 

Table 2.2 – Special characters can be operators 

Special characters 
can be operators 
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The next table shows the operators formed with multiple characters. 

Operation Name Meaning 

== is equal to Equal to comparison 

<= less than or equal to Less than or equal to 

>= greater than or equal to Greater than or equal to 

!= not equal to Not equal to 

<< shift left Shift left 

>> shift right Shift right 

++ plus plus Increment 

-- minus minus Decrement 

&& logical and Boolean AND 

|| logical or Boolean OR 

+= plus equals Add value to 

-= minus equals Subtract value to 

*= asterisk equals Multiply value to 

/= slash equals Divide value to 

|= pipe equals Bitwise OR value to 

&= ampersand equals Bitwise AND value to 

^= hat equals Bitwise XOR value to 

<<= shift left equals Shift value left 

>>= shift right equals Shift value right 

%= percent equals Modulo divide value to 

-> Arrow Pointer to a part of a structure 

Table 2.3 – Multiple special characters also can be operators 

Multiple special 
characters can also 
be operators 



2.13 

PMcL Program Structure Index 

2020  2 - Embedded C 

The following section illustrates some of the common operators. We begin with 

the assignment operator. 

/* Three variables */ 
short x, y, z; 
void Example(void) 
{ 
  /* set the value of x to 1 */ 
  x = 1;           
  /* set the value of y to 2 */ 
  y = 2;           
  /* set the value of z to the value of x (both are 1) */ 
  z = x; 
  /* all three to zero */ 
  x = y = z = 0;   
} 

Listing 2.2 – Simple program illustrating C arithmetic operators 

Notice that in the line x = 1;, x is on the left hand side of the =. This specifies 

the address of x is the destination of assignment. On the other hand, in the line z 

= x;, x is on the right hand side of the =. This specifies the value of x will be 

assigned into the variable z. Also remember that the line z = x; creates two 

copies of the data. The original value remains in x, while z also contains this 

value. 

Next we will introduce the arithmetic operations addition, subtraction, 

multiplication and division. The standard arithmetic precedencies apply. 

/* Three variables */ 
short x, y, z; 
void Example(void) 
{  
  /* set the values of x and y */ 
  x = 1; y = 2; 
  /* arithmetic operation */ 
  z = x + 4 * y; 
  /* same as x = x + 1; */ 
  x++; 
  /* same as y = y - 1; */ 
  y--; 
  /* left shift same as x = 4 * y; */ 
  x = y << 2; 
  /* right shift same as x = y / 4; */ 
  z = y >> 2; 
  /* same as y = y + 2; */ 
  y += 2; 
} 

Listing 2.3 – Simple program illustrating C arithmetic operators 

Arithmetic operators 



2.14 

Index Program Structure PMcL 

2 - Embedded C  2020 

Next we will introduce a simple conditional control structure. 

#define GPIOB_PSOR *(uint32_t volatile *)(0x 400FF044) 
#define GPIOE_PDIR *(uint32_t volatile *)(0x 400FF110) 
 
void Example(void) 
{  
  /* test bit 2 of PORTE */ 
  if ((GPIOE_PDIR & 0x00000004) == 0) 
  {  
    /* if PORTE bit 2 is 0, then make PORTB = 0 */ 
    GPIOB_PSOR = 0; 
  }          
  else 
  { 
    /* if PORTE bit 2 is not 0, then make PORTB = 100 */ 
    GPIOB_PSOR = 100; 
  }      
} 

Listing 2.4 – The C if-else control structure 

GPIOB_PSOR is an output port, and GPIOE_PDIR is an input port on the K64. The 

expression (GPIOE_PDIR & 0x00000004) will return 0 if PORTE bit 2 is 0 and will 

return a 4 if PORTE bit 2 is 1. The expression (GPIOE_PDIR & 0x00000004) == 0 

will return TRUE if PORTE bit 2 is 0 and will return a FALSE if PORTE bit 2 is 1. The 

statement immediately following the if will be executed if the condition is TRUE. 

The else statement is optional.  

The C if-else 
control structure 
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Like the if statement, the while statement has a conditional test (i.e., returns a 

TRUE/FALSE). 

#define GPIOA_PTOR *(uint32_t volatile *)(0x400FF00C) 
 
void Example(void) 
{ 
  unsigned char counter; 
   /* loop until counter equals 200 */  
  counter = 0; 
  while (counter != 200) 
  { 
    /* toggle PORTA bit 3 output */ 
    GPIOA_PTOR = 0x00000008; 
    /* increment counter */ 
    counter++; 
  }   
} 

Listing 2.5 – The C while control structure 

GPIOA_PTOR is a register used to toggle the PORTA pins on the K64. The statement 

immediately following the while will be executed over and over until the 

conditional test becomes FALSE.  

The for control structure has three control expressions and a body. 

#define GPIOA_PTOR *(uint32_t volatile *)(0x400FF00C) 
 
void Example(void) 
{ 
  unsigned char counter; 
  /* loop until counter equals 200 */  
  for (counter = 0; counter < 200; counter++) 
  { 
    /* toggle PORTA bit 3 output */ 
    GPIOA_PTOR = 0x00000008; 
  }     
} 

Listing 2.6 – The C for loop control structure 

The initializer expression, counter = 0, is executed once at the beginning. 

The loop test expression, counter < 200, is evaluated at the beginning of each 

iteration through the loop, and if it is FALSE then the loop terminates. 

Then the body, GPIOA_PTOR = 0x00000008;, is executed. 

Finally, the counting expression, counter++, is evaluated at the end of each loop 

iteration and is usually responsible for altering the loop variable. 

The C while control 
structure 

The C for loop 
control structure 
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2.1.4 Precedence 

As with all programming languages the order of the tokens is important. There 

are two issues to consider when evaluating complex statements. The precedence 

of the operator determines which operations are performed first. 

short Example(short x, short y) 
{ 
  short z;  
  z = y + 2 * x; 
  return z; 
} 

In the preceding example, the 2 * x is performed first because * has higher 

precedence than + and =. The addition is performed second because + has higher 

precedence than =. The assignment = is performed last. Sometimes we use 

parentheses to clarify the meaning of the expression, even when they are not 

needed. Therefore, the line z = y + 2 * x; could also have been written z = 2 

* x + y; or z = y + (2 * x); or z = (2 * x) + y;. 

Precedence of 
operators in C 
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2.1.5 Associativity 

Associativity determines the left to right or right to left order of evaluation when 

multiple operations of the precedence are combined. For example + and - have 

the same precedence, so how do we evaluate the following? 

z = y – 2 + x; 

We know that + and - associate from left to right. This function is the same as 

z = (y – 2) + x;, meaning the subtraction is performed first because it is more 

to the left than the addition. Most operations associate left to right, but the 

following table illustrates that some operators associate right to left. 

Precedence Operators Associativity 

highest () [] . -> 

++(postfix) -–(postfix) 

left to right 

 ++(prefix) –-(prefix) ! ~ sizeof(type) 
+(unary) –(unary) &(address) 
*(dereference) 

right to left 

 * / % left to right 

 + - left to right 

 << >> left to right 

 < <= > >= left to right 

 == != left to right 

 & left to right 

 ^ left to right 

 | left to right 

 && left to right 

 || left to right 

 ?: right to left 

 = += -= *= /= %= <<= >>= 

|= &= ^= 

right to left 

lowest , left to right 

Table 2.4 – Precedence and associativity determine the order of operation 

When confused about precedence (and aren’t we all?) add 

parentheses to clarify the expression. 
(2.2) 

Precedence and 
associativity 
determine the 
order of operation 
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2.1.6 Comments 

There are two types of comments. The first type explains how to use the 

software. These comments are usually placed at the top of the file, within the 

header file, or at the start of a function. The reader of these comments will be 

writing software that uses or calls these routines. Lines 1 and 19 in Listing 2.1 

are examples of this type of comment. The second type of comments assist a 

future programmer (ourselves included) in changing, debugging or extending 

these routines. We usually place these comments within the body of the 

functions. The comments above each line in Listing 2.1 are examples of the 

second type. We place comments on separate lines so that the implementation is 

separate from the explanation. 

Comments begin with the /* sequence and end with the */ sequence. They may 

extend over multiple lines as well as exist in the middle of statements. The 

following is the same as UART2_BD = 0x34; 

UART2_BD /*specifies baud rate*/=0x34/*9600 bits/sec*/; 

Some compilers do allow for the use of C++ style comments. The start comment 

sequence is // and the comment ends at the next line break or end of file. Thus, 

the following two lines are equivalent: 

UART_Init();  /* turn on UART serial port */ 
UART_Init();  // turn on UART serial port 

We will assume (for the sake of clarity) that C++ comments are allowed in this 

document from now on! 

C does allow the comment start and stop sequences within character constants 

and string constants. For example the following string contains all seven 

characters, not just the ac: 

const char str[10]="a/*b*/c"; 

Some compilers unfortunately do not support comment nesting. This makes it 

difficult to comment out sections of logic that are themselves commented. 

Comments in the C 
language 

Comments in the 
C++ language 
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For example, the following attempt to comment-out the call to UART_Init will 

result in a compiler error. 

void main(void) 
{ 
  unsigned char info; 
/* 
  /* turn on UART serial port */ 
  UART_Init(); 
*/ 
  /* specify Port C as input */ 
  GPIOC_PDDR = 0; 
  while (1) 
  { 
    // input 8 bits from parallel port C 
    info = (unsigned char)GPIOC_PDIR; 
    // output 8 bits to serial port 
    UART_Out(info); 
  } 
}     

The conditional compilation feature of a compiler can be used to temporarily 

remove and restore blocks of code. 

2.1.7 Preprocessor Directives 

Preprocessor directives begin with # in the first column. As the name implies 

preprocessor commands are processed first, i.e., the compiler passes through the 

program handling the preprocessor directives. We have already seen the macro 

definition (#define) used to define I/O ports and bit fields. A second important 

directive is the #include, which allows you to include another entire file at that 

position within the program. The following directive will define all the K64 I/O 

port names.  

#include <MK64F12.h> 

Preprocessor 
directives are 
processed first by 
the compiler 
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2.1.8 Global Declarations 

An object may be a data structure or a function. Objects that are not defined 

within functions are global. Objects that may be declared in MX include: 

 integer variables (16-, 32- or 64-bit signed or unsigned)  

 character variables (8-bit signed or unsigned) 

 arrays of integers or characters  

 pointers to integers or characters  

 arrays of pointers 

 structure (grouping of other objects) 

 unions (redefinitions of storage) 

 functions  

MX supports 32-bit long integers, 64-bit long long integers, and single- and 

double-precision floating point types. We will focus on 8-, 16- and 32-bit 

objects. The object code generated with the compiler is often more efficient 

using 32-bit parameters rather than 8- or 16-bit ones. 

2.1.9 Declarations and Definitions 

It is important for the C programmer to distinguish the two terms declaration 

and definition. A function declaration specifies its name, its input parameters and 

its output parameter. Another name for a function declaration is prototype. A 

data structure declaration specifies its type and format. On the other hand, a 

function definition specifies the exact sequence of operations to execute when it 

is called. A function definition will generate object code (machine instructions 

to be loaded into memory that perform the intended operations). A data structure 

definition will reserve space in memory for it. The confusing part is that the 

definition will repeat the declaration specifications. We can declare something 

without defining it, but we cannot define it without declaring it. For example the 

declaration for the function UART_Out could be written as: 

void UART_Out(const unsigned char); 

 

Global declaration 
objects – data or 
functions 

Declarations specify 
an object – 
definitions define 
what they are (for 
data) or what they 
do (for functions) 
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We can see that the declaration shows us how to use the function, not how the 

function works. Because the C compilation is a one-pass process, an object must 

be declared or defined before it can be used in a statement. (Actually the 

preprocess performs a pass through the program that handles the preprocessor 

directives.) Notice that the function UART_Out was defined before it was used in 

Listing 2.1. The following alternative approach first declares the functions, uses 

them, and lastly defines the functions: 

// Translates parallel input data to serial outputs 
#define GPIOC_PDIR *(uint32_t volatile *)(0x400FF090) 
#define GPIOC_PDDR *(uint32_t volatile *)(0x400ff094) 
#define UART2_BD   *(uint16_t volatile *)(0x4006C000) 
#define UART2_C2   *(uint8_t  volatile *)(0x4006C003) 
#define UART2_S1   *(uint8_t  volatile *)(0x4006C004) 
#define UART2_D    *(uint8_t  volatile *)(0x4006C007) 
#define TDRE 0x80 
 
void UART_Init(void); 
void UART_Out(const unsigned char); 
 
void main(void) 
{ 
  unsigned char info; 
  // turn on UART serial port 
  UART_Init();     
  // specify Port C as input 
  GPIOC_PDDR = 0; 
  while (1) 
  { 
    // input 8 bits from parallel port C 
    info = (unsigned char)GPIOC_PDIR; 
    // output 8 bits to serial port 
    UART_Out(info); 
  } 
}  
 
void UART_Init(void) 
{  
  // 9600 baud 
  UART2_BD = 0x34; 
  // enable UART, no interrupts 
  UART2_C2 = 0x0C;      
}  
 
// Data is 8 bit value to send out serial port 
void UART_Out(const uint8_t data) 
{ 
  // Wait for TDRE to be set 
  while ((UART2_S1 & TDRE) == 0); 
  // then output 
  UART2_D = data; 
}               

Listing 2.7 – Alternate C program 

Function 
declarations 

Function 
definitions 
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An object may be said to exist in the file in which it is defined, since compiling 

the file yields a module containing the object. On the other hand, an object may 

be declared within a file in which it does not exist. Declarations of data structures 

that are defined elsewhere are preceded by the keyword extern. Thus 

short RunFlag; 

defines a 16-bit signed integer called RunFlag, whereas 

extern short RunFlag; 

only declares RunFlag to exist in another, separately compiled, module.  

Likewise, we can use external function declarations to access a function in 

another module. Thus the line 

extern void PITHandler(void); 

declares the function name and type just like a regular function declaration. The 

extern tells the compiler that the actual function exists in another module and 

the linker will combine the modules so that the proper action occurs at run time. 

The compiler knows everything about extern objects except where they are. The 

linker is responsible for resolving that discrepancy. The compiler simply tells 

the assembler that the objects are in fact external. And the assembler, in turn, 

makes this known to the linker. 

Use extern to 

specify that an 
object is defined 
elsewhere 
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2.1.10 Functions 

A function is a sequence of operations that can be invoked from other places 

within the software. We can pass 0 or more parameters into a function. The code 

generated by the MX pass the first few input parameters in Registers R0-R3 and 

the remaining parameters are passed on the stack. A function can have 0 or 1 

output parameter. The code generated by MX pass the return parameter in 

Register R0 (8- and 16-bit return parameters are promoted to 32-bits.) The add 

function below has two 16-bit signed input parameters, and one 16-bit output 

parameter. Again the numbers in the first column are not part of the software, 

but added to simplify our discussion. 

1  short add(short x, short y) 
2  { 
3    short z; 
4    z = x + y;  
5    if ((x > 0) && (y > 0) && (z < 0)) 
6      z=32767;  
7    if ((x < 0) && (y < 0) && (z > 0)) 
8      z=-32768;  
9    return z; 
10 }  
11 
12 void main(void) 
13 { 
14   short a, b; 
15   a = add(2000, 2000); 
16   b = 0; 
17   while (1) 
18   { 
19     b = add(b, 1); 
20   } 
21 } 

Listing 2.8 – Example of a function call 

Functions use 
parameters to 
receive input values, 
and sometimes 
return a single value 
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The interesting part is that after the operations within the function are performed 

control returns to the place right after where the function was called. In C, 

execution begins with the main program. The execution sequence is shown 

below: 

12 void main(void) 
13 { 
14   short a, b; 
15   a = add(2000, 2000);            // call to add 
1  short add(short x, short y) 
2  { 
3    short z; 
4    z = x + y;                      // z = 4000 
5    if ((x > 0) && (y > 0) && (z < 0)) 
6      z=32767;  
7    if ((x < 0) && (y < 0) && (z > 0)) 
8      z=-32768;  
9    return z; 
10 }  // return 4000 from call 
16   b = 0; 
17   while (1) 
18   { 
19     b = add(b, 1);                // call to add 
1  short add(short x, short y) 
2  { 
3    short z; 
4    z = x + y;                      // z = 1 
5    if ((x > 0) && (y > 0) && (z < 0)) 
6      z=32767;  
7    if ((x < 0) && (y < 0) && (z > 0)) 
8      z=-32768;  
9    return z; 
10 }  // return 1 from call 
20   } 
17   while (1) 
18   { 
19     b = add(b, 1);                // call to add 
1  short add(short x, short y) 
2  { 
3    short z; 
4    z = x + y;                      // z = 2 
5    if ((x > 0) && (y > 0) && (z < 0)) 
6      z=32767;  
7    if ((x < 0) && (y < 0) && (z > 0)) 
8      z=-32768;  
9    return z; 
10 }  // return 2 from call 
20   } 

Notice that the return from the first call goes to line 16, while all the other returns 

go to line 20. The execution sequence repeats lines 17, 18, 19, 1-10, 20 

indefinitely. 
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C does not allow for the nesting of procedural declarations. In other words you 

cannot define a function within another function. In particular all function 

declarations must occur at the global level.  

A function definition consists of two parts: a declaration specifier and a body. 

The declaration specifier states the return type, the name of the function and the 

names of arguments passed to it. The names of the argument are only used inside 

the function. In the add function above, the declaration specifier is 

short add(short x, short y) meaning it has one 16-bit output parameter, and 

two 16-bit input parameters. 

The parentheses are required even when there are no arguments. The following 

four statements are equivalent: 

void UART_Init(void){UART2_BD=0x34; UART2_C2=0x0C;} 
UART_Init(void){UART2_BD=0x34; UART2_C2=0x0C;} 
void UART_Init(){UART2_BD=0x34; UART2_C2=0x0C;} 
UART_Init(){UART2_BD=0x34; UART2_C2=0x0C;} 

The void should be included as the return parameter if there is none, because it 

is a positive statement that the function does not return a parameter. When there 

are no arguments, a void should be specified to make a positive statement that 

the function does not require parameters. 

The body of a function consists of a statement that performs the work. Normally 

the body is a compound statement between a {} pair. If the function has a return 

parameter, then all exit points must specify what to return. 

The program created by the MX compiler actually begins execution at a place 

called thumb_startup(). After a power on or hardware reset, the embedded 

system will initialize the stack and clear all global variables. After this brief 

initialization sequence the function named main() is called. Consequently, there 

must be a main() function somewhere in the program. If you are curious about 

what really happens, look in the file startup.c. For programs not in an 

embedded environment (e.g., running on your PC) a return from main() transfers 

control back to the operating system. As we saw earlier, software for an 

embedded system usually does not quit. 

A function definition 
has two parts – a 
declarator and a 
body 

The C compiler 
always calls a 
thumb_startup() 

function before 
calling main() 



2.26 

Index Program Structure PMcL 

2 - Embedded C  2020 

2.1.11 Compound Statements 

A compound statement (or block) is a sequence of statements, enclosed by 

braces, that stands in place of a single statement. Simple and compound 

statements are completely interchangeable as far as the syntax of the C language 

is concerned. Therefore, the statements that comprise a compound statement 

may themselves be compound; that is, blocks can be nested. 

Thus, it is legal to write 

// 3 wide 16 bit signed median filter 
short median(const short n1, const short n2, const short n3) 
{ 
  if (n1 > n2) 
  { 
    if (n2 > n3) 
      return n2;      // n1>n2,n2>n3    n1>n2>n3 
    else 
    { 
      if (n1 > n3) 
        return n3;    // n1>n2,n3>n2,n1>n3 n1>n3>n2 
      else 
        return n1;    // n1>n2,n3>n2,n3>n1 n3>n1>n2 
    } 
  } 
  else 
  { 
    if (n3 > n2) 
      return n2;      // n2>n1,n3>n2     n3>n2>n1 
    else 
    { 
      if (n1 > n3) 
        return n1;    // n2>n1,n2>n3,n1>n3 n2>n1>n3 
      else 
        return n3;    // n2>n1,n2>n3,n3>n1 n2>n3>n1 
    } 
  } 
} 

Listing 2.9 – Example of nested compound statements 

Although C is a free-field language, notice how the indenting has been added to 

the above example. The purpose of this indenting is to make the program easier 

to read. On the other hand since C is a free-field language, the following two 

statements are quite different 

if (n1 > 100) n2 = 100; n3 = 0; 
if (n1 > 100) {n2 = 100; n3 = 0;} 

A compound 
statement is 
enclosed by {} 

Compound 
statements may be 
nested 
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In both cases n2 = 100; is executed if n1 > 100. In the first case the statement 

n3 = 0; is always executed, while in the second case n3 = 0; is executed only 

if n1 > 100. 

2.1.12 Global Variables 

Variables declared outside of a function, like Count in the following example, 

are properly called external variables because they are defined outside of any 

function. While this is the standard term for these variables, it is confusing 

because there is another class of external variable, one that exists in a separately 

compiled source file. We will refer to variables in the current source file as 

globals, and we will refer to variables defined in another file as externals.  

There are two reasons to employ global variables. The first reason is data 

permanence. The other reason is information sharing. Normally we pass 

information from one module to another explicitly using input and output 

parameters, but there are applications like interrupt programming where this 

method is unavailable. For these situations, one module can store data into a 

global while another module can view it. 

In the following example, we wish to maintain a counter of the number of times 

UART_Out is called. This data must exist for the entire life of the program. This 

example also illustrates that with an embedded system it is important to initialize 

RAM-based globals at run time. Most C compilers (including MX) will 

automatically initialize globals to zero at startup.  

// number of characters transmitted 
unsigned short Count; 
#define TDRE 0x80 
 
void UART_Init(void) 
{  
  // initialize global counter 
  Count = 0;      
  // 9600 baud 
  UART2_BD=0x34; 
  // enable UART, no interrupts 
  UART2_C2=0x0C; 
}  
 

Global variables are 
used for data 
sharing between 
modules 

Global variables are 
initialized by the 
Init() function 
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void UART_Out(const uint8_t data) 
{ 
    // Incremented each time 
  Count = Count + 1;               
  // Wait for TDRE to be set 
  while ((UART2_S1 & TDRE) == 0); 
  // then output 
  UART2_D = data; 
}               

Listing 2.10 – A global variable contains permanent information 

Although the following two examples are equivalent, the second case is 

preferable because its operation is more self-evident. In both cases the global is 

allocated in RAM, and initialized at the start of the program to 1. 

short Flag = 1; 
void main(void) 
{  
  // main body goes here 
}  

Listing 2.11 – A global variable initialized at run-time by the compiler 

short Flag; 
void main(void) 
{ 
  Flag = 1; 
  // main body goes here 
}  

Listing 2.12 – A global variable initialized at run-time by the compiler 

From a programmer's point of view, we usually treat the I/O ports in the same 

category as global variables because they exist permanently and support shared 

access. 
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2.1.13 Local Variables 

Local variables are very important in C programming. They contain temporary 

information that is accessible only within a narrow scope. We can define local 

variables at the start of a compound statement. We call these local variables 

since they are known only to the block in which they appear, and to subordinate 

blocks. The following statement adjusts x and y such that x contains the smaller 

number and y contains the larger one. If a swap is required then the local variable 

z is used. 

if (x > y) 
{ 
  // create a temporary variable 
  short z;     
  // swap x and y 
  z = x; x = y; y = z;      
  // then destroy z 
}                    

Notice that the local variable z is declared within the compound statement. 

Unlike globals, which are said to be static, locals are created dynamically when 

their block is entered, and they cease to exist when control leaves the block. 

Furthermore, local names supersede the names of globals and other locals 

declared at higher levels of nesting. Therefore, locals may be used freely without 

regard to the names of other variables. Although two global variables cannot use 

the same name, a local variable of one block can use the same name as a local 

variable in another block. Programming errors and confusion can be avoided by 

understanding these conventions. 

Local variables are 
allocated on the 
stack and contain 
temporary 
information 

Local variables are 
local to their block 
and supersede the 
names of variables 
at higher levels  
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2.1.14 Source Files 

Our programs may consist of source code located in more than one file. The 

simplest method of combining the parts together is to use the #include 

preprocessor directive. Another method is to compile the source files separately, 

then combine the separate object files as the program is being linked with library 

modules. The linker/library method should normally be used, as only small 

pieces of software are changed at a time. The MX supports the automatic linking 

of multiple source files once they are added to a project. Remember that a 

function or variable must be defined or declared before it can be used. The 

following example is one method of dividing our simple example into multiple 

files. 

// **** file MK64F12.h ************ 
#define GPIOC_PDIR *(uint32_t volatile *)(0x400FF090) 
#define GPIOC_PDDR *(uint32_t volatile *)(0x400ff094) 
#define UART2_BD   *(uint16_t volatile *)(0x4006C000) 
#define UART2_C2   *(uint8_t  volatile *)(0x4006C003) 
#define UART2_S1   *(uint8_t  volatile *)(0x4006C004) 
#define UART2_D    *(uint8_t  volatile *)(0x4006C007) 

Listing 2.13 – Header file for K64 I/O ports 

// **** file UART.h ************ 
void UART_Init(void); 
void UART_Out(const uint8_t data); 

Listing 2.14 – Header file for the UART interface 

// **** file UART.c ************ 
void UART_Init(void) 
{  
  // 9600 baud 
  UART2_BD=0x34; 
  // enable UART, no interrupts 
  UART2_C2=0x0C; 
} 
 
// Data is an 8-bit value to send out the serial port 
#define TDRE 0x80 
void UART_Out(const uint8_t data) 
{ 
  // Wait for TDRE to be set 
  while ((UART2_S1 & TDRE) == 0); 
  // then output 
  UART2_D = data; 
}               

Listing 2.15 – Implementation file for the UART interface  

Software usually 
consists of many 
source files  
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// **** file my.c ************ 
// Translates parallel input data to serial outputs 
#include "MK64F12.h" 
#include "UART.h" 
 
void main(void) 
{ 
  unsigned char info; 
 
  // turn on UART serial port 
  UART_Init();  
 
  // specify Port C as input 
  GPIOC_PDDR = 0; 
  while (1) 
  { 
    // input 8 bits from parallel port C 
    info = (unsigned char)GPIOC_PDIR; 
    // output 8 bits to serial port 
    UART_Out(info); 
  } 
}  

Listing 2.16 – Main program file for this system 

This division of functions across multiple source files is clearly a matter of style.  

If the software is easy to understand, debug and change, 

then it is written with good style. 
(2.3) 

While the main focus of this section is on C syntax, it would be improper to 

neglect all style issues. This system was divided using the following principles: 

 Define the I/O ports in a MK64F12.h header file 

 For each module place the user-callable prototypes in a *.h header file 

 For each module place the implementations in a *.c program file 

 In the main program file, include the header files first 

 Breaking a software system into files has a lot of advantages. The first reason is 

code reuse. Consider the code in this example. If a UART output function is 

needed in another application, then it would be a simple matter to reuse the 

UART.h and UART.c files. The next advantage is clarity. Compare the main 

program in Listing 2.16 with the entire software system in Listing 2.1. Since the 

details have been removed, the overall approach is easier to understand. 

Software style 
principles  
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The next reason to break software into files is parallel development. As the 

software system grows it will be easier to divide up a software project into 

subtasks, and to recombine the modules into a complete system if the subtasks 

have separate files. The last reason is upgrades. Consider an upgrade in our 

simple example where the 9600 bits/sec serial port is replaced with a high-speed 

Universal Serial Bus (USB). For this kind of upgrade we implement the USB 

functions then replace the UART.c file with the new version. If we plan 

appropriately, we should be able to make this upgrade without changes to the 

files UART.h and my.c. 
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2.2 Tokens 

This section defines the basic building blocks of a C program. Understanding the 

concepts in this section will help eliminate the syntax bugs that confuse even the 

veteran C programmer. A simple syntax error can generate 100's of obscure 

compiler errors.  

To understand the syntax of a C program, we divide it into tokens separated by 

white spaces and punctuation. Remember that white space includes the space, 

tab, carriage return and line feed. A token may be a single character or a sequence 

of characters that form a single item. The first step of a compiler is to process 

the program into a list of tokens and punctuation marks. The following example 

includes punctuation marks of ( ) { } ;. The compiler then checks for proper 

syntax. Finally, it creates object code that performs the intended operations. 

Consider the following example: 

void main(void) 
{ 
  short z; 
  z = 0;  
  while (1) 
  {  
    z = z + 1;  
  }  
}  

Listing 2.17 – Example program with just a few tokens 

The following sequence shows the tokens and punctuation marks from the above 

listing: 

void main ( ) { short z ; z = 0 ; while ( 1 ) { z = z + 1 ; } }  

Since tokens are the building blocks of programs, we begin our revision of the 

C language by defining its tokens. 

The C language is 
written using tokens 
separated by 
whitespace  
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2.2.1 ASCII Character Set 

Like most programming languages C uses the standard ASCII character set. The 

following table shows the 128 standard ASCII codes. One or more white space 

can be used to separate tokens and or punctuation marks. The white space 

characters in C include horizontal tab (9=0x09), the carriage return (13=0x0D), 

the line feed (10=0x0A), and space (32=0x20). 
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Table 2.5 – ASCII Character Codes 

ASCII character 
codes  
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The first 32 (values 0 to 31 or 0x00 to 0x1F) and the last one (127=0x7F) are 

classified as control characters. Codes 32 to 126 (or 0x20 to 0x7E) include the 

"normal" characters. Normal characters are divided into 

 the space character (32=0x20),  

 the numeric digits 0 to 9 (48 to 57 or 0x30 to 0x39),  

 the uppercase alphabet A to Z (65 to 90 or 0x41 to 0x5A),  

 the lowercase alphabet a to z (97 to122 or 0x61 to 0x7A), and  

 the special characters (all the rest).  

2.2.2 Literals 

Numeric literals consist of an uninterrupted sequence of digits delimited by 

white spaces or special characters (operators or punctuation). Although MX does 

support floating-point numbers, this document will not cover them. The use of 

floating-point numbers requires either the use of a hardware floating-point unit 

(FPU), or a software library that consumes a substantial amount of program 

memory and execution time. Many applications are implemented using integer 

maths only to save cost and power. Consequently the period (“.”) will not appear 

in numbers as described in this document, since we will be focusing on integer 

algorithms. 

Character literals are written by enclosing an ASCII character in apostrophes 

(single quotes). We would write 'a' for a character with the ASCII value of the 

lowercase a (97). The control characters can also be defined as constants. For 

example, '\t' is the tab character. 

String literals are written as a sequence of ASCII characters bounded by 

quotation marks (double quotes). Thus, "ABC" describes a string of characters 

containing the first three letters of the alphabet in uppercase. 

The ASCII codes 
are divided into 
control characters 
and normal 
characters  

Literals are 
constants of a 
particular data type  
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2.2.3 Keywords 

There are some predefined tokens, called keywords, that have specific meaning 

in C programs. The reserved words we will cover in this document are: 

Keyword Meaning 
__asm Insert assembly code. 
auto Specifies a variable as automatic (created on the stack). 
break Causes the program control structure to finish. 
case One possibility within a switch statement. 
char 8-bit integer. 
const Defines a global parameter as a constant in Flash, and 

defines a local parameter as a fixed value. 
continue Causes the program to go to beginning of loop. 
default Used in switch statement for all other cases. 
do Used for creating program loops. 
double Specifies a variable as double precision floating point. 
else Alternative part of a conditional. 
extern Defined in another module. 
float Specifies a variable as single precision floating point. 
for Used for creating program loops. 
goto Causes program to jump to specified location. 
if Conditional control structure. 
int 32-bit integer (same as long on the K64). It should be 

avoided in most cases because the implementation will 

vary from compiler to compiler. 
long 32-bit integer. 
register Specifies how to implement a local. 
return Leave function. 
short 16-bit integer. 
signed Specifies variable as signed (default). 
sizeof Built-in function returns the size of an object. 
static Stored permanently in memory, accessed locally. 
struct Used for creating data structures. 
switch Complex conditional control structure. 
typedef Used to create new data types. 
unsigned Always greater than or equal to zero. 
void Used in parameter list to mean no parameter. 
volatile Can change implicitly outside the direct action of the 

software. It disables compiler optimization, forcing the 

compiler to fetch a new value each time. 
while Used for creating program loops. 

Table 2.6 – Keywords have predefined meanings 

 

Keywords are 
predefined tokens 
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Notice that all of the keywords in C are lowercase. Notice also that as a matter 

of style, a mixture of upper and lowercase are used for variable names, and all 

uppercase for the I/O ports. It is a good programming practice not to use these 

keywords for your variable or function names. 

2.2.4 Names 

We use names to identify our variables, functions, and macros. MX names may 

be up to 63 characters long. Names must begin with a letter or underscore and 

the remaining characters must be either letters or digits. We can use a mixture of 

upper and lowercase or the underscore character to create self-explaining 

symbols, e.g., 

time_of_day 
go_left_then_stop 
TimeOfDay 
GoLeftThenStop; 

The careful selection of names goes a long way to making our programs more 

readable. Names may be written with both upper and lowercase letters. The 

names are case sensitive. Therefore the following names are different: 

thetemperature 
THETEMPERATURE 
TheTemperature 

The practice of naming macros in uppercase calls attention to the fact that they 

are not variable names but defined symbols. The I/O port names are implemented 

as macros in the header file MK64F12.h. 

Every global name defined with the MX is left as-is by the compiler. However, 

it defines certain names for its own use, such as startup code and library files, 

and precedes them with an underscore. The purpose of the underscore is to avoid 

clashes with the user's own global names. So, as a matter of practice, we should 

not ordinarily use names with leading underscores. For examples of this naming 

convention, observe the linker map file generated by the compiler (in the *.map 

file in the Debug folder in the project window). 

C is case sensitive 
and all keywords are 
lowercase 

Names define 
variables, functions 
and macros 

Names are case 
sensitive 
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Developing a naming convention will avoid confusion. Possible ideas to 

consider include: 

1. Start every variable name with its type, like Systems Hungarian notation used 

by the Microsoft Windows API (abandoned with .NET). For example, 

 b means Boolean true/false 

 n means 8-bit signed integer 

 u means 8-bit unsigned integer 

 m means 16-bit signed integer 

 v means 16-bit unsigned integer 

 l means 32-bit integer 

 p means 32-bit pointer (address) 

 c means 8-bit ASCII character 

 sz means null terminated ASCII string 

2. Start every local variable with "the" or "my". 

3. Start every global variable and function with the associated file or module 

name. In the following example the names all begin with Bit_. Notice how 

similar this naming convention recreates the look and feel of the modularity 

achieved by classes in C++.  

/* ********** file = Bit.c ************* 
   Pointer implementation of a Bit_FIFO 
   These routines can be used to save (Bit_Put) and recall 
   (Bit_Get) binary data 1 bit at a time (a bit stream) 
   Information is saved / recalled in a first in, 
   first out manner 
   Bit_FIFOSize is the number of 16-bit words in 
   the Bit_FIFO 
   The Bit_FIFO is full when it has 16*Bit_FIFOSize bits */ 
 
#define Bit_FIFOSize 4 
// 16 * 4 = 64 bits of storage 
// storage for Bit Stream 
unsigned short Bit_FIFO[Bit_FIFOSize];  

The Systems 
Hungarian variable 
naming convention 

A naming 
convention similar to 
C++ objects 
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struct Bit_Pointer 
{ 
  // 0x8000, 0x4000,...,2,1 
  unsigned short mask; 
  // Pointer to word containing bit 
  unsigned short *pWord; 
};  
 
typedef struct Bit_Pointer Bit_PointerType; 
 
Bit_PointerType Bit_PutPt; // Pointer of where to put next 
Bit_PointerType Bit_GetPt; // Pointer of where to get next 
 
// Bit_FIFO is empty if Bit_PutPt == Bit_GetPt 
// Bit_FIFO is full if Bit_PutPt + 1 == Bit_GetPt 
short Bit_Same(Bit_PointerType p1, Bit_PointerType p2) 
{ 
  if ((p1.pWord == p2.pWord) && (p1.mask == p2.mask)) 
    return(1);  // yes 
  return(0);    // no 
} 
 
void Bit_Init(void) 
{ 
  Bit_PutPt.mask = Bit_GetPt.mask = 0x8000; 
  Bit_PutPt.pWord = Bit_GetPt.pWord = &Bit_FIFO[0]; // Empty 
} 
 
// returns TRUE=1 if successful, 
// FALSE=0 if full and data not saved 
// input is Boolean FALSE if data == 0 
short Bit_Put(short data) 
{ 
  Bit_PointerType myPutPt; 
  myPutPt = Bit_PutPt; 
  myPutPt.mask = myPutPt.mask >> 1; 
  if (myPutPt.mask == 0) 
  { 
    myPutPt.mask = 0x8000; 
    if ((++myPutPt.pWord) == &Bit_FIFO[Bit_FIFOSize]) 
      // wrap 
      myPutPt.pWord = &Bit_FIFO[0];  
  } 
  if (Bit_Same(myPutPt, Bit_GetPt)) 
    // Failed, Bit_FIFO was full 
    return(0);  
  else 
  {  
    if (data) 
      // set bit 
      (*Bit_PutPt.pWord) |= Bit_PutPt.mask;  
    else 
      // clear bit 
      (*Bit_PutPt.pWord) &= ~Bit_PutPt.Mask;  
    Bit_PutPt = myPutPt; 
    return(1); 
  } 
} 
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// returns TRUE=1 if successful, 
// FALSE=0 if empty and data not removed 
// output is Boolean, 0 means FALSE, nonzero is true 
short Bit_Get(unsigned short *datapt) 
{ 
  if (Bit_Same(Bit_PutPt, Bit_GetPt)) 
    // Failed, Bit_FIFO was empty 
    return(0);  
  else 
  {  
    *datapt = (*Bit_GetPt.pWord) & Bit_GetPt.Mask; 
    Bit_GetPt.Mask = Bit_GetPt.Mask >> 1; 
    if (Bit_GetPt.Mask == 0) 
    { 
      Bit_GetPt.Mask = 0x8000; 
      if ((++Bit_GetPt.pWord) == &Bit_FIFO[Bit_FIFOSize]) 
        // wrap 
        Bit_GetPt.pWord = &Bit_FIFO[0];  
    } 
    return(1);  
  } 
} 

Listing 2.18 – A naming convention that creates modularity 

2.2.5 Punctuation 

Punctuation marks (semicolons, colons, commas, apostrophes, quotation marks, 

braces, brackets, and parentheses) are very important in C. It is one of the most 

frequent sources of errors for both the beginning and experienced programmers.  

Semicolons 

Semicolons are used as statement terminators. Strange and confusing syntax 

errors may be generated when you forget a semicolon, so this is one of the first 

things to check when trying to remove syntax errors. Notice that one semicolon 

is placed at the end of every simple statement in the following example, 

#define GPIOB_PSOR *(uint32_t volatile *)(0x 400FF044) 
 
void Step(void) 
{ 
  GPIOB_PSOR = 10; 
  GPIOB_PSOR = 9; 
  GPIOB_PSOR = 5; 
  GPIOB_PSOR = 6;  
} 

Listing 2.19 – Semicolons are used to separate statements 

The semicolon is 
used as a statement 
terminator 
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Preprocessor directives do not end with a semicolon since they are not actually 

part of the C language proper. Preprocessor directives begin in the first column 

with the # and conclude at the end of the line. The following example will fill 

the array DataBuffer with data read from the input port (GPIOC_PDIR). We 

assume in this example that Port C has been initialized as an input. Semicolons 

are also used in the for loop statement, as illustrated by: 

void Fill(void) 
{ 
  short j; 
  for (j = 0; j < 100; j++) 
  { 
    DataBuffer[j] = GPIOC_PDIR;  
  } 
} 

Listing 2.20 – Semicolons are used to separate fields of the for statement 

Colons 

We can define a label using the colon. Although C has a goto statement, its use 

is strongly discouraged. Software is easier to understand using the block-

structured control statements (if, if else, for, while, do while, and switch 

case). The following example will return after the Port C input reads the same 

value 100 times in a row. Again we assume Port C has been initialized as an 

input. Notice that every time the current value on Port C is different from the 

previous value the counter is reinitialized. 

char Debounce(void) 
{ 
  short count; 
  unsigned char lastData; 
 
Start: 
  count = 0; // number of times Port C is the same 
  lastData = GPIOC_PDIR;  
Loop: 
  if (++count == 100) goto Done; // same thing 100 times 
  if (lastData != GPIOC_PDIR) goto Start; // changed 
  goto Loop;  
Done: 
  return lastData;  
} 

Listing 2.21 – Colons are used to define labels (places we can jump to) 

The semicolon is 
also used in the for 
loop 
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Colons also terminate case and default prefixes that appear in switch 

statements. In the following example, the next output is found (the proper 

sequence is 10, 9, 5, 6). The default case is used to restart the pattern. 

unsigned char NextStep(unsigned char step) 
{ 
  unsigned char theNext; 
  switch (step) 
  { 
    case 10: theNext =  9; break; 
    case  9: theNext =  5; break; 
    case  5: theNext =  6; break; 
    case  6: theNext = 10; break; 
    default: theNext = 10;  
  }  
  return theNext; 
} 

Listing 2.22 – Colons are also used with the switch statement 

For both applications of the colon (goto and switch), we see that a label is 

created that is a potential target for a transfer of control. 

Commas 

Commas separate items that appear in lists. We can create multiple variables of 

the same type. For example, 

unsigned short beginTime, endTime, elapsedTime; 

Lists are also used with functions having multiple parameters (both when the 

function is defined and called): 

short add(short x, short y) 
{ 
  short z; 
  z = x + y;  
  if ((x > 0) && (y > 0) && (z < 0)) 
    z = 32767;  
  if ((x < 0) && (y < 0) && (z > 0)) 
    z = -32768;  
  return z; 
}  

The colon is used to 

terminate case 

prefixes 

Commas are used 
to separate items in 
lists 
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void main(void) 
{ 
  short a, b; 
  a = add(2000, 2000); 
  b = 0; 
  while (1) 
  { 
    b = add(b, 1); 
  } 
} 

Listing 2.23 – Commas separate the parameters of a function 

Lists can also be used in general expressions. Sometimes it adds clarity to a 

program if related variables are modified at the same place. The value of a list 

of expressions is always the value of the last expression in the list. In the 

following example, first TheTime is incremented, TheDate is decremented, then x 

is set to k + 2. 

x = (TheTime++, --TheDate, k + 2); 

Apostrophes 

Apostrophes are used to specify character literals. Assuming the function 

OutChar will print a single ASCII character, the following example will print the 

lower case alphabet: 

void Alphabet(void) 
{ 
  unsigned char mych; 
  for (mych = 'a'; mych <= 'z'; mych++) 
  { 
    OutChar(mych); // Print next letter 
  }      
} 

Listing 2.24 – Apostrophes are used to specify characters 

Quotation marks 

Quotation marks are used to specify string literals. For example 

// Place for 11 characters and termination 
unsigned const char Msg[12] = "Hello World"; 
void PrintHelloWorld(void) 
{  
  UART_OutString("Hello World"); 
  UART_OutString(Msg); 
} 

Listing 2.25 – Quotation marks are used to specify strings 

Apostrophes are 
used to specify 
character literals 

Quotation marks are 
used to specify 
string literals 
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The command Letter = 'A'; places the ASCII code (65) into the variable 

Letter. The command pt = "A"; creates an ASCII string and places a pointer to 

it into the variable pt.  

Braces 

Braces {} are used throughout C programs. The most common application is for 

creating a compound statement. Each open brace { must be matched with a 

closing brace }. One approach that helps to match up braces is to use indenting. 

Each time an open brace is used, the source code is spaced to the right by two 

spaces. In this way, it is easy to see at a glance the brace pairs. Examples of this 

approach to tabbing are the Bit_Put function within Listing 2.18 and the median 

function in Listing 2.9.  

Brackets 

Brackets enclose array dimensions (in declarations) and subscripts (in 

expressions). Thus, 

short FIFO[100]; 

declares an integer array named FIFO consisting of 100 words numbered from 0 

through 99, and 

PutPt = FIFO; 

assigns the variable PutPt to the address of the first entry of the array. 

Parentheses 

Parentheses enclose argument lists that are associated with function declarations 

and calls. They are required even if there are no arguments. 

As with all programming languages, C uses parentheses to control the order in 

which expressions are evaluated. Thus, (11+3)/2 yields 7, whereas 11+3/2 yields 

12. Parentheses are very important when writing expressions.  

 

Braces are used to 
create compound 
statements 

Brackets enclose 
array dimensions 
and subscripts 

Parentheses 
enclose argument 
lists and control the 
order of expression 
evaluation 
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2.2.6  Operators 

The special characters used as expression operators are covered in the operator 

section further on in this document. There are many operators, some of which 

are single characters,  

~  !  @  %  ^  &  *  -  +  =  |  /  :  ?  <  > , 

while others require two characters, 

++  --  <<  >>  <=  +=  -=  *=  /=  ==  |=  %=  &=  ^=  ||  &&  != 

and some even require three characters, 

<<=  >>= 

The multiple-character operators cannot have white spaces or comments 

between the characters.  

The C syntax can be confusing to the beginning programmer. For example 

z = x + y;   // sets z equal to the sum of x and y 
z = x_y;     // sets z equal to the value of x_y 

It is therefore advisable to separate operators with white space. 

Special characters 
are used for 
expression 
operators 
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2.3 Numbers, Characters and Strings 

This section defines the various data types supported by the compiler. Since the 

objective of most computer systems is to process data, it is important to 

understand how data is stored and interpreted by the software. We define a literal 

as the direct specification of the number, character, or string. For example, 

100 'a' "Hello World" 

are examples of a number literal, a character literal and a string literal 

respectively. The following sections discuss the way data is stored in the 

computer as well as the C syntax for creating the literals. The MX compiler 

recognizes three types of literals (numeric, character, string). Numbers can be 

written in three bases (decimal, octal, and hexadecimal). Although the 

programmer can choose to specify numbers in these three bases, once loaded 

into the computer, all numbers are stored and processed as unsigned or signed 

binary. Although the C standard does not support binary literals, if you wanted 

to specify a binary number, you should have no trouble using either the octal or 

hexadecimal format. However, the latest versions of GCC support binary literals 

using a syntax similar to the hex syntax, except the prefix is 0b instead of 0x. 

2.3.1 Binary representation 

Numbers are stored in the computer in binary form. In other words, information 

is encoded as a sequence of 1’s and 0’s. On most computers, the memory is 

organized into 8-bit bytes. This means each 8-bit byte stored in memory will 

have a separate address.  Precision is the number of distinct or different values. 

We express precision in “alternatives”, “decimal digits”, “bytes”, or “binary 

bits”.  Alternatives are defined as the total number of possibilities. For example, 

an 8-bit number scheme can represent 256 different numbers. An 8-bit digital to 

analog converter (DAC) can generate 256 different analog outputs. An 8-bit 

analog to digital converter (ADC) can measure 256 different analog inputs.  We 

use the expression 4½ decimal digits to mean about 20,000 alternatives and the 

expression 4¾ decimal digits to mean more than 20,000 alternatives but less than 

100,000 alternatives. The ½ decimal digit means twice the number of 

alternatives or one additional binary bit. For example, a voltmeter with a range 

The three types of 
literals – numeric, 
character and string 

Binary information is 
represented by 1’s 
and 0’s 
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of 0.00 to 9.99V has a three decimal digit precision. Let the operation  x  be the 

greatest integer of x . E.g.,  1.2  is rounded up to 3. Table 2.7 and Table 2.8 

illustrate various representations of precision.   

Binary Bits Bytes Alternatives 

8 1 256 

10  1,024 

12  4,096 

16 2 65,536 

20  1,048,576 

24 3 16,777,216 

30  1,073,741,824 

32 4 4,294,967,296 

n   8n  
n2  

Table 2.7 – Relationships between various representations of precision 

 

Decimal Digits Alternatives 

3 1,000 

3½ 2,000 

3¾ 4,000 

4 10,000 

4½ 20,000 

4¾ 40,000 

5 100,000 

n  n10  

Table 2.8 – Relationships between various representations of precision 

Various 
representations of 
precision 
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For large numbers we use abbreviations. A binary prefix is a prefix attached 

before a unit symbol to multiply it by a power of 2. In computing, such a prefix 

is seen in combination with a unit of information (bit, byte, etc.), to indicate a 

power of 1024. IEC 80000-13:2008 is an international standard that defines 

quantities and units used in information science, and specifies names and 

symbols for these quantities and units, as shown in the following table.  

Abbreviation Pronunciation Value 

Ki “kibi” 024,1210   

Mi “mebi” 576,048,1220   

Gi “gibi” 824,741,073,1230   

Ti “tebi” 776,627,511,099,1240   

Pi “pebi” 624,843,906,899,125,1250   

Ei “exbi” 976,846,606,504,921,152,1260   

Table 2.9 – Common abbreviations for large binary numbers 

2.3.2 8-bit unsigned numbers 

A byte contains 8 bits 

b7 b6 b5 b4 b3 b2 b1 b0
 

where each bit b7, ..., b0 is binary and has the value 1 or 0. We specify b7 as the 

most significant bit or MSB, and b0 as the least significant bit or LSB. If a byte 

is used to represent an unsigned number, then the value of the number is 

01224384165326647128 bbbbbbbbN   

There are 256 different unsigned 8-bit numbers. The smallest unsigned 8-bit 

number is 0 and the largest is 255. For example, 000010102 is 8 + 2 or 10. 

A byte is 8 bits 

The value of an 
unsigned byte 
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Other examples are shown in the following table. 

Binary Hex Calculation Decimal 

00000000 0x00 0 0 

01000001 0x41 64 + 1 65 

00010110 0x16 16 + 4 + 2 22 

10000111 0x87 128 + 4 + 2 + 1 135 

11111111 0xff 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 255 

Table 2.10 – Example conversions of unsigned 8-bit binary numbers 

The basis of a number system is a subset from which linear combinations of the 

basis elements can be used to construct the entire set. For the unsigned 

8-bit number system, the basis is 

{ 128, 64, 32, 16, 8, 4, 2, 1 } 

One way for us to convert a decimal number into binary is to use the basis 

elements. The overall approach is to start with the largest basis element and work 

towards the smallest. One by one we see whether or not we need that basis 

element to create our number. If we do, then we set the corresponding bit in our 

binary result and subtract the basis element from our number. If we do not need 

it, then we clear the corresponding bit in our binary result. We will work through 

the algorithm with the example of converting 100 to 8-bit binary. We begin with 

the largest basis element (in this case 128) and see whether or not we need to 

include it to make 100. Since our number is less than 128, we do not need it so 

bit 7 is zero. We go to the next largest basis element, 64 and see if we need it. 

We do need 64 to generate 100, so bit 6 is one and we subtract 64 from 100 to 

get 36. We go to the next basis element, 32 and see if we need it. Again, we do 

need 32 to generate 36, so bit 5 is one and we perform 36 minus 32 to get 4. 

Continuing along, we need basis element 4 but not 16, 8, 2 or 1, so bits 43210 

are 00100 respectively. Putting it together we get 011001002 (which means 64 + 

32 + 4). 

The basis of an 
unsigned byte 

Converting a 
decimal number to 
binary using the 
unsigned basis 
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This operation can be visualized using the table below. 

Number Basis Need it? Bit Operation 

100 128 no bit7 = 0 none 

100 64 yes bit6 = 1 100 – 64 = 36 

36 32 yes bit5 = 1 36 – 32 = 4 

4 16 no bit4 = 0 none 

4 8 no bit3 = 0 none 

4 4 yes bit2 = 1 4 – 4 = 0 

0 2 no bit1 = 0 none 

0 1 no bit0 = 0 none 

Table 2.11 – Example conversion from decimal to unsigned 8-bit binary 

 

If the least significant bit is zero, then the number is even. (2.4) 

 

If the right-most n bits (least significant) are zero, then the 

number is divisible by 2n. 
(2.5) 

We define an unsigned 8-bit number using the unsigned char format. When a 

number is stored into an unsigned char it is converted to an 8-bit unsigned value. 

For example 

unsigned char data; // 0 to 255 
unsigned char function(unsigned char input) 
{ 
  data = input + 1; 
  return data; 
} 

Defining an 
unsigned byte in C 
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2.3.3 8-bit signed numbers 

If a byte is used to represent a signed 2’s complement number, then the value of 

the number is 

01224384165326647128 bbbbbbbbN   

There are also 256 different signed 8 bit numbers. The smallest signed 8-bit 

number is -128 and the largest is 127. For example, 100000102 is 2128   or 

126 . Other examples are shown in the following table. 

Binary Hex Calculation Decimal 

00000000 0x00 0 0 

01000001 0x41 64 + 1 65 

00010110 0x16 16 + 4 + 2 22 

10000111 0x87 -128 + 4 + 2 + 1 -121 

11111111 0xff -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 -1 

Table 2.12 – Example conversions of signed 8-bit binary numbers 

For the signed 8-bit number system the basis is 

{ -128, 64, 32, 16, 8, 4, 2, 1 } 

 The most significant bit in a 2’s complement signed 

number will specify the sign. 

(2.6) 

Notice that the same binary pattern of 111111112 could represent either 255 or -

1. It is very important for the software developer to keep track of the number 

format. The computer cannot determine whether the 8-bit number is signed or 

unsigned. You, as the programmer, will determine whether the number is signed 

or unsigned by the specific assembly or C instructions you select to operate on 

the number. Some operations like addition, subtraction, and shift left (multiply 

by 2) use the same hardware (instructions) for both unsigned and signed 

operations. On the other hand, multiply, divide, and shift right (divide by 2) 

require separate hardware (instructions) for unsigned and signed operations. For 

example, the K64 has both unsigned umull, and signed smull, multiply 

The value of a 
signed byte 

The basis of a 
signed byte 
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instructions. So if you use the smull instruction, you are implementing signed 

arithmetic. The compiler will automatically choose the proper implementation. 

It is always good programming practice to have a clear understanding of the data 

type for each number, variable, parameter, etc. For some operations there is a 

difference between the signed and unsigned numbers while for others it does not 

matter. 

 Signed different from unsigned   Signed same as unsigned 

/ % division  + addition 

* multiplication  - subtraction 

> greater than  == is equal to 

< less than  | logical OR 

>= Greater than or equal to  & logical AND 

<= Less than or equal to  ^ logical XOR 

>> right shift  << left shift 

Table 2.13 – Operations on signed and unsigned numbers differ 

Care must be taken when dealing with a mixture of numbers of different sizes 

and types. 

Similar to the unsigned algorithm, we can use the basis to convert a decimal 

number into signed binary. We will work through the algorithm with the example 

of converting -100 to 8-bit binary. We start with the largest basis element (in this 

case -128) and decide if we need to include it to make -100. Without -128, we 

would be unable to add the other basis elements together to get any negative 

result, so we set bit 7 and subtract the basis element from our value. Our new 

value is -100 minus -128, which is 28. We go to the next largest basis element, 

64 and see if we need it. We do not need 64 to generate 28, so bit6 is zero. We 

go to the next basis element, 32 and see if we need it. We do not need 32 to 

generate 28, so bit5 is zero. Now we need the basis element 16, so we set bit4, 

and subtract 16 from 28 (28 – 16 = 12). Continuing along, we need basis 

elements 8 and 4 but not 2 and 1, so bits 3210 are 1100. Putting it together we 

get 100111002 (which means -128+16+8+4). 

  

Signed and 
unsigned operations 
may be different 

Converting a 
decimal number to 
binary using the 
signed basis 
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This operation can be visualized using the table below. 

Number Basis Need it? Bit Operation 

100 -128 yes bit7 = 1 -100 – (-128) = 28 

28 64 no bit6 = 0 none 

28 32 no bit5 = 0 none 

28 16 yes bit4 = 1 28 – 16 = 12 

12 8 yes bit3 = 1 12 – 8 = 4 

4 4 yes bit2 = 1 4 – 4 = 0 

0 2 no bit1 = 0 none 

0 1 no bit0 = 0 none 

Table 2.14 – Example conversion from decimal to signed 8-bit binary 

 

To make the negative of a 2’s complement signed number 

we first complement (toggle) all the bits, then add 1. 
(2.7) 

A second way to convert negative numbers into binary is to first convert them 

into unsigned binary, then do a 2’s complement negate. For example, we earlier 

found that +100 is 011001002. The 2’s complement negate is a two step process. 

First, we do a logic complement (toggle all bits) to get 100110112. Then, add 

one to the result to get 100111002. 

A third way to convert negative numbers into binary is to first add the number 

to 256, then convert the unsigned result to binary using the unsigned method. 

For example, to find -100, we add -100 to 256 to get 156. Then we convert 156 

to binary resulting in 100111002. This method works because in 8-bit binary 

maths adding 256 to a number does not change the value. 

An error will occur if you use signed operations on 

unsigned numbers, or use unsigned operations on signed 

numbers. 

(2.8) 

 

Converting a 
decimal number to 
binary using 2’s 
complement 

Converting a 
decimal number to 
binary using modulo 
arithmetic 
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To improve the clarity of software, always specify the 

format of data (signed versus unsigned) when defining or 

accessing the data. 

(2.9) 

We define a signed 8-bit number using the char format. When a number is 

stored into a char it is converted to an 8-bit signed value. For example 

char data; // -128 to 127 
char function(char input) 
{ 
  data = input + 1; 
  return data; 
} 

2.3.4 16 bit unsigned numbers 

A half-word or double byte contains 16 bits 

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
 

where each bit b15, ..., b0 is binary and has the value 1 or 0. If a half-word is 

used to represent an unsigned number, then the value of the number is 

0122438

4165326647128

82569512101024112048

12409613819214163841532768

bbbb

bbbb

bbbb

bbbbN









 

There are 65,536 different unsigned 16-bit numbers. The smallest unsigned 

16-bit number is 0 and the largest is 65535. For example, 0010 0001 1000 01002 

or 0x2184 is 8192 + 256 + 128 + 4 or 8580. 

Defining a signed 
byte in C 

A half-word is 16 
bits 

The value of an 
unsigned half-word 
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Other examples are shown in the following table. 

Binary Hex Calculation Decimal 

0000 0000 0000 0000 0x0000 0 0 

0000 0100 0000 0001 0x0401 1024 + 1 1025 

0000 1100 1010 0000 0x0CA0 2048 + 1024 + 128 + 32 3232 

1000 1110 0000 0010 0x8E02 32768 + 2048 + 1024 + 512 + 2 36354 

1111 1111 1111 1111 0xFFFF 32768+16384+8192+4096+2048+1024 

+512+256+128+64+32+16+8+ 4+2+1 

65535 

Table 2.15 – Example conversions of unsigned 16-bit binary numbers 

For the unsigned 16-bit number system the basis is 

{ 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 } 

We define an unsigned 16-bit number using the unsigned short format. 

When a number is stored into an unsigned short it is converted to a 

16-bit unsigned value. For example 

unsigned short data; // 0 to 65535 
unsigned short function(unsigned short input) 
{ 
  data = input + 1; 
  return data; 
} 

2.3.5 16-bit signed numbers 

If a half-word is used to represent a signed 2’s complement number, then the 

value of the number is 

0122438

4165326647128

82569512101024112048

12409613819214163841532768

bbbb

bbbb

bbbb

bbbbN









 

There are also 65,536 different signed 16-bit numbers. The smallest signed 

16-bit number is -32768 and the largest is 32767. 

The basis of an 
unsigned half-word 

Defining an 
unsigned word in C 

The value of a 
signed half-word 
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For example, 1101 0000 0000 01002 or 0xD004 is -32768 + 16384 + 4096 + 4 

or -12284. Other examples are shown in the following table. 

Binary Hex Calculation Decimal 

0000 0000 0000 0000 0x0000 0 0 

0000 0100 0000 0001 0x0401 1024 + 1 1025 

0000 1100 1010 0000 0x0CA0 2048 + 1024 + 128 + 32 3232 

1000 1110 0000 0010 0x8E02 -32768 + 2048 + 1024 + 512 + 2 -31742 

1111 1111 1111 1111 0xFFFF -32768+16384+8192+4096+2048+1024 

+512+256+128+64+32+16+8+ 4+2+1 

-1 

Table 2.16 – Example conversions of signed 16-bit binary numbers 

For the signed 16-bit number system the basis is 

{ -32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 } 

We define a signed 16-bit number using the short format. When a number is 

stored into a short it is converted to a 16-bit signed value. For example 

short data; // -32768 to 32767 
short function(short input) 
{ 
  data = input + 1; 
  return data; 
} 

2.3.6 Typedefs for Signed and Unsigned Data Types 

To avoid confusion and make the signed and unsigned data types easy to 

recognise, stdint.h makes the following type definitions: 

// Signed types 
typedef char int8_t; 
typedef int  int16_t; 
typedef long int32_t; 
 
// Unsigned types 
typedef unsigned char uint8_t; 
typedef unsigned int  uint16_t; 
typedef unsigned long uint32_t; 
 

 

The basis of a 
signed half-word 

Defining a signed 
half-word in C 

typedefs for signed 
and unsigned data 
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2.3.7 Big- and Little-Endian 

When we store 16-bit data into memory it requires two bytes. Since the memory 

systems on most computers are byte addressable (a unique address for each 

byte), there are two possible ways to store in memory the two bytes that 

constitute the 16-bit data. Some NXP microprocessors (those that came from 

Freescale, formerly Motorola) implement the big-endian approach that stores the 

most significant part first. Intel microprocessors implement the little-endian 

approach that stores the least significant part first. The PowerPC is bi-endian, 

because it can be configured to efficiently handle both big- and little-endian. 

For example, assume we wish to store the 16-bit number 1000 (0x03E8) at 

locations 0x50, 0x51, then 

address

0x03

contents

0xE8

0x0050

0x0051

Big-endian

address contents

0xE80x0050

0x0051

Little-endian

0x03

 

We also can use either the big- or little-endian approach when storing 32-bit 

numbers into memory that is byte (8-bit) addressable. If we wish to store the 32-

bit number 0x12345678 at locations 0x50-0x53 then  

address

0x12

contents

0x34

0x0050

0x0051

Big-endian

address contents

0x780x0050

0x0051

Little-endian

0x56

0x560x0052

0x780x0053

0x0052 0x34

0x0053 0x12

 

In the above two examples we normally would not pick out individual bytes 

(e.g., the 0x12), but rather capture the entire multiple byte data as one non-

divisible piece of information. On the other hand, if each byte in a multiple byte 

data structure is individually addressable, then both the big- and little-endian 

schemes store the data in first to last sequence. 

Big- and little-endian 
defined 

Example of big- and 
little-endian storage 
of a 16-bit number 

Example of big- and 
little-endian storage 
of a 32-bit number 
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For example, if we wish to store the 4 ASCII characters ‘6812’ which is 

0x36383132 at locations 0x50-0x53, then the ASCII ‘6’ = 0x36 comes first in 

both big- and little-endian schemes.  

address

0x36

contents

0x38

0x0050

0x0051

Big- and Little-endian

0x310x0052

0x320x0053

 

The term "Big-Endian" comes from Jonathan Swift’s satiric novel Gulliver’s 

Travels. In Swift’s book, a Big-Endian refers to a person who cracks their egg 

on the big end. The Lilliputians considered the big-endians as inferiors. The big-

endians fought a long and senseless war with the Lilliputians who insisted it was 

only proper to break an egg on the little end. 

An error will occur when data is 

stored in Big-Endian format by one computer 

 and read in Little-Endian format on another. 

(2.10) 

 

Example of big- and 
little-endian storage 
of a multiple byte 
structure 
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2.3.8 Boolean information 

A Boolean number has two states. The two values could represent the logical 

values of true or false. The positive logic representation defines true as a 1 or 

high, and false as a 0 or low. If you were controlling a motor, light, heater or air 

conditioner then Boolean could mean on or off. In communication systems, we 

represent the information as a sequence of Booleans, mark or space. For black 

or white graphic displays we use Booleans to specify the state of each pixel. The 

most efficient storage of Booleans on a computer is to map each Boolean into 

one memory bit. In this way, we could pack 8 Booleans into each byte. If we 

have just one Boolean to store in memory, out of convenience we allocate an 

entire byte or word for it. Most C compilers including GCC define:  

False to be all zeros 

True to be any nonzero value. 

(2.11) 

Many programmers add the following macros to their code: 

#define FALSE 0 
#define TRUE  1 

or the following enumeration, which is just a cleaner alternative to a series of 

#define statements: 

typedef enum {FALSE, TRUE} BOOL; 
 

2.3.9  Decimal Numbers 

Decimal numbers are written as a sequence of decimal digits (0 through 9). The 

number may be preceded by a plus or minus sign or followed by an L or U. Lower 

case l or u could also be used. The minus sign gives the number a negative value, 

otherwise it is positive. The plus sign is optional for positive values. Unsigned 

integer literals should be followed by U. You can place an L at the end of the 

number to signify it to be a 32-bit signed number. 

A Boolean type has 
logical values of true 
or false 

The Boolean type as 
implemented in C 

Decimal numbers 
have notation to 
specify the type 
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The range of a decimal number depends on the data type as shown in the 

following table. 

Type Range Precision Examples 

unsigned char 0 to 255 8 bits 0, 10, 123 

char -128 to 127 8 bits -123, 0, 10, +10 

unsigned short 0 to 65535 16 bits 0, 2000, 2000U, 50000U 

short -32768 to 32767 16 bits -1000, 0, 1000, +20000 

unsigned long 0 to 4294967295 32 bits 0, 2000, 1234567U 

long -2147483648 to 

2147483647 

32 bits -1234567L, 0L, 1234567L 

Table 2.17 – The range of decimal numbers 

Because the K64 microcontroller architecture is based on 32-bit data and 

addresses (and not 16-bit), the unsigned int and int data types are 32 bits. On 

the other hand, on 16-bit microcontrollers, such as the NXP MC9S12, the 

unsigned int and int data types are 16 bits. In order to make your software 

more compatible with other machines, it is preferable to use the short type when 

needing 16 bit data and the long type for 32 bit data. 

Type NXP MC9S12 NXP Cortex-M4 

unsigned char 8 bits 8 bits 

char 8 bits 8 bits 

unsigned short 16 bits 16 bits 

short 16 bits 16 bits 

unsigned int 16 bits 32 bits 

int 16 bits 32 bits 

unsigned long 32 bits 32 bits 

long 32 bits 32 bits 

Table 2.18 – Differences between a MC9S12 and a Cortex-M4 

Since the MC9S12 microcomputers do not have direct support of 32-bit 

numbers, the use of long data types on these devices should be minimized. On 

the other hand, a careful observation of the code generated yields the fact that 

the compilers are more efficient with 16-bit numbers than with 8-bit numbers. 

In C, the int data 

type should be 
avoided because it 
is platform 
dependent 

Minimize the use of 
32-bit numbers on a 
16-bit computer 
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Decimal numbers are reduced to their two's complement or unsigned binary 

equivalent and stored as 8/16/32-bit binary values.  

The manner in which decimal literals are treated depends on the context. For 

example 

short I; 
unsigned short J; 
char K; 
unsigned char L; 
long M; 
void main(void) 
{  
  I = 97;    // 16 bits 0x0061 
  J = 97;    // 16 bits 0x0061 
  K = 97;    // 8 bits 0x61 
  L = 97;    // 8 bits 0x61 
  M = 97;    // 32 bits 0x00000061 
} 
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2.3.10 Octal Numbers 

If a sequence of digits begins with a leading 0 (zero) it is interpreted as an octal 

value. There are only eight octal digits, 0 through 7. As with decimal numbers, 

octal numbers are converted to their binary equivalent in 8-bit, 16-bit or 32-bit 

words. The range of an octal number depends on the data type as shown in the 

following table. 

Type Range Precision Examples 

unsigned char 0 to 0377 8 bits 0, 010, 0123 

char -0200 to 0177 8 bits -0123, 0, 010, +010 

unsigned short 0 to 0177777 16 bits 0, 02000, 0150000U 

short -0100000 to 077777 16 bits -01000, 0, 01000, +020000 

unsigned long 0 to 037777777777 32 bits 0, 02000, 015000000U 

long -020000000000 to 

017777777777 

32 bits -01234567L, 0L, 

01234567L 

Table 2.19 – The range of octal numbers 

Notice that the octal values 0 through 07 are equivalent to the decimal values 0 

through 7. One of the advantages of this format is that it is very easy to convert 

back and forth between octal and binary. Each octal digit maps directly to/from 

3 binary digits. 

Octal numbers 
begin with a 
leading 0 

Each octal digit 
maps to 3 bits 
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2.3.11 Hexadecimal Numbers 

The hexadecimal number system uses base 16 as opposed to our regular decimal 

number system that uses base 10. Like the octal format, the hexadecimal format 

is also a convenient mechanism for humans to represent binary information, 

because it is extremely simple to convert back and forth between binary and 

hexadecimal. A nibble is defined as 4 bits. Each value of the 4-bit nibble is 

mapped into a unique hex digit. 

Hex digit Decimal Value Binary Value 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

7 7 0111 

8 8 1000 

9 9 1001 

a or A 10 1010 

b or B 11 1011 

c or C 12 1100 

d or D 13 1101 

e or E 14 1110 

f or F 15 1111 

Table 2.20 – Definition of hexadecimal representation 

Hexadecimal 
numbers are base 
16, and code into a 
4-bit nibble 
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Computer programming environments use a wide variety of symbolic notations 

to specify the numbers in various bases. The following table illustrates various 

formats for numbers. 

Environment Binary format Hexadecimal format Decimal format 

NXP assembly language %01111010 $7A 122 

Intel and TI assembly language 01111010b 7Ah 122 

C language - 0x7A 122 

Table 2.21 – Various hexadecimal formats 

To convert from binary to hexadecimal we can: 

1) divide the binary number into right justified nibbles; 

2) convert each nibble into its corresponding hexadecimal digit. 

binary

nibbles

0x367D

%11011001111101

0011 0110 0111 1101

hexadecimal
 

To convert from hexadecimal to binary we can: 

1) convert each hexadecimal digit into its corresponding 4-bit binary nibble; 

2) combine the nibbles into a single binary number. 

binary
%0001101100111111

nibbles 0001 1011 0011 1111

0x1B3Fhexadecimal

 

If a sequence of digits begins with 0x or 0X then it is taken as a hexadecimal 

value. In this case the word digits refers to hexadecimal digits (0 through F). As 

with decimal numbers, hexadecimal numbers are converted to their binary 

equivalent in 8-bit bytes, 16-bit half-words or 32-bit words. 

Converting from 
binary to 
hexadecimal 

Converting from 
hexadecimal to 
binary 

In C hexadecimal 
values begin with 0x 
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The range of a hexadecimal number depends on the data type as shown in the 

following table. 

Type Range Precision Examples 

unsigned char 0x00 to 0xFF 8 bits 0x01, 0x3a, 0xb3 

char -0x80 to 0x7F 8 bits -0x01, 0x3a, -0x7b 

unsigned short 0x0000 to 0xFFFF 16 bits 0x22, 0xABCD, 0xF0A6 

short -0x8000 to 0x7FFF 16 bits -0x1234, 0x0, 0x7ABC 

unsigned long 0x00000000 to 

0xFFFFFFFF 

32 bits 0x00000001, 0xABCDEF 

long -0x80000000 to 

0x7FFFFFFF 

32 bits -0x1234567, 0xABCDEF 

Table 2.22 – The range of hexadecimal numbers 

2.3.12 Character Literals 

Character literals consist of one or two characters surrounded by apostrophes. 

The manner in which character literals are treated depends on the context. For 

example: 

short I; 
unsigned short J; 
char K; 
unsigned char L; 
long M; 
void main(void) 
{  
  I = 'a';    // 16 bits 0x0061 
  J = 'a';    // 16 bits 0x0061 
  K = 'a';    // 8 bits 0x61 
  L = 'a';    // 8 bits 0x61 
  M = 'a';    // 32 bits 0x00000061 
} 

All standard ASCII characters are positive because the high-order bit is zero. In 

most cases it doesn't matter if we declare character variables as signed or 

unsigned. On the other hand, we have seen earlier that the compiler treats signed 

and unsigned numbers differently. Unless a character variable is specifically 

declared to be unsigned, its high-order bit will be taken as a sign bit. Therefore, 

we should not expect a character variable, which is not declared unsigned, to 

compare equal to the same character literal if the high-order bit is set. 

Character literals 
are surrounded by 
apostrophes 

The C char type is 

signed and is 
therefore different to 
unsigned ASCII 
literals if the sign bit 
is set 
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2.3.13 String Literals 

Strictly speaking, C does not recognize character strings, but it does recognize 

arrays of characters and provides a way to write character arrays, which we call 

strings. Surrounding a character sequence with quotation marks, e.g., "John", 

sets up an array of characters and generates the address of the array. In other 

words, at the point in a program where it appears, a string literal produces the 

address of the specified array of character literals. The array itself is located 

elsewhere. MX will place the strings into the text area, i.e., the string literals are 

considered constant and will be defined in the Flash memory of an embedded 

system. This is very important to remember. Notice that this differs from a 

character literal which generates the value of the literal directly. Just to be sure 

that this distinct feature of the C language is not overlooked, consider the 

following example: 

char *pt; 
void main(void) 
{  
  pt = "John"; // pointer to the string 
  printf(pt);  // passes the pointer, not the data itself 
} 

The compiler places the string in memory and uses a pointer to it when calling 

printf. MX pushes the parameter on the stack. 

Notice that the pointer, pt, is allocated in RAM (.bss) and the string is stored 

in Flash memory (.text). The assignment statement pt = "John"; copies the 

address, not the data. Similarly, the function printf() must receive the address 

of a string as its first (in this case, only) argument. First, the address of the string 

is assigned to the character pointer pt. Unlike other languages, the string itself is 

not assigned to pt, only its address is. After all, pt is a 32-bit object and, 

therefore, cannot hold the string itself. The same program could be written better 

as  

void main(void) 
{  
  printf("John"); // passes the pointer, not the data itself 
} 

Notice again that the program passes a pointer to the string into printf(), and 

not the string itself. 

Strings are really 
character arrays 

Strings are 
surrounded by 
quotes 

Strings in Flash 
memory are 
referenced by a 
pointer in RAM 
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In this case, it is tempting to think that the string itself is being passed to 

printf(); but, as before, only its address is. 

Since strings may contain as few as one or two characters, they provide an 

alternative way of writing character literals in situations where the address, 

rather than the character itself, is needed. 

It is a convention in C to identify the end of a character string with a null (zero) 

character. Therefore, C compilers automatically suffix character strings with 

such a terminator. Thus, the string "John" sets up an array of five characters ('J', 

'o', 'h', 'n', and zero) and generates the address of the first character, for use 

by the program. 

Remember that 'J' is different from "A". Consider the following example: 

char letter, *pt; 
void main(void) 
{  
  pt = "A";      // pointer to the string 
  letter = 'A';  // the data itself ('A' ASCII 65=$41) 
} 

2.3.14 Escape Sequences 

Sometimes it is desirable to code nongraphic characters in a character or string 

literal. This can be done by using an escape sequence – a sequence of two or 

more characters in which the first (escape) character changes the meaning of the 

following character(s). When this is done the entire sequence generates only one 

character. C uses the backslash (\) for the escape character. 

In C, strings are null 
terminated (end with 
a 0x00 byte) 

Escape sequences 
access the special 
ASCII codes and 
begin with a \ 
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The following escape sequences are recognized by the GCC compiler:  

Sequence Name Value 

\n newline, linefeed 0x0A = 10 

\t tab 0x09 = 9 

\b backspace 0x08 = 8 

\f form feed 0x0C = 12 

\a bell 0x07 = 7 

\r return 0x0D = 13 

\v vertical tab 0x0B = 11 

\0 null 0x00 = 0 

\" ASCII double quote 0x22 = 34 

\\ ASCII back slash 0x5C = 92 

\' ASCII single quote 0x27 = 39 

Table 2.23 – The escape sequences supported by MX 

Other nonprinting characters can also be defined using the \ooo octal format. 

The digits ooo can define any 8-bit octal number. The following three lines are 

equivalent: 

printf("\tJohn\n"); 
printf("\11John\12");  
printf("\011John\012");  

The term newline refers to a single character which, when written to an output 

device, starts a new line. Some hardware devices use the ASCII carriage return 

(13) as the newline character while others use the ASCII line feed (10). It really 

doesn't matter which is the case as long as we write \n in our programs. Avoid 

using the ASCII value directly since that could produce compatibility problems 

between different compilers. 

There is one other type of escape sequence: anything undefined. If the backslash 

is followed by any character other than the ones described above, then the 

backslash is ignored and the following character is taken literally. So the way to 

code the backslash is by writing a pair of backslashes and the way to code an 

apostrophe or a quote is by writing \' or \" respectively. 

A newline character 
is represented by \n 

Backslash is also 
used to specify 
literal characters 
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2.4 Variables and Constants 

The purpose of this section is to explain how to create and access variables and 

constants. The storage and retrieval of information are critical operations of any 

computer system. This section will also present the C syntax and resulting 

assembly code generated by the MX compiler. 

A variable is a named object that resides in RAM memory and is capable of 

being examined and modified. A variable is used to hold information critical to 

the operation of the embedded system. A constant is a named object that resides 

in memory (usually in Flash memory) and is only capable of being examined. 

As we saw in the last section, a literal is the direct specification of a number, 

character or string. The difference between a literal and a constant is that 

constants are given names so that they are easier to remember and can be 

accessed more than once. 

For example: 

short MyVariable;            // variable allows read/write access 
const short MY_CONSTANT = 50; // constant allows only read access 
#define FIFTY 50 
void main(void) 
{  
  MyVariable = 50;       // write access to the variable 
  OutSDec(MyVariable);   // read access to the variable 
  OutSDec(MY_CONSTANT);  // read access to the constant 
  OutSDec(50);           // "50" is a literal 
  OutSDec(FIFTY);        // FIFTY is also a literal 
} 

Listing 2.26 – Example showing a variable, a constant and some literals 

The concepts of precision and type (unsigned vs. signed) developed for numbers 

in the last section apply to variables and constants as well. In this section we will 

begin the discussion of variables that contain integers and characters. Even 

though pointers are similar in many ways to 32-bit unsigned integers, pointers 

will be treated in a later section. Although arrays and structures also fit the 

definition of a variable, they are regarded as collections of variables and will be 

discussed in later sections.  

The difference 
between a variable, 
a constant and a 
literal 
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The term storage class refers to the method by which an object is assigned space 

in memory. The MX compiler recognizes three storage classes – static, 

automatic, and external. In this document we will use the term global variable 

to mean a regular static variable that can be accessed by all other functions. 

Similarly, we will use the term local variable to mean an automatic variable that 

can be accessed only by the function that created it. As we will see in the 

following sections there are other possibilities like a static global and static local. 

2.4.1 Statics 

Static variables are given space in memory at some fixed location within the 

program. They exist when the program starts to execute and continue to exist 

throughout the program's entire lifetime. The value of a static variable is 

faithfully maintained until we change it deliberately (or remove power from the 

memory). A constant, which we define by adding the modifier const, can be read 

but not changed. 

In an embedded system we normally wish to place all variables in RAM and all 

constants in Flash memory.  

In the MX IDE, we set the starting memory address for the static variables in the 

linker parameter *.ld file by specifying the m_data user segment. The 

m_data segment is just the entire RAM of the microcontroller and is used to 

store data. The program instructions will be placed in the m_text user segment, 

which is normally a page of Flash memory reserved for instructions. The 

constants will also be placed in the m_text user segment in an area of Flash 

memory reserved for constants and string literals. 

The MX compiler places static variables in the .bss section, which we can view 

in the linker output *.map file in the “SECTIONS” section. It also places the 

program in the .text section, and constants in the .rodata (read only data) 

section. The MX linker automatically places sections into their correct segments. 

  

The distinction 
between global and 
local variables 

“bss” stands for 
“Block Started by 
Symbol”, and is a 
leftover acronym 
from an early 
assembler written 
for an IBM 
mainframe computer 
in the 1950’s. It is 
the name of the data 
section containing 
uninitialized 
variables 
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The MX compiler uses the name of each static variable to define an assembler 

label. The following example sets a global, called TheGlobal, to the value 1000. 

This global can be referenced by any function from any file in the software 

system. It is truly global. 

int TheGlobal;   // a regular global variable 
void main(void) 
{  
  TheGlobal = 1000; 
} 

Listing 2.27 – Example showing a regular global variable 

The K64 code generated by the MX compiler is as follows 

main: 

    ldr r3, TheGlobal 

    mov r2, #1000 

    str r2, [r3] 

    bx   lr  

Listing 2.28 – Example showing a global variable in assembly language 

The fact that these types of variables exist in permanently reserved memory 

means that static variables exist for the entire life of the program. When the 

power is first applied to an embedded computer, the values in its RAM are 

usually undefined. Therefore, initializing global variables requires special run-

time software. The MX compiler will attach the C code in the startup.c file 

to the beginning of every program. This software is executed first, before our 

main() program is started. We can see by observing the startup.c file that 

the MX compiler will clear all static variables to zero (ZeroOut) immediately 

after a hardware reset, and then copy all the values of initialized static variables 

from Flash to RAM (CopyDown). 

A static global is very similar to a regular global. In both cases, the variable is 

defined in RAM permanently. The assembly language access is identical. The 

only difference is the scope. The static global can only be accessed within the 

file where it is defined. 

  

A static global can 
only be accessed 
within the file where 
it is defined 
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The following example also sets a global, called TheGlobal, to the value 1000. 

static int TheGlobal;   // a static global variable 
void main(void) 
{  
  TheGlobal = 1000;     
} 

Listing 2.29 – Example showing a static global variable 

This static global cannot be referenced outside the scope of this file. 

The K64 code generated by the MX compiler is the same as a regular global. 

MX limits access to the static global to functions defined in the same file. 

main: 

    ldr r3, TheGlobal 

    mov r2, #1000 

    str r2, [r3] 

    bx   lr  

Listing 2.30 – Example showing a static global in assembly language 

A static local is similar to a static global. Just as with the other statics, the 

variable is defined in RAM permanently. The assembly language code generated 

by the compiler that accesses the variable is identical. The only difference is the 

scope. The static local can only be accessed within the function where it is 

defined. The following example sets a static local, called TheLocal, to the value 

1000. 

void main(void) 
{ 
  static int TheLocal;   // a static local variable 
  TheLocal = 1000;     
} 

Listing 2.31 – Example showing a static local variable 

Again the K64 code generated by the MX compiler is the same as a regular 

global. MX limits access to the static local to the function in which it is defined. 

main: 

    ldr r3, TheGlobal 

    mov r2, #1000 

    str r2, [r3] 

    bx   lr  

Listing 2.32 – Example showing a static local variable in assembly 

A static local retains 
its value from one 
function call to 
another, and can 
only be accessed 
within the function 
where it is defined 
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A static local can be used to save information from one instance of the function 

call to the next. Assume each function wished to know how many times it has 

been called. Remember upon reset, the startup code will initialize all statics to 

zero (including static locals). 

The following functions maintain such a count, and these counts cannot be 

accessed by other functions. Even though the names are the same, the two static 

locals are in fact distinct. 

void function1(void) 
{  
  static int TheCount; 
  TheCount++; 
} 
 
void function2(void) 
{  
  static int TheCount; 
  TheCount++; 
} 

Listing 2.33 – Two static local variables with the same name 

In each function, the address of TheCount will resolve to a unique address in 

RAM, so the K64 code generated by the MX compiler will be something like: 

function1: 

    ldr r3, .L2 

    ldr r3, [r3] 

    adds r2, r3, #1 

    ldr r3, .L2 

    str r2, [r3] 

    bx lr 

.L2: 

    .word TheCount.3933 

function2: 

    ldr r3, .L5 

    ldr r3, [r3] 

    adds r2, r3, #1 

    ldr r3, .L5 

    str r2, [r3] 

    bx lr 

.L5: 

    .word TheCount.3937 

Listing 2.34 – Two static local variables with the same name in assembly 

The MX compiler limits the scope of the local variables to within their functions 

only. 

All static variables 
are initialized to zero 
by code created by 
the compiler 
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2.4.2 Volatile 

We add the volatile modifier to a variable that can change value outside the scope 

of the function. Usually the value of a global variable changes only as a result of 

explicit statements in the C function that is currently executing. This paradigm 

results when a single program executes from start to finish, and everything that 

happens is an explicit result of actions taken by the program. There are two 

situations that break this simple paradigm in which the value of a memory 

location might change outside the scope of a particular function currently 

executing:  

1) interrupts and 

2) input/output ports.  

An interrupt is a hardware-requested software action. Consider the following 

multithreaded interrupt example. There is a foreground thread called main(), 

which we set up as the usual main program that all C programs have. Then, there 

is a background thread called TickHandler(), which we setup to be executed on 

a periodic basis (e.g., every 10 ms). Both threads access the global variable Time. 

The interrupt thread increments the global variable, and the foreground thread 

waits for time to reach 100. Notice that Time changes value outside the influence 

of the main() program. 

A volatile 

modifier is used to 
indicate that a 
variable can change 
due to external 
influences 
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volatile char Time; 
void __attribute__ ((interrupt)) TickHandler(void) 
{ 
  // every 10 ms 
  Time++; 
} 
 
void main(void) 
{  
  // Disable SysTick 
  SYST_CSR = 0; 
 
  // Set reload value for a 10 ms period 
  SYST_RVR = CPU_CORE_CLK_HZ / 100 - 1; 
 
  // Clear current value as well as count flag 
  SYST_CVR = 0; 
 
  // Enable SysTick 
  SYST_CSR = 0x00000007; 
 
  // Initialise time 
  Time = 0; 
  
  // Wait for 100 counts of the 10 ms timer 
  while (Time < 100);  
} 

Listing 2.35 – Code showing shared access to a common global variable 

Without the volatile modifier the compiler might look at the two statements: 

Time = 0; 
while (Time < 100);  

and conclude that since the while loop does not modify Time, it could never reach 

100. Some compilers might attempt to move the read Time operation, performing 

it once before the while loop is executed. The volatile modifier disables the 

optimization, forcing the program to fetch a new value from the variable each 

time the variable is accessed.  
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In the next K64 example, assume GPIOA_PDIR is an input port containing the 

current status of some important external signals. The program wishes to collect 

status versus time data of these external signals.  

#define GPIOA_PDIR *(uint32_t volatile *)(0x400FF010) 
#define GPIOA_PDDR *(uint32_t volatile *)(0x400FF014) 
 
unsigned char Data[100]; 
 
void main(void) 
{ 
  int i; 
 
  // Make Port A an input 
  GPIOA_PDDR = 0x0000;  
  // Collect 100 measurements 
  for (i = 0; i < 100; i++) 
  { 
    // Collect ith measurement 
    Data[i] = GPIOA_PDIR;   
  } 
} 

Listing 2.36 – Code showing shared access to a common global variable 

Without the volatile modifier in the GPIOA_PDIR definition, the compiler might 

optimize the for loop, reading GPIOA_PDIR once, then storing 100 identical 

copies into the data array. 
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2.4.3 Automatics 

Automatic variables do not have fixed memory locations. They are dynamically 

allocated when the block in which they are defined is entered, and they are 

discarded upon leaving that block. Specifically, they are allocated on the K64 

stack by subtracting a value (one for characters, two for short integers and four 

for long integers) from the stack pointer register (SP). Since automatic objects 

exist only within blocks, they can only be declared locally. An automatic 

variable can only be referenced (read or written to) by the function that created 

it. In this way, the information is protected or local to the function. 

When a local variable is created it has no dependable initial value. It must be set 

to an initial value by means of an assignment operation. C provides for automatic 

variables to be initialized in their declarations, like globals. It does this by 

generating "hidden" code that assigns values automatically after variables are 

allocated space.  

It is tempting to forget that automatic variables go away when the block in which 

they are defined exits. This sometimes leads new C programmers to fall into the 

"dangling reference" trap in which a function returns a pointer to a local variable, 

as illustrated by  

int* BadFunction(void) 
{ 
  int z; 
  z = 1000; 
  return(&z); 
} 

Listing 2.37 – Example showing an illegal reference to a local variable 

When callers use the returned address of z they will find themselves messing 

around with the stack space that z used to occupy. This type of error is NOT 

flagged as a syntax error, but rather will cause unexpected behaviour during 

execution. 

Automatic variables 
are created on the 
stack, and only exist 
locally 
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2.4.4 Implementation of Automatic Variables 

If locals are dynamically allocated at unspecified memory (stack) locations, then 

how does the program find them? This is done by using the stack pointer (SP) 

to designate a stack frame for the currently active function. The MX compiler 

generates code that references variables with respect to this stack frame. When 

the C function is entered, space is allocated by decrementing the stack pointer 

(the stack grows downwards in memory). This new value of SP then becomes 

the base for references to local variables that are declared within the function. 

The K64 SP register points to the top data byte that has already been pushed – it 

is a “last-used” stack as opposed to a “next-available” stack. 

In order to understand both the machine architecture and the C compiler, we can 

look at the assembly code generated. For the MX compiler, the linker/loader 

allocates 3 segmented memory sections: code pointed to by the PC (.text 

section); globals accessed with absolute addressing (.data section); and locals 

pointed to by the stack pointer SP. This example shows a simple C program with 

three local variables. Although the function doesn't do much (and will be in 

general be optimised out of any object code) it will serve to illustrate how local 

variables are created (allocation), accessed (read and write) and destroyed 

(deallocated). 

void sub(void) 
{ 
  short y1, y2, y3;   // 3 local variables 
  y1 = 1000; 
  y2 = 2000; 
  y3 = y1 + y2; 
} 

Listing 2.38 – Example showing three local variables 

The disassembled output of the MX compiler shown below has been highlighted 

to clarify its operation. In the K64 the program counter (PC) always points to the 

next instruction to be executed. 

 

Automatic variables 
are defined with 
respect to a local 
stack frame 
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0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

R2

0x00000BF8

R3

SP 0x00000BF4

SP

R4

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr  

Figure 2.3 – K64 implementation of three local variables – step 1 

 

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y1

y2

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

 

Figure 2.4 – K64 implementation of three local variables – step 2 

Code and K64 
registers and stack 
showing the creation 
and use of 
automatic variables 
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.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y1

y2

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

1000

 

Figure 2.5 – K64 implementation of three local variables – step 3 

 

y1 = 1000

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y2

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

1000

 

Figure 2.6 – K64 implementation of three local variables – step 4 
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y1 = 1000

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y2

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

1000

2000

 

Figure 2.7 – K64 implementation of three local variables – step 5 

 

y2 = 2000

y1 = 1000

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

1000

2000

 

Figure 2.8 – K64 implementation of three local variables – step 6 
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y2 = 2000

y1 = 1000

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

y3

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

3000

2000

 

Figure 2.9 – K64 implementation of three local variables – step 7 

 

y3 = 3000

y2 = 2000

y1 = 1000

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

R2

0x00000BF8

R3

SP 0x00000BE8

SP R4

3000

2000

 

Figure 2.10 – K64 implementation of three local variables – step 8 
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.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

PC

0x00000BF4 return address

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

R2

0x00000BF8

R3

SP 0x00000BF4

SP

R4

3000

2000

 

Figure 2.11 – K64 implementation of three local variables – step 9 

 

.text      ;sub in ROM

sub:

; allocate y1, y2, y3

; y3 ->  sp,#0

; y2 ->  sp,#4

; y1 ->  sp,#8

sp,sp,#12sub

mov r2,#1000

mov r3,#2000

r3,[sp,#4]str

r3,r3,r2add

r3,[sp,#0]str

sp,sp,#12adds

bx

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

r2,[sp,#8]str

lr

; allocate y1, y2, y3

; y1 = 1000

; y2 = 2000

; y3 = y1 + y2

; deallocate y1, y2, y3

{

int y1, y2, y3;

y1 = 1000;

}

sub()void

y2 = 2000;

y3 = y1 + y2;

0x00000BF4

0x00000BF0

0x00000BEC

0x00000BE8

0x00000BE4

0x00000BE0

address data

R2

0x00000BF8

R3

SP 0x00000BF8

SP

R4

3000

2000

 

Figure 2.12 – K64 implementation of three local variables – step 10 

Constant locals are 
defined temporarily 
on the stack 
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The sub sp,sp,#12 instruction allocates the local variables, and thereafter 

they are accessed by indexing the stack pointer. Within the subroutine the local 

variables of other functions are not accessible. If a function is called from within 

another function, the new function will allocate its own local variable space on 

the stack, without disturbing the existing data. 

2.4.5 Implementation of Constant Locals 

A constant local is different to a regular local. Unlike the other locals, the 

constant is not defined temporarily on the stack. Since it cannot be changed,  the 

assembly language code generated by the MX compiler that references the 

constant local replaces the reference with the actual value.  

int TheGlobal;   // a regular global variable 
void sub(void) 
{  
  const int THE_CONSTANT = 1000;   // a constant local 
  TheGlobal = THE_CONSTANT; 
} 

Listing 2.39 – Example showing a constant local 

The K64 code generated by the MX compiler is as follows (notice the reservation 

of space in the .bss section for the global variable) 

    .text 

sub: 

    mov   r3,#1000 

    ldr   r2,TheGlobal 

    str   r3,[r2] 

    bx lr 

    .bss  

TheGlobal 
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2.4.6 Externals 

Objects that are defined outside of the present source module have the external 

storage class. This means that, although the compiler knows what they are 

(signed / unsigned, 8-bit, 16-bit, 32-bit, etc.), it has no idea where they are. It 

simply refers to them by name without reserving space for them. Then, when the 

linker brings together the object modules, it resolves these "pending" references 

by finding the external objects and inserting their addresses into the instructions 

that refer to them. The compiler knows an external variable by the keyword 

extern that must precede its declaration. 

Only global declarations can be designated extern and only globals in other 

modules can be referenced as external. 

The following example sets an external global, called ExtGlobal, to the value 

1000. This global can be referenced by any function from any file in the software 

system. It is truly global. 

extern int ExtGlobal;   // an external global variable 
void main(void) 
{  
  ExtGlobal = 1000; 
} 

Listing 2.40 – Example showing an external global 

The assembly language the MX compiler generates does not include the 

definition of ExtGlobal. The K64 code generated by the MX compiler is as 

follows 

    .text 

main: 

    mov   r3,#1000 

    ldr   r2,ExtGlobal 

    str   r3,[r2] 

    bx lr 

 

Externals are 
variables defined 
elsewhere 
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2.4.7 Scope 

The scope of a variable is the portion of the program from which it can be 

referenced. We might say that a variable's scope is the part of the program that 

"knows" or "sees" the variable. As we shall see, different rules determine the 

scopes of global and local objects. 

When a variable is declared globally (outside of a function) its scope is the part 

of the source file that follows the declaration – any function following the 

declaration can refer to it. Functions that precede the declaration cannot refer to 

it. Most C compilers would issue an error message in that case.  

The scope of local variables is the block in which they are declared. Local 

declarations must be grouped together before the first executable statement in 

the block – at the head of the block. This is different from C++ and C11 that 

allow local variables to be declared anywhere in the function. It follows that the 

scope of a local variable effectively includes all of the block in which it is 

declared. Since blocks can be nested, it also follows that local variables are seen 

in all blocks that are contained in the one that declares the variables. 

If we declare a local variable with the same name as a global object or another 

local in a superior block, the new variable temporarily supersedes the higher 

level declarations. Consider the following program. 

unsigned char x;        // a regular global variable 
void sub(void) 
{ 
  x = 1; 
  { 
    unsigned char x;    // a local variable 
    x = 2; 
    { 
      unsigned char x;  // a local variable 
      x = 3; 
      GPIOA_PDOR = x; 
    } 
    GPIOA_PDOR = x; 
  } 
  GPIOA_PDOR = x; 
} 

Listing 2.41 – Example showing the scope of local variables 

Scope refers to 
where a variable 
can be “seen” 

Global variables 
have a scope that 
extends from the 
declaration to the 
end of the file 

Local variables have 
a scope that is 
restricted to the 
function where they 
are defined 
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This program declares variables with the name x, assigns values to them, and 

outputs them to GPIOA_PDOR in such a way that, when we consider its output, the 

scope of its declarations becomes clear. When this program runs, it outputs 321. 

This only makes sense if the x declared in the inner most block masks the higher 

level declarations so that it receives the value '3' without destroying the higher 

level variables. Likewise the second x is assigned '2' which it retains throughout 

the execution of the inner-most block. Finally, the global x, which is assigned '1', 

is not affected by the execution of the two inner blocks. Notice, too, that the 

placement of the last two GPIOA_PDOR = x; statements demonstrates that leaving 

a block effectively unmasks objects that were hidden by declarations in the 

block. The second GPIOA_PDOR = x; sees the middle x and the last GPIOA_PDOR = 

x; sees the global x. 

This masking of higher level declarations is an advantage, since it allows the 

programmer to declare local variables for temporary use without regard for other 

uses of the same names. 

One of the mistakes a C++ programmer makes when writing C code is trying to 

define local variables in the middle of a block. In C local variables must be 

defined at the beginning of a block. The following example is proper C++ or 

C11 code, but results in a syntax error in C. 

void sub(void) 
{ 
  int x;   // a valid local variable declaration 
  x = 1; 
  int y;   // this declaration is improper in C 
  y = 2; 
} 

Listing 2.42 – Example showing an illegal local variable declaration 

We will be using the MX GCC compiler in C11 mode, so we can make 

declarations like this without causing errors. 

Local variables can 
have nested scope 
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2.4.8 Declarations 

Every variable in C must be declared before it is used. Declarations force us to 

consider the precision (8-bit, 16-bit etc.) and format (unsigned vs. signed) of 

each variable. 

Describing a variable involves two actions. The first action is declaring its type 

and the second action is defining it in memory (reserving a place for it). Although 

both of these may be involved, we refer to the C construct that accomplishes 

them as a declaration. As we saw previously, if the declaration is preceded by 

extern it only declares the type of the variable, without reserving space for it. In 

such cases, the definition must exist in another source file. Failure to do so will 

result in an unresolved reference error at link time. 

Table 2.24 contains examples of legitimate variable declarations. Notice that the 

declarations are introduced by one or two type keywords that state the data types 

of the variables listed. The keyword char declares 8-bit values, short declares 

16-bit values, int declares 32-bit values, and long declares 32-bit values. Unless 

the modifier unsigned is present, the variables declared by these statements are 

assumed by the compiler to contain signed values. You could add the keyword 

signed before the data type to clarify its type. 

When more than one variable is being declared, they are written as a list with the 

individual names separated by commas. Each declaration is terminated with a 

semicolon, as are all simple C statements. 

  

A declaration 
defines the type of a 
variable and where 
it is located in 
memory 

Variables have a 
signed modifier by 

default 
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Declaration Comment Range 

unsigned char uc; 8-bit unsigned number 0 to +255 

char c1, c2, c3; three 8-bit signed numbers -128 to +127 

unsigned short us; 16-bit unsigned number 0 to +65535 

short s1, s2; two 16-bit signed numbers -32768 to +32767 

unsigned int ui; 32-bit unsigned number 0 to +65535 

int i1, i2; two 32-bit signed numbers -32768 to +32767 

long l1, l2, l3, l4; four signed 32-bit integers -2147483648L to 

2147483647L 

float f1, f2; two 32-bit floating-point numbers ≈ ±3.402823×1038 

double d1, d2; two 64-bit floating-point numbers ≈ ±1.797693×10308 

Table 2.24 – Variable declarations 

Variable Storage Classes and Modifiers 

The following tables shows the available storage classes and modifiers for 

variables. 

Storage Class Comment 

auto automatic, allocated on the stack 

extern defined in some other program file 

static permanently allocated 

register attempt to implement an automatic using a 

register instead of on the stack 

Table 2.25 – Variable storage classes 

The MX compiler allows the register modifier for automatic variables, but this 

is usually unnecessary as the compiler will use registers in preference to locals 

on the stack (for speed reasons). 

 

 

Storage class 
indicates where 
variables should be 
placed in memory 
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Modifier Comment 

volatile can change value by means other than the current program 

const fixed value, defined in the source code and cannot be 

changed during execution 

unsigned range starts with 0, includes only positive values 

signed range includes both negative and positive values 

Table 2.26 – Variable modifiers 

In all cases const means the variable has a fixed value and cannot be changed. 

When modifying a global on an embedded system like the K64, it also means 

the parameter will be allocated in Flash memory. In the following example, CR 

is allocated in Flash memory. When const is added to a parameter or a local 

variable, it means that parameter cannot be modified by the function. It does not 

change where the parameter is allocated. For example, this example is legal: 

unsigned char const CR = 13; 
void LegalFunction(short count) 
{ 
  while (count) 
  { 
    UART_OutChar(CR); 
    count--; 
  } 
} 

On the other hand, the following example is not legal because the function 

attempts to modify the input parameter. count in this example would have been 

allocated on the stack or in a register. 

void IllegalFunction(const short count) 
{ 
  while (count) 
  { 
    UART_OutChar(13); 
    count--;  // this operation is illegal 
  } 
} 

A modifier is used to 
further classify a 
variable’s type 

A const modifier 

means a variable 
cannot be changed 
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Similarly, the following example is not legal because the function attempts to 

modify the local variable. COUNT in this example would have been substituted by 

the value 5. 

void IllegalFuntion2(void) 
{ 
  const short COUNT = 5; 
  while (COUNT) 
  { 
    UART_OutChar(13); 
    COUNT--;  // this operation is illegal 
  } 
} 

2.4.9 Character Variables 

Character variables are stored as 8-bit quantities. When they are fetched from 

memory, they are always promoted automatically to 32-bit integers. Unsigned 

8-bit values are promoted by adding 24 zeros into the most significant bits. 

Signed values are promoted by copying the sign bit (bit7) into the 24 most 

significant bits. 

2.4.10 Mixing Signed and Unsigned Variables 

There is a confusion when signed and unsigned variables are mixed into the same 

expression. It is good programming practice to avoid such confusions. As with 

integers, when a signed character enters into an operation with an unsigned 

quantity, the character is interpreted as though it was unsigned. The result of 

such operations is also unsigned. When a signed character joins with another 

signed quantity, the result is also signed. 

char x;   // signed 8-bit global 
unsigned short y;   // unsigned 16-bit global 
void sub(void) 
{ 
  y = y + x; 
  // x treated as unsigned even though defined as signed 
} 

Listing 2.43 – Code showing the mixture of signed and unsigned variables 

There is also a need to change the size of characters when they are stored, since 

they are represented in the CPU as 32-bit values. In this case, however, it does 

not matter whether they are signed or unsigned. Obviously there is only one 

reasonable way to put a 32-bit quantity into an 8-bit location. When the high-

order byte is chopped off, an error might occur. It is the programmer's 

responsibility to ensure that significant bits are not lost when characters are 

stored. 

Characters are 8-bit 
quantities promoted 
to 32-bits 

Do not mix signed 
and unsigned 
variables in 
expressions 
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2.4.11 When Do We Use Automatics Versus Statics? 

Because their contents are allowed to change, all variables must be allocated in 

RAM and not Flash memory. An automatic variable contains temporary 

information used only by one software module. Automatic variables are 

typically allocated, used, then deallocated from the stack. Since an interrupt will 

save registers and create its own stack frame, the use of automatic variables is 

important for creating re-entrant software. Automatic variables provide 

protection, limiting the scope of access in such a way that only the program that 

created the local variable can access it. The information stored in an automatic 

variable is not permanent. This means if we store a value into an automatic 

variable during one execution of the module, the next time that module is 

executed the previous value is not available. Typically we use automatics for 

loop counters and temporary sums. We use an automatic variable to store data 

that is temporary in nature. In summary, reasons why we place automatic 

variables on the stack include: 

 dynamic allocation release allows for reuse of memory 

 limited scope of access provides for data protection 

 can be made re-entrant 

 since absolute addressing is not used, the code is relocatable 

 the number of variables is only limited by the size of the stack allocation 

A static variable is information shared by more than one program module. For 

example, we use globals to pass data between the main (or background) process 

and an interrupt (or foreground) process. Static variables are not deallocated. The 

information they store is permanent. We can use static variables for the time of 

day, date, user name, temperature, pointers to shared data, etc. The MX compiler 

uses absolute addressing (direct or extended) to access the static variables.  

Automatic variables 
contain temporary 
information used 
only by one software 
module, and they 
are interrupt proof 

Static variables 
contain information 
that is shared 
between software 
modules 



2.93 

PMcL Variables and Constants Index 

2020  2 - Embedded C 

2.4.12 Initialization of variables and constants 

Most programming languages provide ways of specifying initial values; that is, 

the values that variables have when program execution begins. The MX compiler 

will initially set all static variables to zero. Constants must be initialized at the 

time they are declared, and we have the option of initializing the variables.  

Specifying initial values is simple. In its declaration, we follow a variable's name 

with an equals sign and a constant expression for the desired value. Thus 

short Temperature = -55; 

declares Temperature to be a 16-bit signed integer, and gives it an initial value 

of -55. Character constants with backslash-escape sequences are permitted. 

Thus 

char Letter = '\t'; 

declares Letter to be a character, and gives it the value of the tab character. If 

array elements are being initialized, a list of constant expressions, separated by 

commas and enclosed in braces, is written. For example, 

const unsigned short Steps[4] = {10, 9, 6, 5}; 

declares Steps to be an unsigned 16-bit constant integer array, and gives its 

elements the values 10, 9, 6, and 5 respectively. If the size of the array is not 

specified, it is determined by the number of initializers. Thus 

char Waveform[] = {28, 27, 60, 30, 40, 50, 60}; 

declares Waveform to be a signed 8-bit array of 7 elements which are initialized 

to 28, 27, 60, 30, 40, 50, 60. On the other hand, if the size of the array is given and 

if it exceeds the number of initializers, the leading elements are initialized and 

the trailing elements default to zero. Therefore, 

char Waveform[100] = {28, 27, 60, 30, 40, 50, 60}; 

declares Waveform to be an integer array of 100 elements, the first 7 elements of 

which are initialized to 28, 27, 60, 30, 40, 50, 60 and the others to zero. Finally, if 

the size of an array is given and there are too many initializers, the compiler 

generates an error message. 

Static variables are 
initialized to zero 

Constants must be 
initialized when they 
are declared 
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Character arrays and character pointers may be initialized with a character string. 

In these cases, a terminating zero is automatically generated. For example, 

char Name[5] = "John"; 

declares Name to be a character array of five elements with the first four initialized 

to 'J', 'o', 'h' and 'n' respectively. The fifth element contains zero. If the size 

of the array is not given, it will be set to the size of the string plus one. Thus 

char Name[] = "John"; 

also contains the same five elements. If the size is given and the string is shorter, 

trailing elements default to zero. For example, the array declared by 

char Name[7] = "John"; 

contains zeroes in its last three elements. If the string is longer than the specified 

size of the array, the array size is increased to match. 

If we write 

char *NamePtr = "John"; 

the effect is quite different from initializing an array. First a word (32 bits) is set 

aside for the pointer itself. This pointer is then given the address of the string. 

Then, beginning with that byte, the string and its zero terminator are assembled. 

The result is that NamePtr contains the address of the string "John". The MX 

compiler accepts initializers for character variables, pointers, and arrays; and for 

integer variables and arrays. The initializers themselves may be either constant 

expressions, lists of constant expressions, or strings.  

  

Character arrays 
can be initialized 
with a character 
string 

Pointers can be 
initialized to point to 
a constant character 
string 
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2.4.13 Implementation of the initialization 

The compiler initializes static constants simply by defining its value in Flash 

memory (normally as part of the instruction for small values). In the following 

example, J is a static constant, and K is a literal. 

short I;              // 16-bit global 
const short J = 96;   // 16-bit constant 
#define K 97; 
void main(void) 
{  
  I = J;  
  I = K; 
} 

Listing 2.44 – Example showing the initialization of a static constant 

The K64 code generated by the MX compiler is as follows 

    .text 

main: 

    movs r2,#96  ;constant J=96 

    ldr r3,I    

    strh r2,[r3] ;I=J (store half-word, 16-bits) 

    ldr r3,I    

    movs r2,#97 

    strh r2,[r3] ;I=K (store half-word, 16-bits) 

    bx lr 

     

    .word I  

Notice the use of the #define macro which is used to implement an operation 

that is equivalent to I = 97;. 

The compiler initializes a static variable by defining its initial value in Flash 

memory. It creates another segment called .rodata (in addition to the .data and 

.text sections). It places the initial values in the .rodata segment, then copies the 

data dynamically from .rodata Flash memory into .data RAM variables at the 

start of the program (before main is started). For example 

short I = 95;         // 16-bit global 
void main(void) 
{ 
  ...   
} 

For the MX compiler, code in the startup.c file will copy the 95 from 

.rodata (Flash memory) into I in .bss (RAM) upon a hardware reset. 
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This copy is performed transparently before the main program is started. 

    .text  

main: 

    ... 

    bx lr 

     

    .global I 

    .section .data.I,"aw",%progbits 

 .align 1 

   I: 

 .short 95 

Even though the following two initializations of a global variable are technically 

proper, the explicit initialization of a global variable is a better style. 

// good style 
int I; 
void main(void) 
{  
  I = 95; 
} 

// poor style 
int I = 95; 
void main(void) 
{  
 
} 
 

 

A good understanding of the assembly code generated by 

our compiler makes us better programmers. 
(2.12) 
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2.4.14 Summary of Variable Attributes 

Every variable possesses a number of different attributes, as summarized in the 

table below: 

Attribute Description 

Type char, int, unsigned int, etc. 

(also implies size, range and resolution) 

Name The identifier used to access the variable. 

Value The data held within the variable. 

Address The location in memory where the variable resides. 

Scope That part of the source code where the variable’s name is 

recognized. 

Lifetime A notion of when the variable is created and destroyed, and thus 

when it is available for use. 

Table 2.27 – Attributes of variables stored in memory 

2.4.15 Summary of Variable Lifetimes 

C offers three basic types of memory allocation as summarized below: 

Method Variable is 

created… 

Variable is 

initialized… 

Variable is 

destroyed… 

Automatic Each time the 

program enters 

the function in 

which it is 

declared. 

If specified in the 

declaration, 

initialization 

occurs each time 

the program 

enters the block. 

Each time the 

function returns. 

Static Once: When the 

program is first 

loaded into 

memory. 

Once: Just before 

the program 

starts to run. 

Once: When the 

program stops. 

Dynamic By calling the 

library function 

malloc. 

By writing 

executable 

statements that 

modify its 

content. 

By calling the 

library function 

free. 

Table 2.28 – Types of memory allocation available in C 

Each was designed for a different purpose; understanding their behaviour is 

crucial in order to take advantage of their capability. 
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2.5 Expressions 

Most programming languages support the traditional concept of an expression 

as a combination of constants, variables, array elements, and function calls 

joined by various operators (+, -, etc.) to produce a single numeric value. Each 

operator is applied to one or two operands (the values operated on) to produce a 

single value which may itself be an operand for another operator. This idea is 

generalized in C by including non-traditional data types and a rich set of 

operators. Pointers, unsubscripted array names, and function names are allowed 

as operands. As Table 2.29 through to Table 2.34 illustrate, many operators are 

available. All of these operators can be combined in any useful manner in an 

expression. As a result, C allows the writing of very compact and efficient 

expressions which at first glance may seem a bit strange. Another unusual feature 

of C is that anywhere the syntax calls for an expression, a list of expressions, 

with comma separators, may appear.  

2.5.1 Precedence and Associativity 

The basic problem in evaluating expressions is deciding which parts of an 

expression are to be associated with which operators. To eliminate ambiguity, 

operators are given three properties: operand count, precedence, and 

associativity.  

Operand count refers to the classification of operators as unary, binary, or ternary 

according to whether they operate on one, two, or three operands. The unary 

minus sign, for instance, reverses the sign of the following operand, whereas the 

binary minus sign subtracts one operand from another.  

The following example converts the distance x in inches to a distance y in cm. 

Without parentheses the following statement seems ambiguous: 

y = 254 * x / 100; 

If we divide first, then y can only take on values that are multiples of 254 (e.g., 

0, 254, 508 etc.), so the following statement is incorrect: 

y = 254 * (x / 100); 

An expression is a 
combination of 
constants, variables 
array elements and 
function calls joined 
by operators 

Operand count 
refers to how many 
variables the 
operator is applied 
to 
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The proper approach is to multiply first then divide. To multiply first we must 

guarantee that the product 254 * x will not overflow the precision of the 

computer. How do we know what precision the compiler used for the 

intermediate result 254 * x? To answer this question, we must observe the 

assembly code generated by the compiler. Since multiplication and division 

associate left to right, the first statement without parentheses, although 

ambiguous will actually calculate the correct answer. It is good programming 

style to use parentheses to clarify the expression. The following statement has 

both good style and proper calculation: 

y = (254 * x) / 100; 

The issues of precedence and associativity were explained in an earlier section. 

Precedence defines the evaluation order. For example the expression 3+4*2 will 

be 11 because multiplication has precedence over addition. Associativity 

determines the order of execution for operators that have the same precedence. 

For example, the expression 10-3-2 will be 5, because subtraction associates left 

to right. On the other hand, if x and y are initially 10, then the expression x+=y+=1 

will first make y=y+1 (11), then make x=x+y (21) because the operator += 

associates right to left. Refer to Table 2.4 for a list of operators and their 

precedence and associativity. 

Precedence and 
associativity are 
confusing – use 
parentheses 

Associativity 
determines order of 
execution for 
operators with the 
same precedence 



2.100 

Index Expressions PMcL 

2 - Embedded C  2020 

2.5.2 Unary operators 

Unary operators take a single input and give a single output. In the following 

examples, assume all numbers are 16-bit signed (short). The following variables 

are listed: 

short data; // -32768 to +32767 
short *pt;  // pointer to memory 
short flag; // 0 is false, not zero is true 

Operator Meaning Example Result 

~ binary complement ~0x1234 0xEDCB 

! logical complement !flag flip 0 to 1 and not zero to 0 

& address of &data address in memory where data is stored 

- negate -100 negative 100 

+ positive +100 100 

++ preincrement ++data data=data+1, then result is data 

-- predecrement --data data=data-1, then result is data 

* dereference *pt 16-bit information pointed to by pt 

Table 2.29 – Unary prefix operators 

 

Operator Meaning Example Result 

++ Postincrement data++ result is data, then data=data+1 

-- Postdecrement data-- result is data, then data=data-1 

Table 2.30 – Unary postfix operators 

Unary operators 
have a single input, 
and a single output 
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2.5.3 Binary operators 

Binary arithmetic operators operate on two number inputs giving a single 

number result. The operations of addition, subtraction and shift left are the same 

independent of whether the numbers are signed or unsigned. As we will see later, 

overflow and underflow after an addition, subtraction and shift left are different 

for signed and unsigned numbers, but the operation itself is the same. On the 

other hand multiplication, division, and shift right have different functions 

depending on whether the numbers are signed or unsigned. It will be important, 

therefore, to avoid multiplying or dividing an unsigned number with a signed 

number.  

Operator Meaning Example Result 

+ addition 100 + 300 400 

- subtraction 100 - 300 -200 

* multiplication 10 * 300 3000 

/ division 123 / 10 12 

% remainder 123 % 10 3 

<< shift left 102 << 2 408 

>> shift right 102 >> 2 25 

Table 2.31 – Binary arithmetic operators 

The binary bitwise logical operators take two inputs and give a single result. 

Operator Meaning Example Result 

& bitwise AND 0x1234 & 0x00FF 0x0034 

| bitwise OR 0x1234 | 0x00FF 0x12FF 

^ bitwise XOR 0x1234 ^ 0x00FF 0x12CB 

Table 2.32 – Binary bitwise logical operators 

Binary operators 
have two inputs, and 
one output 
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The binary Boolean operators take two Boolean inputs and give a single Boolean 

result. 

Operator Meaning Example Result 

&& AND 0 && 1 0 (false) 

|| OR 0 || 1 1 (true) 

Table 2.33 – Binary Boolean operators 

Many programmers confuse the logical operators with the Boolean operators. 

Logical operators take two numbers and perform a bitwise logical operation. 

Boolean operators take two Boolean inputs (0 and not zero) and return a Boolean 

(0 or 1). In the program below, the operation c = a & b; will perform a bitwise 

logical AND of 0x0F0F and 0xF0F0 resulting in 0x0000. In the d = a && b; 

expression, the value a is considered as a TRUE (because it is not zero) and the 

value b also is considered a TRUE (not zero). The Boolean operation of TRUE AND 

TRUE gives a TRUE result (1). 

short a, b, c, d; 
void main(void) 
{ 
  a = 0x0F0F; 
  b = 0xF0F0;  
  c = a & b;  // logical result c will be 0x0000 
  d = a && b; // Boolean result d will be 1 (true) 
} 

Listing 2.45 – The difference between logical and Boolean operators 

Don’t confuse 
bitwise logical 
operators with 
Boolean operators 
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The binary relational operators take two number inputs and give a single Boolean 

result. 

Operator Meaning Example Result 

== is equal to 100 == 200 0 (false) 

!= is not equal to 100 != 200 1 (true) 

< less than 100 < 200 1 (true) 

<= less than or equal to 100 <= 200 1 (true) 

> greater than 100 > 200 0 (false) 

>= greater than or equal to 100 >= 200 0 (false) 

Table 2.34 – Binary relational operators 

Some programmers confuse assignment equals (=) with the relational 

 equals (==).  In the following example, the first if will execute the 

subfunction() if a is equal to zero (a is not modified). In the second case, the 

variable b is set to zero, and the subfunction() will never be executed because 

the result of the equals assignment is the value (in this case the 0 means false). 

short a, b; 
void program(void) 
{  
  if (a == 0) 
    subfunction(); // execute subfunction if a is zero 
  if (b = 0) 
    subfunction();//set b to zero, never execute subfunction 
} 

Listing 2.46 – The difference between relational and assignment equals 

Before looking at the kinds of expressions we can write in C, we will first 

consider the process of evaluating expressions and some general properties of 

operators. 

  

Binary relational 
operators 

Don’t confuse 
assignment equals 
(=) with relational 

equals (==) 
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2.5.4 Assignment Operators 

The assignment operator is used to store data into variables. The syntax is 

variable = expression; where variable has been previously defined. At run-

time, the result of the expression is saved into the variable. If the type of the 

expression is different from the variable, then the result is automatically 

converted. The assignment operation itself has a result, so the assignment 

operation can be nested. 

short a, b; 
void initialize(void) 
{  
  a = b = 0; // set both variables to zero 
} 

Listing 2.47 – Example of a nested assignment operation 

The read / modify / write assignment operators are convenient. Examples are 

shown below. 

short a, b; 
void initialize(void) 
{  
  a += b;  // same as a = a + b 
  a -= b;  // same as a = a - b 
  a *= b;  // same as a = a * b 
  a /= b;  // same as a = a / b 
  a %= b;  // same as a = a % b 
  a <<= b; // same as a = a << b 
  a >>= b; // same as a = a >> b 
  a |= b;  // same as a = a | b 
  a &= b;  // same as a = a & b 
  a ^= b;  // same as a = a ^ b 
} 

Listing 2.48 – List of all read / modify / write assignment operations 

Most compilers will produce the same code for the short and long version of the 

operation. Therefore you should use the read / modify / write operations only in 

situations that make the software easier to understand.  

void function(void) 
{  
  GPIOA_PDOR |= 0x01;  // set PA0 high 
  GPIOB_PDOR &= ~0x80; // clear PB7 low 
  GPIOC_PDOR ^= 0x40;  // toggle PC6 
} 

Listing 2.49 – Good examples of read/modify/write assignment operations 

The assignment 
operator 

Read / modify / write 
assignment 
operators 
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2.5.5 Expression Types and Explicit Casting 

We saw earlier that numbers are represented in the computer using a wide range 

of formats. A list of these formats is given in Table 2.35. Notice that for the 

MC9S12, the int and short types are the same. On the other hand, with the K64, 

the int and long types are the same. This difference may cause confusion when 

porting code from one system to another. You should use the short type when 

you are interested in efficiency and don't care about precision, and use the long 

type when you want a variable with a 32-bit precision. 

Type Range Precision Example Variable 

unsigned char  0 to 255 8 bits unsigned char uc; 

char -128 to 127 8 bits char sc; 

unsigned short 0 to 65535U 16 bits unsigned short us; 

short -32768 to 32767 16 bits short ss; 

unsigned long 0 to 4294967295UL 32 bits unsigned long ui; 

long -2147483648L to 2147483647L 32 bits long sl; 

Table 2.35 – Available number formats for the MX compiler 

What happens when two numbers of different types are operated on? Before 

operation, the C compiler will first convert one or both numbers so they have the 

same type. The conversion of one type into another has many names:  

   automatic conversion; 

   implicit conversion; 

   coercion; 

   promotion; or  

   widening. 

Declare the size of 
an integer type 
explicitly 

Names for type 
conversion 
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There are three ways to consider this issue. The first way to think about this is if 

the range of one type completely fits within the range of the other, then the 

number with the smaller range is converted (promoted) to the type of the number 

with the larger range. In the following examples, a number of type1 is added to 

a number of type2. In each case, the number range of type1 fits into the range of 

type2, so the parameter of type1 is first promoted to type2 before the addition.  

Type1  Type2 Example 

unsigned char  fits inside unsigned short uc + us is of type unsigned short 

unsigned char fits inside short uc + ss is of type short 

unsigned char fits inside long uc + sl is of type long 

char fits inside short sc + ss is of type short 

char fits inside long sc + sl is of type long 

unsigned short fits inside long us + sl is of type long 

short fits inside long ss + sl is of type long 

Table 2.36 – Conversion when the range of one type fits inside another 

The second way to consider mixed precision operations is that in most cases the 

compiler will promote the number with the smaller precision into the other type 

before operation. If the two numbers are of the same precision, then the signed 

number is converted to unsigned. These automatic conversions may not yield 

correct results. The third and best way to deal with mixed type operations is to 

perform the conversions explicitly using the cast operation. We can force the 

type of an expression by explicitly defining its type. This approach allows the 

programmer to explicitly choose the type of the operation. 

Consider the following digital filter with mixed type operations. In this example, 

we explicitly convert x and y to signed 16-bit numbers and perform 16-bit signed 

arithmetic. Note that the assignment of the result into y, will require a demotion 

of the 16-bit signed number into an 8-bit signed number. Unfortunately, C does 

not provide any simple mechanisms for error detection / correction. 

  

Promotion of type 

Use a typecast to 
force a particular 
type conversion 
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char y; // output of the filter 
unsigned char x; // input of the filter 
void filter(void) 
{ 
  y = (12 * (short)x + 56 * (short)y) / 100; 
} 

Listing 2.50 – Example of converting types with the cast operator 

We apply an explicit cast simply by preceding the number or expression with 

parentheses surrounding the type. 

In the next digital filter all numbers are of the same type. Even so, we are worried 

that the intermediate result of the multiplications and additions might overflow 

the 16-bit arithmetic. We know from digital signal processing that the final result 

will always fit into the 16-bit variable. In this example, the cast (long) will 

specify the calculations be performed in 32-bit precision. 

// y(n) = [113 * x(n) + 113 * x(n-2) – 98 * y(n-2)] / 128 
// channel specifies the A/D channel 
// arrays containing current and previous values 
short x[3], y[3]; 
void Filter (void) 
{  
  // shift arrays 
  y[2] = y[1]; 
  y[1] = y[0]; 
  x[2] = x[1]; 
  x[1] = x[0];  
  x[0] = ADC_Get(channel); // new data 
  y[0] = (113 * ((long)x[0] + (long)x[2]) – 98  
          * (long)y[2]) / 128; 
} 

Listing 2.51 – We can use a cast to force higher precision arithmetic 

We saw previously that casting was used to assign a symbolic name to an I/O 

port. In particular the following #define casts the number 0x400FF000 as a 

pointer type, which points to volatile unsigned 32-bit data. 

#define GPIOA_PDOR *(uint32_t volatile *)(0x400FF000) 

An explicit cast is 
achieved by 
preceding the 
expression with 
parentheses 
surrounding the type 

A cast is used to 
give a symbolic 
name to a 
microcontroller port 
or register 
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2.5.6 Selection operator 

The selection operator takes three input parameters and yields one output result. 

The format is 

Expr1 ? Expr2 : Expr3 

The first input parameter is an expression, Expr1, which yields a Boolean (0 for 

false, not zero for true). Expr2 and Expr3 return values that are regular numbers. 

The selection operator will return the result of Expr2 if the value of Expr1 is true, 

and will return the result of Expr3 if the value of Expr1 is false. The type of the 

expression is determined by the types of Expr2 and Expr3. If Expr2 and Expr3 

have different types, then the usual promotion is applied. The resulting type is 

determined at compile time, in a similar manner as the Expr2 + Expr3 operation, 

and not at run-time depending on the value of Expr1. The following two 

subroutines have identical functions.  

short a, b; 
void sub1(void) 
{ 
  a = (b==1) ? 10 : 1; 
} 
 
void sub2(void) 
{  
  if (b == 1) 
    a = 10; 
  else 
    a = 1; 
} 

Listing 2.52 – Example of the selection operator 

The selection 
operator 
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2.5.7 Arithmetic Overflow and Underflow 

An important issue when performing arithmetic calculations on integer values is 

the problem of underflow and overflow. Arithmetic operations include addition, 

subtraction, multiplication, division and shifting. Overflow and underflow errors 

can occur during all of these operations. In assembly language the programmer 

is warned that an error has occurred because the processor will set condition code 

bits after each of these operations. Unfortunately, the C compiler provides no 

direct access to these error codes, so we must develop careful strategies for 

dealing with overflow and underflow. It is important to remember that arithmetic 

operations (addition, subtraction, multiplication, division, and shifting) have 

constraints when performed with finite precision on a microcomputer. An 

overflow error occurs when the result of an arithmetic operation cannot fit into 

the finite precision of the result. We will study addition and subtraction 

operations in detail, but the techniques for dealing with overflow and underflow 

will apply to the other arithmetic operations as well. We will consider two 

approaches: 

 avoiding the error 

 detecting the error then correcting the result 

For example when two 8-bit numbers are added, the sum may not fit back into 

the 8-bit result. We saw earlier that the same digital hardware (instructions) 

could be used to add and subtract unsigned and signed numbers. Unfortunately, 

we will have to design separate overflow detection for signed and unsigned 

addition and subtraction. 

All microcomputers have a condition code register which contain bits which 

specify the status of the most recent operation. In this section, we will introduce 

4 condition code bits common to most microcomputers. If the two inputs to an 

addition or subtraction operation are considered as unsigned, then the C bit 

(carry) will be set if the result does not fit. In other words, after an unsigned 

addition, the C bit is set if the answer is wrong. If the two inputs to an addition 

or subtraction operation are considered as signed, then the V bit (overflow) will 

Overflow and 
underflow can occur 
when performing 
arithmetic 

An overflow occurs 
when the result of 
an operation cannot 
fit into the finite 
precision of the 
result 

Condition code bits 
are used to detect 
an overflow or 
underflow 
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be set if the result does not fit. In other words, after a signed addition, the V bit 

is set if the answer is wrong. 

bit name Meaning after addition or subtraction 

N negative result is negative 

Z zero result is zero 

V overflow signed overflow 

C carry unsigned overflow 

Table 2.37 – Condition code bits contain the status of the previous 

arithmetic or logical operation 

For an 8-bit unsigned number, there are only 256 possible values, 0 to 255. We 

can think of the numbers as positions along a circle. There is a discontinuity at 

the 0|255 interface, everywhere else adjacent numbers differ by 1 . If we add 

two unsigned numbers, we start at the position of the first number and move in 

a clockwise direction the number of steps equal to the second number. For 

example, if 96 + 64 is performed in 8-bit unsigned precision, the correct result 

of 160 is obtained. In this case, the carry bit will be 0 signifying the answer is 

correct. On the other hand, if 224 + 64 is performed in 8-bit unsigned precision, 

the incorrect result of 32 is obtained. In this case, the carry bit will be 1, 

signifying the answer is wrong. 

 

0

255

64

128

192

96

160

0

255

64

128

192

32

224

+64 +64

 

 

Figure 2.13 – 8-bit unsigned addition 

For unsigned 
numbers, errors 
occur when crossing 
the 0|255 boundary 
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For subtraction, we start at the position of the first number and move in a counter 

clockwise direction the number of steps equal to the second number. For 

example, if 160 - 64 is performed in 8-bit unsigned precision, the correct result 

of 96 is obtained (carry bit will be 0). On the other hand, if 

32 - 64 is performed in 8-bit unsigned precision, the incorrect result of 224 is 

obtained (carry bit will be 1) . 
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Figure 2.14 – 8-bit unsigned subtraction 

In general, we see that the carry bit is set when we cross over from 255 to 0 while 

adding or cross over from 0 to 255 while subtracting.  

The carry bit, C, is set after an unsigned add or subtract 

when the result is incorrect. 

(2.13) 

For an 8-bit signed number, the possible values range from -128 to 127. Again 

there is a discontinuity, but this time it exists at the -128|127 interface, 

everywhere else adjacent numbers differ by 1 . The meanings of the numbers 

with bit 7 = 1 are different from unsigned, but we add and subtract signed 

numbers on the number wheel in a similar way (e.g., addition of a positive 

number moves counterclockwise.) Adding a negative number is the same as 

subtracting a positive number hence this operation would cause a clockwise 

motion. For example, if -32 + 64 is performed, the correct result of 32 is 

obtained. In this case, the overflow bit will be 0 signifying the answer is correct. 

On the other hand, if 96 + 64 is performed, the incorrect result of 

For signed numbers, 
errors occur when 
crossing the 
-128|127 boundary 
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-96 is obtained. In this case, the overflow bit will be 1 signifying the answer is 

wrong. 
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Figure 2.15 – 8-bit signed addition 

For subtracting signed numbers, we again move in a clockwise direction. 

Subtracting a negative number is the same as adding a positive number hence 

this operation would cause a counterclockwise motion. For example, if 32 - 64 

is performed, the correct result of -32 is obtained (overflow bit will be 0). On the 

other hand, if -96 - 64 is performed, the incorrect result of 96 is obtained 

(overflow bit will be 1).  
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Figure 2.16 – 8-bit signed subtraction 
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In general, we see that the overflow bit is set when we cross over from 127 to 

-128 while adding or cross over from -128 to 127 while subtracting. 

The overflow bit, V, is set after a signed add or subtract 

when the result is incorrect. 

(2.14) 

Another way to determine the overflow bit after an addition is to consider the 

carry out of bit 6. The V bit will be set of there is a carry out of bit 6 (into bit 7) 

but no carry out of bit 7 (into the C bit). It is also set if there is no carry out of 

bit 6 but there is a carry out of bit 7. Let X7-X0 and M7-M0 be the individual 

binary bits of the two 8-bit numbers which are to be added, and let R7-R0 be 

individual binary bits of the 8-bit sum. Then, the 4 condition code bits after an 

addition are shown in Table 2.38. 

N R7 if unsigned result above 127, if signed result is negative 

Z 01234567 RRRRRRRR   result is zero 

V 777 RMX   

 777 RMX   

add two positives get a negative result; 

 or add two negatives get a positive result 

C 77 MX   

 77 RM   

 77 RX   

add two numbers both above 127; 

 or add one number above 127 and get a number below 128; 

 or add one number above 127 and get a number below 128 

Table 2.38 – Condition code bits after an 8-bit addition operation 

Overflow can be 
detected by Boolean 
operations on the 
individual bits 
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Let the result R be the result of the subtraction X - M. Then the 4 condition code 

bits are shown in Table 2.39. 

N R7 if unsigned result above 127, if signed result is negative 

Z 01234567 RRRRRRRR   result is zero 

V 777 RMX   

 777 RMX   

a positive minus a negative and get a negative result; 

 or a negative minus a positive and get a positive result 

C 77 MX   

 77 RM   

 77 RX   

a number below 128 minus a number above 127; 

 or subtracted a number above 127 and get one above 127; 

 or started with a number below 127 and get one above 127 

Table 2.39 – Condition code bits after an 8-bit subtraction operation 

 

Ignoring overflow (signed or unsigned) can result in 

significant errors. 

(2.15) 

 

Computers have two sets of conditional branch 

instructions (if statements) which make program decisions 

based on either the C or V bit. 

(2.16) 

 

An error will occur if you use unsigned conditional branch 

instructions (if statements) after operating on signed 

numbers, and vice-versa. 

(2.17) 
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There are some applications where arithmetic errors are not possible. For 

example, if we had two 8-bit unsigned numbers that we knew were in the range 

of 0 to 100, then no overflow is possible when they are added together. 

Typically the numbers we are processing are either signed or unsigned (but not 

both), so we need only consider the corresponding C or V bit (but not both the C 

and V bits at the same time.) In other words, if the two numbers are unsigned, 

then we look at the C bit and ignore the V bit. Conversely, if the two numbers 

are signed, then we look at the V bit and ignore the C bit. There are two 

appropriate mechanisms to deal with the potential for arithmetic errors when 

adding and subtracting. The first mechanism, used by most compilers, is called 

promotion. Promotion involves increasing the precision of the input numbers, 

and performing the operation at that higher precision. An error can still occur if 

the result is stored back into the smaller precision. Fortunately, the program has 

the ability to test the intermediate result to see if it will fit into the smaller 

precision. To promote an unsigned number we add zero’s to the left side. 

Promotion is used 
by compilers to 
avoid overflow and 
underflow problems 
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In a previous example, we added the unsigned 8-bit 224 to 64, and got the wrong 

result of 32. With promotion we first convert the two 8-bit numbers to 16-bits, 

then add. We can check the 16-bit intermediate result (e.g., 228) to see if the 

answer will fit back into the 8-bit result. In the following flowchart, X and M are 

8-bit unsigned inputs, 16X , 16M , and 16R  are 16-bit intermediate values, and R 

is an 8-bit unsigned output. 
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Figure 2.17 – Promotion can be used to avoid overflow and underflow 

To promote a signed number, we duplicate the sign bit as we add binary digits 

to the left side. Earlier, we performed the 8-bit signed operation -96 - 64 and 

got a signed overflow. With promotion we first convert the two numbers to 16-

bits, then subtract. 
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0000  0110  1111  1111

0000  0100 0000 0000

0000  1010  1111  1111

  

 

Promotion of 
unsigned numbers 
to avoid overflow 
and underflow 

Signed numbers are 
promoted by 
extending the sign 
bit 



2.117 

PMcL Expressions Index 

2020  2 - Embedded C 

We can check the 16-bit intermediate result (e.g., -160) to see if the answer will 

fit back into the 8-bit result. In the following flowchart, X and M are 8-bit signed 

inputs, 16X , 16M , and 16R  are 16-bit signed intermediate values, and R is an 8-

bit signed output. 
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Figure 2.18 – Promotion can be used to avoid overflow and underflow 

The other mechanism for handling addition and subtraction errors is called 

ceiling and floor. It is analogous to movements inside a room. If we try to move 

up (add a positive number or subtract a negative number) the ceiling will prevent 

us from exceeding the bounds of the room. Similarly, if we try to move down 

(subtract a positive number or add a negative number) the floor will prevent us 

from going too low. For our 8-bit addition and subtraction, we will prevent the 

0 to 255 and 255 to 0 crossovers for unsigned operations and 

-128 to +127 and +127 to -128 crossovers for signed operations. These operations 

are described by the following flowcharts. If the carry bit is set after an unsigned 

addition the result is adjusted to the largest possible unsigned number (ceiling). 

If the carry bit is set after an unsigned subtraction, the result is adjusted to the 

smallest possible unsigned number (floor.) 

 

Promotion of signed 
numbers to avoid 
overflow and 
underflow 

Ceiling and floor can 
be used to avoid 
overflow and 
underflow 
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Figure 2.19 – In assembly language we can detect overflow and underflow 

If the overflow bit is set after a signed operation the result is adjusted to the 

largest (ceiling) or smallest (floor) possible signed number depending on 

whether it was a -128 to 127 cross over (N = 0) or 127 to -128 cross over (N = 1). 

Notice that after a signed overflow, bit 7 of the result is always wrong because 

there was a cross over. 
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Figure 2.20 – In assembly language we can detect overflow and underflow 

In summary, overflow and underflow occur silently during addition and 

subtraction of integer data types; there is no run-time checking provided by the 

microprocessor. It is entirely the programmer’s responsibility to allocate a data 

type of the appropriate size for each variable and to avoid overflow. 

Using ceiling and 
floor of unsigned 
numbers to avoid 
overflow and 
underflow 

Using ceiling and 
floor of signed 
numbers to avoid 
overflow and 
underflow 
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2.6 Procedural Statements 

Every procedural language provides statements for determining the flow of 

control within programs. Although declarations are a type of statement, in C the 

unqualified word statement usually refers to procedural statements rather than 

declarations. In this section we are concerned only with procedural statements. 

In the C language, statements can be written only within the body of a function; 

more specifically, only within compound statements. The normal flow of control 

among statements is sequential, proceeding from one statement to the next. 

However, most of the statements in C are designed to alter this sequential flow 

so that algorithms of arbitrary complexity can be implemented. This is done with 

statements that control whether or not other statements execute and, if so, how 

many times. Furthermore, the ability to write compound statements permits the 

writing of a sequence of statements wherever a single, possibly controlled, 

statement is allowed. These two features provide the necessary generality to 

implement any algorithm, and to do it in a structured way. 

Compound 
statements and 
decision statements 
are used to make 
algorithms of 
arbitrary complexity 
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2.6.1 Simple Statements 

The C language uses semicolons as statement terminators. A semicolon follows 

every simple (non-compound) statement, even the last one in a sequence. 

When one statement controls other statements, a terminator is applied only to the 

controlled statements. Thus we would write 

if (x > 5) 
  x = 0; 
else 
  x++; 

with two semicolons, not three. Perhaps one good way to remember this is to 

think of statements that control other statements as "super" statements that 

"contain" ordinary (simple and compound) statements. Then remember that only 

simple statements are terminated. This implies, as stated above, that compound 

statements are not terminated with semicolons. 

Thus  

while (x < 5) 
{ 
  func(); 
  x++; 
} 

is perfectly correct. Notice that each of the simple statements within the 

compound statement is terminated.  

Simple statements 
are terminated with 
a semicolon 
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2.6.2 Compound Statements 

The terms compound statement and block both refer to a collection of statements 

that are enclosed in braces to form a single unit. Compound statements have the 

form  

{ ObjectDeclaration?... Statement?... } 

ObjectDeclaration?... is an optional set of local declarations. If present, C 

requires that they precede the statements; in other words, they must be written at 

the head of the block. Statement?... is a series of zero or more simple or 

compound statements. Notice that there is no semicolon at the end of a block; 

the closing brace suffices to delimit the end. In the following example the local 

variable temp is only defined within the inner compound statement. 

void main(void) 
{ 
  short n1, n2; 
  n1 = 1; 
  n2 = 2;  
  { 
    short temp;  
    temp = n1; 
    n1 = n2; 
    n2 = temp; // switch n1, n2 
  }  
} 

Listing 2.53 – Example of a compound statement 

The power of compound statements derives from the fact that one may be placed 

anywhere the syntax calls for a statement. Thus any statement that controls other 

statements is able to control units of logic of any complexity.  

When control passes into a compound statement, two things happen. First, space 

is reserved on the stack for the storage of local variables that are declared at the 

head of the block. Then the executable statements are processed.  

One important limitation in C is that a block containing local declarations must 

be entered through its leading brace. This is because bypassing the head of a 

block effectively skips the logic that reserves space for local objects. The goto 

and switch statements (below) could violate this rule.  

Compound 
statements are 
enclosed with 
braces { } 
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2.6.3 The if Statement 

if statements provide a non-iterative choice between alternate paths based on 

specified conditions. They have either of two forms  

if (ExpressionList) 
  Statement1 

or 

if (ExpressionList) 
  Statement1 
else 
  Statement2  

ExpressionList is a list of one or more expressions and Statement is any 

simple or compound statement. First, ExpressionList is evaluated and tested. If 

more than one expression is given, they are evaluated from left to right and the 

right-most expression is tested. If the result is true (non-zero), then the 

Statement1 is executed and the Statement2 (if present) is skipped. If it is false 

(zero), then Statement1 is skipped and Statement2 (if present) is executed. 

In the following example, the function isGreater() is executed if G2 is larger 

than 100. 

if (G2 > 100) 
 isGreater(); 

G2 > 100

isGreater();

G2

G2 <= 100

 

Listing 2.54 – Example if statement 

The if statement 
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A 3-wide median filter can be designed using if-else conditional statements.  

short Median(short u1, short u2, short u3) 
{ 
  short result; 
  if (u1 > u2) 
    if (u2 > u3) 
      result = u2;     // u1>u2,u2>u3       u1>u2>u3 
    else 
      if (u1 > u3) 
        result = u3;   // u1>u2,u3>u2,u1>u3 u1>u3>u2 
      else 
        result = u1;   // u1>u2,u3>u2,u3>u1 u3>u1>u2 
  else 
    if (u3 > u2) 
      result = u2;     // u2>u1,u3>u2       u3>u2>u1 
    else 
      if (u1 > u3) 
        result = u1;   // u2>u1,u2>u3,u1>u3 u2>u1>u3 
      else  
        result = u3;   // u2>u1,u2>u3,u3>u1 u2>u3>u1 
  return result; 
} 

Listing 2.55 – A 3-wide median function 

Complex conditional testing can be implemented using the relational and 

Boolean operators described in the last section. 

if ((G2 == G1) || (G4 > G3)) 
  True(); 
else 
  False(); 

True();False();

(G2 != G1)
&& (G4 <= G3)

(G2 == G1)
|| (G4 > G3)
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2.6.4 The switch Statement 

switch statements provide a non-iterative choice between any number of paths 

based on specified conditions. They compare an expression to a set of constant 

values. Selected statements are then executed depending on which value, if any, 

matches the expression. Switch statements have the form 

switch (ExpressionList) 
{ 
 Statement?... 
} 

where ExpressionList is a list of one or more expressions. Statement?... 

represents the statements to be selected for execution. They are selected by 

means of case and default prefixes – special labels that are used only within 

switch statements. These prefixes locate points to which control jumps 

depending on the value of ExpressionList. They are to the switch statement 

what ordinary labels are to the goto statement. They may occur only within the 

braces that delimit the body of a switch statement.  

The case prefix has the form  

case ConstantExpression: 

and the default prefix has the form  

default: 

The terminating colons are required; they heighten the analogy to ordinary 

statement labels. Any expression involving only numeric and character constants 

and operators is valid in the case prefix.  

After evaluating ExpressionList, a search is made for the first matching case 

prefix. Control then goes directly to that point and proceeds normally from there. 

Other case prefixes and the default prefix have no effect once a case has been 

selected; control flows through them just as though they were not even there. If 

no matching case is found, control goes to the default prefix, if there is one. In 

the absence of a default prefix, the entire compound statement is ignored and 

control resumes with whatever follows the switch statement. Only one default 

prefix may be used with each switch. 

The switch 
statement 

The switch 

statement uses 
case and default 

prefixes 
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If it is not desirable to have control proceed from the selected prefix all the way 

to the end of the switch block, break statements may be used to exit the block. 

break statements have the form  

break; 

Some examples may help clarify these ideas. Assume Port A is specified as an 

output, and bits 3, 2, 1, and 0 are connected to a stepper motor. The switch 

statement will first read Port A and AND the data with 0x0000000F (GPIOA_PDOR 

& 0x0000000F). If the result is 5, then Port A is set to 6 and control is passed to 

the end of the switch (because of the break). Similarly for the other 3 

possibilities. 

#define GPIOA_PDOR *(uint32_t volatile *)(0x400FF000) 
void step(void) 
{ 
  // turn stepper motor one step 
  switch (GPIOA_PDOR & 0x0000000F) 
  { 
    case 0x05: 
      GPIOA_PDOR = 0x06; // 6 follows 5 
      break; 
    case 0x06: 
      GPIOA_PDOR = 0x0A; // 10 follows 6 
      break; 
    case 0x0A: 
      GPIOA_PDOR = 0x09; // 9 follows 10 
      break; 
    case 0x09: 
      GPIOA_PDOR = 0x05; // 5 follows 9 
      break; 
    default:  
      GPIOA_PDOR = 0x05; // start at 5 
   } 
} 

Listing 2.56 – Example of the switch statement 

The break 

statement is used to 
exit a block 
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This next example shows that multiple tests can be performed for the same 

condition. 

// ASCII to decimal digit conversion 
unsigned char convert(unsigned char letter) 
{ 
  unsigned char digit;   
  switch (letter) 
  { 
    case 'A': 
    case 'B': 
    case 'C': 
    case 'D': 
    case 'E': 
    case 'F': 
      digit = letter + 10 - 'A'; 
      break; 
    case 'a': 
    case 'b': 
    case 'c': 
    case 'd': 
    case 'e': 
    case 'f': 
      digit = letter + 10 - 'a';  
      break; 
    default:  
      digit = letter - '0'; 
  } 
  return digit; 
}        

Listing 2.57 – Example of the switch statement 

The body of the switch is not a normal compound statement since local 

declarations are not allowed in it or in subordinate blocks. This restriction 

enforces the C rule that a block containing declarations must be entered through 

its leading brace.  
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2.6.5 The while Statement 

The while statement is one of three statements that determine the repeated 

execution of a controlled statement. This statement alone is sufficient for all loop 

control needs. The other two merely provide an improved syntax and an execute-

first feature. while statements have the form 

while (ExpressionList) Statement 

where ExpressionList is a list of one or more expressions and Statement is a 

simple or compound statement. If more than one expression is given, the right-

most expression yields the value to be tested. First, ExpressionList is evaluated. 

If it yields true (non-zero), then Statement is executed and ExpressionList is 

evaluated again. As long as it yields true, Statement executes repeatedly. When 

it yields false, Statement is skipped, and control continues with whatever 

follows.  

In the example  

i = 5; 
while (i) array[--i] = 0; 

elements 0 through 4 of array[] are set to zero. First i is set to 5. Then as long 

as it is not zero, the assignment statement is executed. With each execution i is 

decremented before being used as a subscript.  

It is common to use the while statement to implement polling loops  

#define RDRF 0x20 // Receive Data Register Full Bit 
// Wait for new serial port input, 
// return ASCII code for key typed 
char UART_InChar(void) 
{ 
  while ((UART2_S1 & RDRF) == 0); 
  return UART2_D; 
} 
 
#define TDRE 0x80 // Transmit Data Register Empty Bit 
// Wait for buffer to be empty, output ASCII to serial port 
void UART_OutChar(char data) 
{ 
  while ((UART2_S1 & TDRE) == 0); 
  UART2_D = data; 
}      

Listing 2.58 – Examples of the while statement 

The while 
statement 
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continue and break statements are handy for use with the while statement (also 

helpful for the do and for loops). The continue statement has the form 

continue; 

It causes control to jump directly back to the top of the loop for the next 

evaluation of the controlling expression. If loop controlling statements are 

nested, then continue affects only the innermost surrounding statement. That is, 

the innermost loop statement containing the continue is the one that starts its 

next iteration.  

The break statement (described earlier) may also be used to break out of loops. 

It causes control to pass on to whatever follows the loop controlling statement. 

If while (or any loop or switch) statements are nested, then break affects only 

the innermost statement containing the break. That is, it exits only one level of 

nesting.  

The continue 

statement causes 
control to jump to 
the top of the control 
loop 
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2.6.6 The for Statement 

The for statement also controls loops. It is really just an embellished while in 

which the three operations normally performed on loop-control variables 

(initialize, test, and modify) are brought together syntactically. It has the form  

for (ExpressionList1?; ExpressionList2?; ExpressionList3?) 
  Statement 

for statements are performed in the following steps:  

ExpressionList1 is evaluated. This is done only once to initialize the control 

variable(s). 

ExpressionList2 is evaluated to determine whether or not to perform Statement. 

If more than one expression is given, the right-most expression yields the value 

to be tested. If it yields false (zero), control passes on to whatever follows the 

for statement. But, if it yields true (non-zero), Statement executes. 

ExpressionList3 is then evaluated to adjust the control variable(s) for the next 

pass, and the process goes back to step 2. For example, 

for (J = 100; J < 1000; J++) 
{ 
  process(); 
} 

process();

J = J + 1;

yes

J = 100;

J < 1000

no

 

A five-element array being set to zero could be written as  

for (i = 4; i >= 0; --i) 
  array[i] = 0;  

or a little more efficiently as  

for (i = 5; i; array[--i] = 0); 

The for statement 
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Any of the three expression lists may be omitted, but the semicolon separators 

must be kept. If the test expression is absent, the result is always true. Thus  

for (;;) 
{ 
  ... 
  break; 
  ... 
}  

will execute until the break is encountered.  

As with the while statement, break and continue statements may be used with 

equivalent effects. A break statement makes control jump directly to whatever 

follows the for statement. A continue skips whatever remains in the controlled 

block so that the third ExpressionList3 is evaluated, after which the second 

ExpressionList2 is evaluated and tested. In other words, a continue has the 

same effect as transferring control directly to the end of the block controlled by 

the for.  
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2.6.7 The do Statement 

The do statement is the third loop controlling statement in C. It is really just an 

execute-first while statement. It has the form  

do Statement while (ExpressionList); 

Statement is any simple or compound statement. The do statement executes in 

the following steps:  

Statement is executed.  

Then, ExpressionList is evaluated and tested. If more than one expression is 

given, the right most expression yields the value to be tested. If it yields true 

(non-zero), control goes back to step 1; otherwise, it goes on to whatever follows. 

As with the while and for statements, break and continue statements may be 

used. In this case, a continue causes control to proceed directly down to the 

while part of the statement for another test of ExpressionList. A break makes 

control exit to whatever follows the do statement.  

I=100; 
do 
{ 
  process(); 
  I--; 
} while (I > 0); 

process();

I = I - 1;

yes

I = 100;

I > 0

no

 

The do statement 
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The example of the five-element array could be written as 

i = 4; 
do 
{ 
  array[i] = 0; 
  --i; 
} while (i >= 0);  
i = 4; 

or as 

i = 4; 
do 
  array[i--] = 0; 
while (i >= 0);  

or as 

i = 5; 
do 
  array[--i] = 0; 
while (i); 
 

2.6.8 The return Statement 

The return statement is used within a function to return control to the caller. 

Return statements are not always required since reaching the end of a function 

always implies a return. But they are required when it becomes necessary to 

return from interior points within a function or when a useful value is to be 

returned to the caller. return statements have the form 

return ExpressionList?; 

ExpressionList? is an optional list of expressions. If present, the last expression 

determines the value to be returned by the function. If absent, the returned value 

is unpredictable. 

The return 
statement 
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2.6.9 Null Statements 

The simplest C statement is the null statement. It has no text, just a semicolon 

terminator. As its name implies, it does exactly nothing. Statements that do 

nothing can serve a purpose. As we saw previously, expressions in C can do 

work beyond that of simply yielding a value. In fact, in C programs, all of the 

work is accomplished by expressions; this includes assignments and calls to 

functions that invoke operating system services such as input/output operations. 

It follows that anything can be done at any point in the syntax that calls for an 

expression. 

Take, for example, the statement  

while ((UART2_S1 & TDRE) == 0); // Wait for TDRE to be set 

in which the ((UART2_S1 & TDRE) == 0) controls the execution of the null 

statement following. The null statement is just one way in which the C language 

follows a philosophy of attaching intuitive meanings to seemingly incomplete 

constructs. The idea is to make the language as general as possible by having the 

least number of disallowed constructs.  

Nulls statements 
(statements that do 
nothing) can serve a 
purpose in a 
program 
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2.6.10 The goto Statement 

goto statements break the sequential flow of execution by causing control to 

jump abruptly to designated points. They have the general form 

goto Name; 

where Name is the name of a label which must appear in the same function. It 

must also be unique within the function.  

short data[10]; 
void clear(void) 
{ 
  short n;  
  n = 0;  
loop: 
  data[n] = 0; 
  n++; 
  if (n == 10) 
    goto done; 
  goto loop;  
done: 
  // Semicolon needed because you can't have a label at the 
  // end of a compound statement 
  ; 
} 

Listing 2.59 – Example of a goto statement 

Notice that labels are terminated with a colon. This highlights the fact that they 

are not statements but statement prefixes which serve to label points in the logic 

as targets for goto statements. When control reaches a goto, it proceeds directly 

from there to the designated label. Both forward and backward references are 

allowed, but the range of the jump is limited to the body of the function 

containing the goto statement.  

goto statements cannot be used in functions which declare locals in blocks which 

are subordinate to the outermost block of the function.  

Because they violate the structured programming paradigm, goto statements 

should not be used at all.  

The goto 
statement…  

…should never be 
used 
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2.6.11 Missing Statements 

The C language has no input/output, program control, or memory management 

statements. In the interest of portability these services have been relegated to a 

set of standard functions in the run-time library. Since they depend so heavily on 

the run-time environment, removing them from the language eliminates a major 

source of compatibility problems. Each implementation of C has its own library 

of standard functions that perform these operations. Since different compilers 

have libraries that are pretty much functionally equivalent, programs have very 

few problems when they are compiled by different compilers. 

High-level functions 
like input / output 
are implemented in 
C libraries – this 
makes C very 
portable 
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2.7 Pointers 

The ability to work with memory addresses is an important feature of the C 

language. This feature allows programmers the freedom to perform operations 

similar to assembly language. Unfortunately, along with the power comes the 

potential danger of hard-to-find and serious run-time errors. In many situations, 

array elements can be reached more efficiently through pointers than by 

subscripting. It also allows pointers and pointer chains to be used in data 

structures. Without pointers the run-time dynamic memory allocation and 

deallocation using the heap would not be possible. We will also use a format 

similar to pointers to develop mechanisms for accessing I/O ports. These added 

degrees of flexibility are absolutely essential for embedded systems. 

2.7.1 Addresses and Pointers 

Addresses that can be stored and changed are called pointers. A pointer is really 

just a variable that contains an address. Although they can be used to reach 

objects in memory, their greatest advantage lies in their ability to enter into 

arithmetic (and other) operations, and to be changed. Just like other variables, 

pointers have a type. In other words, the compiler knows the format (8-bit, 16-

bit, 32-bit, unsigned, signed) of the data pointed to by the address. 

Not every address is a pointer. For instance, we can write &var when we want 

the address of the variable var. The result will be an address that is not a pointer 

since it does not have a name or a place in memory. It cannot, therefore, have its 

value altered. 

Other examples include an array or a structure name. As we shall see in the next 

sections, an unsubscripted array name yields the address of the array, and a 

structure name yields the address of the structure. But since arrays and structures 

cannot be moved around in memory, their addresses are not variable. So, 

although such addresses have a name, they do not exist as objects in memory 

(the array does, but its address does not) and cannot, therefore, be changed. 

Pointers are 
variables that store 
addresses 

Not all addresses 
are pointers 
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A third example is a character string. A character string yields the address of the 

character array specified by the string. In this case the address has neither a name 

or a place in memory, so it too is not a pointer. 

2.7.2 Pointer Declarations 

The syntax for declaring pointers is like that for variables except that pointers 

are distinguished by an asterisk that prefixes their names. Listing 2.60 illustrates 

several legitimate pointer declarations. Notice, in the third example, that we may 

mix pointers and variables in a single declaration, i.e. the variable data and the 

pointer pt3 are declared in the same statement. Also notice that the data type of 

a pointer declaration specifies the type of object to which the pointer refers, not 

the type of the pointer itself. As we shall see, MX creates pointers containing 32-

bit unsigned absolute addresses. 

// define pt1, declare as a pointer to a 16-bit integer 
short *pt1; 
 
// define pt2, declare as a pointer to an 8-bit character 
char *pt2; 
 
// define data and pt3, declare data as an unsigned 16-bit integer  
// and declare pt3 as a pointer to a 16-bit unsigned integer 
unsigned short data, *pt3; 
 
// define pt4, declare as a pointer to a 32-bit integer 
long *pt4; 
 
// declare pt5 as a pointer to an integer 
extern short *pt5;     

Listing 2.60 – Examples of pointer declarations 

The best way to think of the asterisk is to imagine that it stands for the phrase 

"object at" or "object pointed to by". The first declaration in Listing 2.60 then 

reads "the object at (pointed to by) pt1 is a 16-bit signed integer". 

Pointers are 
declared by placing 

a * in front of the 

pointer name 
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2.7.3 Pointer Referencing 

We can use the pointer to retrieve data from memory or to store data into 

memory. Both operations are classified as pointer references. The syntax for 

using pointers is like that for variables except that pointers are distinguished by 

an asterisk that prefixes their names. Figure 2.21 to Figure 2.33 illustrate several 

legitimate pointer references. In the first figure, the global variables contain 

unknown data (actually we know MX will zero global variables). The arrow 

identifies the execution location. Assume addresses 0x1FFF007C through 

0x1FFF0094 exist in RAM. 

 

.bss
pt

data

buffer

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text
{

pt = &buffer[1];

(*pt) = 0x1234;

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

 

Figure 2.21 – K64 example of pointer references – step 1 

  

Example of 
legitimate pointer 
references in C 
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.bss
pt

data

buffer

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text
{

pt = &buffer[1];

(*pt) = 0x1234;

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x1FFF007C

 

 Figure 2.22 – K64 example of pointer references – step 2 

 

.bss
pt

data

buffer

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text
{

pt = &buffer[1];

(*pt) = 0x1234;

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x1FFF0088

0x1FFF007C

 

 Figure 2.23 – K64 example of pointer references – step 3 
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0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

(*pt) = 0x1234;

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x1FFF0088

0x1FFF007C

0x1FFF0088

0x1FFF0088

 

 Figure 2.24 – K64 example of pointer references – step 4 

 

(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x1FFF0088

0x1FFF007C

0x1FFF0088

0x1FFF0088

 

 Figure 2.25 – K64 example of pointer references – step 5 
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(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x1FFF0088

0x1FFF0088

0x1FFF0088

0x1FFF0088

 

 Figure 2.26 – K64 example of pointer references – step 6 

 

(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x00001234

0x1FFF0088

0x1FFF0088

0x1FFF0088

 

 Figure 2.27 – K64 example of pointer references – step 7 
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(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,[r3]ldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x00001234

0x1FFF0088

0x1FFF0088

0x1FFF0088

0x00001234

0x00001234  

 Figure 2.28 – K64 example of pointer references – step 8 
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main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,ptldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr
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lr
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 Figure 2.29 – K64 example of pointer references – step 9 
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(*pt) = 0x1234;
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0x1FFF0088
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0x1FFF007C
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R2

R3

SP

R4
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main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,ptldr

r3,[r3]ldr
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 Figure 2.30 – K64 example of pointer references – step 10 

 

(*pt) = 0x1234;
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R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,ptldr

r3,[r3]ldr
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 Figure 2.31 – K64 example of pointer references – step 11 
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(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2

R3

SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bx

PC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,ptldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x00001234
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0x1FFF0088

0x1FFF0088

0x00001234

0x00001234  

 Figure 2.32 – K64 example of pointer references – step 12 

 

(*pt) = 0x1234;

0x1FFF0090

0x1FFF008C

0x1FFF0088

0x1FFF0084

0x1FFF0080

0x1FFF007C

0x1FFF0094

R2
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SP

R4

address data

main:

r3,ptldr

ldr r2,buffer+4

str r2,[r3]

r3,ptldr

r3,[r3]ldr

r2,#4660movw

r2,[r3]str

bxPC

.text

.bss
pt

data

buffer

{

pt = &buffer[1];

}

main(    )void

data = (*pt);

void

int

int

int

*pt;

data;

buffer[4];

pt

data

buffer[0]

buffer[1]

buffer[2]

buffer[3]

r3,ptldr

r3,[r3]ldr

r2,[r3]ldr

r3,dataldr

r2,[r3]str

lr

0x00001234

0x1FFF0080

0x1FFF0088

0x1FFF0088

0x00001234
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 Figure 2.33 – K64 example of pointer references – step 13 
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The expression &buffer[1] returns the address of the second 32-bit element of 

the buffer (0x1FFF0088). Therefore the line pt=&buffer[1]; makes pt point to 

buffer[1]. 

When the *pt occurs on the left-hand-side of an assignment statement data is 

stored into memory at the address. Recall the *pt means "the 32-bit signed 

integer at 0x1FFF0088". You can optionally add the parentheses () to clarify that 

* and pt are one object. In this case the parentheses are not needed. Later when 

we perform address arithmetic, the parentheses will be important. Therefore the 

line (*pt) = 0x1234; sets buffer[1] to 0x1234. 

When the *pt occurs on the right-hand-side of an assignment statement, data is 

retrieved from memory at the address. Again, you can optionally add the 

parentheses () to clarify that * and pt are one object. Therefore the line 

data = (*pt); sets data to 0x1234 (more precisely, it copies the 32-bit 

information from buffer[1] into data). 

We can get a better understanding of pointers by observing the assembly 

generated by our compiler. The following K64 assembly was generated by MX 

when the above pointer example (Figure 2.31) was compiled. Notice that the 

K64 uses a RISC CPU and it can’t directly operate on memory addresses – it can 

only load register contents from memory (ldr) and store register contents into 

memory (str). The notation [r3] is the assembly language equivalent of a 

dereference and means use the contents of r3 as an address of the actual 

operand. 

main: 

    ldr r3,pt 

    ldr r2,buffer+4 

    str r2,[r3] 

    ldr r3,[r3] 

    movw r2,#4660 

    str r2,[r3] 

    ldr r3,pt 

    ldr r3,[r3] 

    ldr r2,[r3] 

    ldr r3,data 

    str r2,[r3] 

    bx lr 

Listing 2.61 – Examples of pointer references created by MX 
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2.7.4 Memory Addressing 

The size of a pointer depends on the architecture of the CPU and the 

implementation of the C compiler. The K64 employs an absolute memory 

addressing scheme in which an effective address is composed simply of a single 

32-bit unsigned value. 

Most embedded systems employ a segmented memory architecture. From a 

physical standpoint we might have a mixture of regular RAM, battery-backed-

up RAM, regular EEPROM, Flash EPROM, regular PROM, one-time-

programmable PROM and ROM. RAM is the only memory structure that allows 

the program both read and write access. The other types are usually loaded with 

object code from our .elf file and our program is allowed only to read the data. 

Table 2.40 shows the various types of memory available in the K64 

microcontroller. The RAM contains temporary information that is lost when the 

power is shut off. This means that all variables allocated in RAM must be 

explicitly initialized at run time by the software. If the embedded system includes 

a separate battery for the RAM, then information is not lost when the main power 

is removed. EEPROM is a technology that allows individual small sectors 

(typically 4 KiB) to be erased and bytes individually written. Most 

microcontrollers now have non-volatile Flash ROM as the main program 

memory, which has bulk erasure (typically 4 KiB) and individual write 

capability at the byte level. The one-time-programmable (OTP) ROM is a simple 

non-volatile storage technology used in large volume products that can be 

programmed only once by the semiconductor manufacturer. 

  

With a 32-bit CPU, 
addressing is “flat” 
and occurs with 
32-bit addresses 

Types of memory in 
the K64 
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Memory When power 

is removed 

Ability to Read/Write Program cycles 

(typical) 

RAM volatile Random and fast access infinite 

Battery-backed 

RAM 

non-volatile Random and fast access infinite 

EEPROM non-volatile Easily reprogrammed 25 million 

Flash non-volatile Easily reprogrammed 50 000 

OTPROM non-volatile Can be programmed once 

at the factory 

N/A 

Table 2.40 – Various types of memory available for the K64 

From a logical standpoint we implement segmentation when we group together 

in memory information that has similar properties or usage. Typical software 

segments include global variables (.data section), the heap, local variables, 

fixed constants (.rodata section), and machine instructions (.text section). 

Global variables are permanently allocated and usually accessible by more than 

one program. We must use global variables for information that must be 

permanently available, or for information that is to be shared by more than one 

module. We will see the first-in-first-out (FIFO) queue is a global data structure 

that is shared by more than one module. MX allows the use of a heap to 

dynamically allocate and release memory. This information can be shared or not 

shared depending on which modules have pointers to the data. The heap is 

efficient in situations where storage is needed for only a limited amount of time. 

Local variables are usually allocated on the stack at the beginning of the 

function, used within the function, and deallocated at the end of the function. 

Local variables are not shared with other modules. Fixed constants do not change 

and include information such as numbers, strings, sounds and pictures. Just like 

the heap, the fixed constants can be shared or not shared depending on which 

modules have pointers to the data.  
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In an embedded application, we usually put global variables, the heap, and local 

variables in RAM because these types of information can change during 

execution. When software is to be executed on a regular computer, the machine 

instructions are usually read from a mass storage device (like a disk) and loaded 

into memory. Because the embedded system usually has no mass storage device, 

the machine instructions and fixed constants must be stored in non-volatile 

memory. If there is both EEPROM and Flash on our microcontroller, we put 

some fixed constants in EEPROM and some in Flash. If it is information that we 

may wish to change in the future, we could put it in EEPROM. Examples include 

language-specific strings, calibration constants, finite state machines, and 

system ID numbers. This allows us to make minor modifications to the system 

by reprogramming the EEPROM without throwing the chip away. For a project 

with a large volume it will be cost effective to place the machine instructions in 

OTPROM.  

The type of memory 
dictates its usage 
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2.7.5 Pointer Arithmetic 

A major difference between addresses and ordinary variables or constants has to 

do with the interpretation of addresses. Since an address points to an object of 

some particular type, adding one (for instance) to an address should direct it to 

the next object, not necessarily the next byte. If the address points to integers, 

then it should end up pointing to the next integer. But, since integers occupy four 

bytes, adding one to an integer address must actually increase the address by 

four. Likewise, if the address points to short integers, then adding one to an 

address should end up pointing to the next short integer by increasing the address 

by two. A similar consideration applies to subtraction. In other words, values 

added to or subtracted from an address must be scaled according to the size of 

the objects being addressed. This is done automatically by the compiler, and 

saves the programmer a lot of thought and makes programs less complex since 

the scaling need not be coded explicitly. The scaling factor for integers is four; 

the scaling factor for short integers is two; the scaling factor for characters is 

one. Therefore, character addresses do not receive special handling. It should be 

obvious that when we define structures of other sizes, the appropriate factors 

would have to be used. 

A related consideration arises when we imagine the meaning of the difference of 

two addresses. Such a result is interpreted as the number of objects between the 

two addresses. If the objects are integers, the result must be divided by four in 

order to yield a value which is consistent with this meaning. See the next section 

for more information on address arithmetic. 

When an address is operated on, the result is always another address of the same 

type. Thus, if ptr is a signed 32-bit integer pointer, then ptr+1 also points to a 

signed 32-bit integer.  

Precedence determines the order of evaluation. One of the most common 

mistakes results when the programmer neglects the fact the * used as a unary 

pointer reference has precedence over all binary operators. This means the 

expression *ptr + 1 is the same as (*ptr) + 1 and not *(ptr + 1). Remember 

(2.2): "When confused about precedence (and aren't we all) add parentheses to 

clarify the expression." 

Pointer arithmetic 
takes into account 
the size of the data 
being pointed to 

Type is preserved in 
pointer arithmetic 
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2.7.6 Pointer Comparisons 

One major difference between pointers and other variables is that pointers are 

always considered to be unsigned. This should be obvious since memory 

addresses are not signed. This property of pointers (actually all addresses) 

ensures that only unsigned operations will be performed on them. It further 

means that the other operand in a binary operation will also be regarded as 

unsigned (whether or not it actually is). In the following example, pt1 and pt2[5] 

return the current values of the addresses. For instance, if the array pt2[] 

contains addresses, then it would make sense to write: 

short *pt1;      // define 16-bit integer pointer 
short *pt2[10];  // define ten 16-bit integer pointers 
short done(void) 
{ 
  // returns true if pt1 is higher than pt2[5] 
  if (pt1 > pt2[5]) 
    return (1);  
  return (0); 
} 

Listing 2.62 – Example showing a pointer comparison 

which performs an unsigned comparison since pt1 and pt2 are pointers. Thus, if 

pt2[5] contains 0x1FFFF000 and pt1 contains 0x1FFF1000, the expression will 

yield false, since 0x1FFFF000 is a higher unsigned value than 0x1FFF1000. 

It makes no sense to compare a pointer to anything but another address or zero. 

C guarantees that valid addresses can never be zero, so that particular value is 

useful in representing the absence of an address in a pointer. 

Furthermore, to avoid portability problems, only addresses within a single array 

should be compared for relative value (e.g., which pointer is larger). To do 

otherwise would necessarily involve assumptions about how the compiler 

organizes memory. Comparisons for equality, however, need not observe this 

restriction, since they make no assumption about the relative positions of objects. 

For example if pt1 points into one data array and pt2 points into a different array, 

then comparing pt1 to pt2 would be meaningless. Which pointer is larger would 

depend on where in memory the two arrays were assigned. 

Pointers are always 
unsigned 

The address of zero 
is reserved for NULL 

– a pointer that 
doesn’t yet point to 
anything 



2.151 

PMcL Pointers Index 

2020  2 - Embedded C 

2.7.7 A FIFO Queue Example 

To illustrate the use of pointers we will design a two-pointer FIFO. The first-in 

first-out circular queue (FIFO) is also useful for data flow problems. It is a very 

common data structure used for I/O interfacing. The order preserving data 

structure temporarily saves data created by the source (producer) before it is 

processed by the sink (consumer). The class of FIFOs studied in this section will 

be statically allocated global structures. Because they are global variables, it 

means they will exist permanently and can be shared by more than one program. 

The advantage of using a FIFO structure for a data flow problem is that we can 

decouple the source and sink processes. Without the FIFO we would have to 

produce 1 piece of data, then process it, produce another piece of data, then 

process it. With the FIFO, the source process can continue to produce data 

without having to wait for the sink to finish processing the previous data. This 

decoupling can significantly improve system performance.  

GetPt points to the data that will be removed by the next call to FIFO_Get(), and 

PutPt points to the empty space where the data will be stored by the next call to 

FIFO_Put(). If the FIFO is full when FIFO_Put() is called then the subroutine 

should return a full error. Similarly, if the FIFO is empty when FIFO_Get() is 

called, then the subroutine should return an empty error. The PutPt and GetPt 

pointers must be wrapped back up to the top when they reach the bottom. 
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PutPt
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FIFO_Put(1)

PutPt

queue

GetPt1

FIFO_Put(1)

PutPt

queue

GetPt
FIFO_Put(2)

1

2

FIFO_Put(1)

PutPt

queue

GetPt
FIFO_Put(2)

FIFO_Put(3)

1

2

3

FIFO_Put(1)

PutPt

queue

GetPt
FIFO_Put(2)

FIFO_Put(3)

FIFO_Put(4)

1

2

3

4

 

 Figure 2.34 – FIFO example showing the wrapping of pointers – step 1 
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 Figure 2.35 – FIFO example showing the wrapping of pointers – step 2 

Four FIFO_Put() 
operations… 

Two FIFO_Get() 
operations… 
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 Figure 2.36 – FIFO example showing the wrapping of pointers – step 3 
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 Figure 2.37 – FIFO example showing the wrapping of pointers – step 4 
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 Figure 2.38 – FIFO example showing the wrapping of pointers – step 5 

  

A FIFO_Put() 

followed by a 
FIFO_Get() 

Two FIFO_Put() 
operations… 
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 Figure 2.39 – FIFO example showing the wrapping of pointers – step 6 
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 Figure 2.40 – FIFO example showing the wrapping of pointers – step 7 

  

Two FIFO_Get() 
operations… 

Two FIFO_Put() 

operations… 
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 Figure 2.41 – FIFO example showing the wrapping of pointers – step 8 

There are two mechanisms to determine whether the FIFO is empty or full. A 

simple method is to implement a counter containing the number of bytes 

currently stored in the FIFO. FIFO_Get() would decrement the counter and 

FIFO_Put() would increment the counter. The second method is to prevent the 

FIFO from being completely full. For example, if the FIFO had 100 bytes 

allocated, then the FIFO_Put() subroutine would allow a maximum of 99 bytes 

to be stored. If there were already 99 bytes in the FIFO and another PUT were 

called, then the FIFO would not be modified and a full error would be returned. 

In this way if PutPt equals GetPt at the beginning of FIFO_Get(), then the FIFO 

is empty. Similarly, if PutPt + 1 equals GetPt at the beginning of FIFO_Put(), 

then the FIFO is full. Be careful to wrap the PutPt + 1 before comparing it to 

GetPt. This second method does not require the length to be stored or calculated. 

  

Finally, four 
FIFO_Get() 

operations that 
empty the queue 
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// Pointer implementation of the FIFO 
#define FIFO_SIZE 10 // Max number of 8-bit data in the FIFO 
 
char* PutPt;    // Pointer of where to put next 
char* GetPt;    // Pointer of where to get next 
// FIFO is empty if PutPt == GetPt 
// FIFO is full if PutPt + 1 == GetPt  
 
char FIFO[FIFO_SIZE]; // The statically allocated FIFO data 
 
void FIFO_Init(void) 
{ 
  // Make atomic, entering critical section 
  EnterCritical();  
  PutPt = GetPt = FIFO; // Empty when PutPt == GetPt 
  ExitCritical();  // End critical section 
} 
 
int FIFO_Put(const char data) 
{ 
  char* pt;          // Temporary put pointer 
 
  // Make atomic, entering critical section 
  EnterCritical();  
  pt = PutPt + 1;    // Make new potential PutPt 
  if (pt == &FIFO[FIFO_SIZE]) 
    pt = FIFO;       // Wrap pointer if necessary 
  if (pt == GetPt)   // If FIFO is full, fail 
  {  
    ExitCritical();  // End critical section 
    return 0; 
  }   // Failed, FIFO was full 
  else 
  {  
    *PutPt = data;      // Put data into FIFO 
    PutPt = pt;      // Update PutPt 
    ExitCritical();  // End critical section 
    return 1;       // Successful 
  } 
} 
 
int FIFO_Get(char* const dataPt) 
{ 
  if (PutPt == GetPt) // Empty if PutPt == GetPt 
    return 0; 
  
  // Make atomic, entering critical section 
  EnterCritcial();  
  *dataPt = *GetPt++; 
  if (GetPt == &FIFO[FIFO_SIZE]) 
    GetPt = FIFO; 
  ExitCrtical();    // End critical section 
  return 1; 
} 

Listing 2.63 – FIFO queue implemented with pointers 
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The EnterCritcial() macro is defined to save the state of the global interrupt 

enable bit and disable interrupts. This prevents another thread from interfering 

with the FIFO operation. The ExitCrtical() macro restores the state of the 

global interrupt enable bit. 

Since these routines have read / modify / write accesses to global variables the 

three functions (FIFO_Init(), FIFO_Put(), FIFO_Get()) are themselves not re-

entrant. Consequently interrupts are temporarily disabled, to prevent one thread 

from re-entering these FIFO functions. One advantage of this pointer 

implementation is that if you have a single thread that calls FIFO_Get() (e.g., the 

main program) and a single thread that calls FIFO_Put() (e.g., the serial port 

receive interrupt handler), then this FIFO_Put() function can interrupt this 

FIFO_Get() function without loss of data. So in this particular situation, 

interrupts would not have to be disabled. It would also operate properly if there 

were a single interrupt thread calling FIFO_Get() (e.g., the serial port transmit 

interrupt handler) and a single thread calling FIFO_Put() (e.g., the main 

program.) On the other hand, if the situation is more general, and multiple 

threads could call FIFO_Put() or multiple threads could call FIFO_Get(), then the 

interrupts would have to be temporarily disabled as shown. 

You have to be 
careful when 
multiple threads are 
using the same 
resource 
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2.7.8 I/O Port Access 

Even though the mechanism to access I/O ports technically does not fit the 

definition of pointer, it is included in this section because it involves addresses. 

The format used by the MX compiler fits the following model. The following 

listing shows three 32-bit K64 I/O ports. The line FTM0_C5SC = 0x80; generates 

a 32-bit I/O write operation to the port at address 0x4003800C. The FTM0_CNT on 

the right hand side of the assignment statement generates a 32-bit I/O read 

operation from the port at address 0x40038004. The FTM0_C5V on the left hand 

side of the assignment statement generates a 32-bit I/O write operation from the 

port at address 0x40038030. The FTM0_C5SC inside the while loop generates 

repeated 32-bit I/O read operations until bit 7 is set. 

#define FTM0_CNT  *(uint32_t volatile *)(0x40038004) 
#define FTM0_C5SC *(uint32_t volatile *)(0x40038028) 
#define FTM0_C5V  *(uint32_t volatile *)(0x40038030) 
 
void wait(uint32_t delay) 
{ 
  FTM0_C5SC &= ~0x80; // clear C5F 
  FTM0_C5V = FTM0_CNT + delay; // CNT at end of wait 
  while ((FTM0_C5SC & 0x80) == 0); // wait for C5F 
} 

Listing 2.64 – Sample MX program that accesses I/O ports 

It was mentioned earlier that the volatile modifier will prevent the compiler 

from optimizing I/O statements, i.e., these examples would not work if the 

compiler read FTM0_C5SC once, then used the same data over and over inside the 

while loop. 

To understand this syntax we break it into parts. Starting on the right is the 

absolute address of the I/O port. For example the K64 FTM0_CNT register is at 

location 0x40038004. The parentheses are necessary because the definition might 

be used in an arithmetic calculation. For example the following two lines are 

quite different: 

TheTime = *(unsigned char volatile *)(0x1023) + 100; 
TheTime = *(unsigned char volatile *)0x1023 + 100; 

In the second (incorrect) case the addition 0x01023 + 100 is performed on the 

address, not the data. The next part of the definition is a type casting. C allows 
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you to change the type of an expression. For example (unsigned char volatile 

*) specifies that 0x1023 is an address that points at an 

8-bit unsigned char. The * at the beginning of the definition causes the data to 

be fetched from the I/O port if the expression exists on the right-hand side of an 

assignment statement. The * also causes the data to be stored at the I/O port if 

the expression is on the left-hand side of the assignment statement. In this last 

way, I/O port accesses are indeed similar to pointers. 

For example the previous example could have been implemented as: 

uint32_t volatile *pFTM0_CNT; 
uint32_t volatile *pFTM0_C5SC; 
uint32_t volatile *pFTM0_C5V; 
 
void wait(uint32_t delay) 
{ 
  pFTM0_CNT = (uint32_t volatile *)(0x40038004); 
  pFTM0_C5SC = (uint32_t volatile *)(0x40038028); 
  pFTM0_C5V = (uint32_t volatile *)(0x40038030) 
  (*pFTM0_C5SC) &= ~0x80;  
  (*FTM0_C5V) = (*pFTM0_CNT) + delay;  
  while (((*pFTM0_C5SC) & 0x80) == 0);  
} 

Listing 2.65 – C program that accesses I/O ports using pointers 

This function first sets the three I/O pointers then accesses the I/O ports 

indirectly through the pointers. 

You need to be careful when using pointer variables to I/O ports on the K64. If 

a global pointer variable to an I/O port is uninitialised, the C startup code will 

set it to zero. In C, the NULL pointer is defined as address 0. In the K64,  the initial 

stack pointer (held in Flash memory) has address 0. Therefore, if you 

accidentally try and write to a dereferenced NULL pointer you will generate a 

HardFault exception (the program will “crash”). 
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2.8 Arrays and Strings 

An array is a collection of like variables that share a single name. The individual 

elements of an array are referenced by appending a subscript, in square brackets 

[], behind the name. The subscript itself can be any legitimate C expression that 

yields an integer value, even a general expression. Although arrays represent one 

of the simplest data structures, they have wide-spread usage in embedded 

systems. 

Strings are similar to arrays with just a few differences. Usually, the array size 

is fixed, while strings can have a variable number of elements. Arrays can 

contain any data type (char, short, int, even other arrays) while strings are 

usually ASCII characters terminated with a NULL (0) character. In general we 

allow random access to individual array elements. On the other hand, we usually 

process strings sequentially character by character from start to end. Since these 

differences are a matter of semantics rather than specific limitations imposed by 

the syntax of the C programming language, the descriptions in this section apply 

equally to data arrays and character strings. String literals were discussed earlier; 

in this section we will define data structures to hold our strings. In addition, C 

has a rich set of predefined functions to manipulate strings. 

2.8.1 Array Subscripts 

When an array element is referenced, the subscript expression designates the 

desired element by its position in the data. The first element occupies position 

zero, the second position one, and so on. It follows that the last element is 

subscripted by [N-1] where N is the number of elements in the array. The 

statement: 

data[9] = 0; 

for instance, sets the tenth element of data to zero. The array subscript can be 

any expression that results in a 32-bit integer. 

The following for -loop clears 100 elements of the array data to zero: 

for (j=0; j < 100; j++) 
  data[j] = 0; 
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Multidimensional Arrays 

C supports arrays of multiple dimensions, which are stored in row-major order. 

In row-major order, consecutive elements of the rows of the array are contiguous 

in memory. Technically, C multidimensional arrays are just one-dimensional 

arrays whose elements are arrays. The syntax for declaring multidimensional 

arrays is: 

int array2D[ROWS][COLUMNS]; 

where ROWS and COLUMNS are constants. This defines a two-dimensional array. 

Reading the subscripts from left to right, array2D is an array of length ROWS, each 

element of which is an array of COLUMNS integers. 

As programmers we may assign any logical meaning to the first and second 

subscripts. For example we could consider the first subscript as the row and the 

second as the column. Then, the statement: 

ThePosition = position[3][5]; 

copies the information from the 4th row and 6th column into the variable 

ThePosition.  

If the array has three dimensions, then three subscripts are specified when 

referencing. Again we may assign any logical meaning to the various subscripts. 

For example we could consider the first subscript as the x coordinate, the second 

subscript as the y coordinate and the third subscript as the z coordinate. Then, 

the statement: 

humidity[2][3][4] = 100; 

sets the humidity at point (2, 3, 4) to 100. 

Array subscripts are treated as signed 32-bit integers. It is the programmer's 

responsibility to see that only positive values are produced, since a negative 

subscript would refer to some point in memory preceding the array. One must 

be particularly careful about assuming what exists either in front of or behind 

our arrays in memory. C provides no facility for automatic bounds checking for 

array usage. 
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2.8.2 Array Declarations 

Just like any variable, arrays must be declared before they can be accessed. The 

number of elements in an array is determined by its declaration. Appending a 

constant expression in square brackets to a name in a declaration identifies the 

name as the name of an array with the number of elements indicated. Multi-

dimensional arrays require multiple sets of brackets. The examples in Listing 

2.66 are valid declarations: 

// define data, allocate space for 5 16-bit integers  
short data[5];    
// define string, allocate space for 20 8-bit characters 
char string[20]; 
// define time, width, allocate space for 32-bit integers  
int time, width[6]; 
// define xx, allocate space for 50 16-bit integers 
short xx[10][5]; 
// define pts, allocate space for 125 16-bit integers 
short pts[5][5][5]; 
// declare buffer as an external character array 
extern char buffer[]; 

Listing 2.66 – Example showing array declarations 

Notice in the third example that ordinary variables may be declared together with 

arrays in the same statement. In fact array declarations obey the syntax rules of 

ordinary declarations, as described in previous sections, except that certain 

names are designated as arrays by the presence of a dimension expression. 

Notice the size of the external array, buffer[], is not given. This leads to an 

important point about how C deals with array subscripts. The array dimensions 

are only used to determine how much memory to reserve. It is the 

programmer's responsibility to stay within the proper bounds. In particular, 

you must not let the subscript become negative or above N-1, where N is the size 

of the array.  

Another situation in which an array's size need not be specified is when the array 

elements are given initial values. In this case, the compiler will determine the 

size of such an array from the number of initial values. 
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2.8.3 Array References 

In C we may refer to an array in several ways. Most obviously, we can write 

subscripted references to array elements, as we have already seen. C interprets 

an unsubscripted array name as the address of the array. In the following 

example, the first two lines set x to equal the value of the first element of the 

array. The third and fourth lines both set pt equal to the address of the array. 

Recall that the address operator & yields the address of an object. This operator 

may also be used with array elements. Thus, the expression &data[3] yields the 

address of the fourth element. Notice too that &data[0] and data+0 and data are 

all equivalent. It should be clear by analogy that &data[3] and data+3 are also 

equivalent. 

short x, *pt, data[5]; // a variable, a pointer, and an array 
 
void Set(void) 
{ 
  x = data[0];   // set x equal to the first element of data 
  x = *data;     // set x equal to the first element of data 
  pt = data;     // set pt to the address of data 
  pt = &data[0]; // set pt to the address of data 
  x = data[3];     // set x equal to the fourth element of data 
  x = *(data + 3); // set x equal to the fourth element of data 
  pt = data + 3; // set pt to the address of the fourth element 
  pt = &data[3]; // set pt to the address of the fourth element 
} 

Listing 2.67 – Example showing array references 

2.8.4 Pointers and Array Names 

The previous examples suggest that pointers and array names might be used 

interchangeably, and, in many cases, they may. C will let us subscript pointers 

and also use array names as addresses. In the following example, the pointer pt 

contains the address of an array of integers. Notice the expression pt[2] is 

equivalent to *(pt+2): 

short *pt, data[5]; // a pointer, and an array 
 
void Set(void) 
{ 
  pt = data;        // set pt to the address of data 
  data[2] = 5;      // set the third element of data to 5 
  pt[2] = 5;        // set the third element of data to 5 
  *(pt + 2) = 5;    // set the third element of data to 5 
} 

Listing 2.68 – Example showing pointers to access array elements 
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It is important to realize that although C accepts unsubscripted array names as 

addresses, they are not the same as pointers. In the following example, we cannot 

place the unsubscripted array name on the left-hand-side of an assignment 

statement: 

short buffer[5], data[5]; // two arrays 
 
void Set(void) 
{ 
  data = buffer;      // illegal assignment 
} 

Listing 2.69 – Example showing an illegal array assignment 

Since the unsubscripted array name is its address, the statement 

data = buffer; is an attempt to change its address. What sense would that make? 

The array, like any object, has a fixed home in memory; therefore, its address 

cannot be changed. We say that array is not an lvalue; i.e. it cannot be used on 

the left side of an assignment operator (nor may it be operated on by increment 

or decrement operators). It simply cannot be changed. Not only does this 

assignment make no sense, it is physically impossible because an array address 

is not a variable. There is no place reserved in memory for an array's address to 

reside, only the elements. 

2.8.5 Negative Subscripts 

Since a pointer may point to any element of an array, not just the first one, it 

follows that negative subscripts applied to pointers might well yield array 

references that are in bounds. This sort of thing might be useful in situations 

where there is a relationship between successive elements in an array and it 

becomes necessary to reference an element preceding the one being pointed to. 

In the following example, data is an array containing time-dependent (or space-

dependent) information. If pt points to an element in the array, pt[-1] is the 

previous element and pt[1] is the following one. The function calculates the 

second derivative using a simple discrete derivative. 
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short *pt, data[100]; // a pointer and an array 
 
void CalcSecondDerivative(void) 
{ 
  short d2Vdt2; 
 
  for (pt = data + 1; pt < data + 99; pt++) 
  { 
    d2Vdt2 = (pt[-1] – 2 * pt[0] + pt[1]); 
    ... 
  } 
} 

Listing 2.70 – Example showing negative array subscripting 

2.8.6 Address Arithmetic 

As we have seen, addresses (pointers, array names, and values produced by the 

address operator) may be used freely in expressions. This one fact is responsible 

for much of the power of C. 

As with pointers, all addresses are treated as unsigned quantities. Therefore, only 

unsigned operations are performed on them. Of all the arithmetic operations that 

could be performed on addresses, only two make sense: displacing an address 

by a positive or negative amount, and taking the difference between two 

addresses. All others, though permissible, yield meaningless results. 

Displacing an address can be done either by means of subscripts or by use of the 

plus and minus operators, as we saw earlier. These operations should be used 

only when the original address and the displaced address refer to positions in the 

same array or data structure. Any other situation would assume a knowledge of 

how memory is organized and would, therefore, be ill-advised for portability 

reasons. 

As we saw in the previous section on pointers, taking the difference of two 

addresses is a special case in which the compiler interprets the result as the 

number of objects lying between the addresses. 
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2.8.7 String functions in string.h 

MX implements many useful string manipulation functions. Recall that strings 

are 8-bit arrays with a null-termination. The prototypes for these functions can 

be found in the string.h file. You simply include this file whenever you wish 

to use any of these routines. The rest of this section explains the functions one 

by one. 

typedef unsigned int size_t; 
void*  memchr(const void*, int, size_t); 
int    memcmp(const void*, const void*, size_t); 
void*  memcpy(void*, const void*, size_t); 
void*  memmove(void*, const void*, size_t); 
void*  memset(void*, int, size_t); 
char*  strcat(char*, const char*); 
char*  strchr(const char*, int); 
int    strcmp(const char*, const char*); 
int    strcoll(const char*, const char*); 
char*  strcpy(char*, const char*); 
size_t strcspn(const char*, const char*); 
size_t strlen(const char*); 
char*  strncat(char*, const char*, size_t); 
int    strncmp(const char*, const char*, size_t); 
char*  strncpy(char*, const char*, size_t); 
char*  strpbrk(const char*, const char*); 
char*  strrchr(const char*, int); 
size_t strspn(const char*, const char*); 
char*  strstr(const char*, const char*); 

Listing 2.71 – Prototypes for string functions 

The first five functions are general-purpose memory handling routines. 

Scan Memory for a Character 

void* memchr(const void* block, int c, size_t size); 

This function finds the first occurrence of the byte c (converted to an unsigned 

char) in the initial size bytes of the object beginning at block. The return value 

is a pointer to the located byte, or a NULL pointer if no match was found. 
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Compare Two Blocks of Memory 

int memcmp(const void* a1, const void* a2, size_t size); 

The function memcmp compares the size bytes of memory beginning at a1 against 

the size bytes of memory beginning at a2. The value returned has the same sign 

as the difference between the first differing pair of bytes, a1[n]-a2[n]  

(interpreted as unsigned char objects, then promoted to int). If the contents of 

the two blocks are equal, memcmp returns 0. 

Copy a Block of Memory 

void* memcpy(void* dst, const void* src, size_t size); 

The memcpy function copies size bytes from the object beginning at src into the 

object beginning at dst. The behaviour of this function is undefined if the two 

arrays src and dst overlap. The value returned by memcpy is the value of dst. 

Move a Block of Memory 

void* memmove(void* dst, const void* src, size_t size); 

memmove copies the size bytes at src into the size bytes at dst, even if those two 

blocks of space overlap. In the case of overlap, memmove is careful to copy the 

original values of the bytes in the block at src, including those bytes which also 

belong to the block at dst. The value returned by memmove is the value of dst. 

Fill a Block of Memory 

void* memset(void* block, int c, size_t size); 

This function copies the value of c (converted to an unsigned char) into each of 

the first size bytes of the object beginning at block. It returns the value of block. 
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The remaining functions are string-handling routines. 

Concatenate Strings 

char* strcat(char* dst, const char* src); 

Assuming the two pointers are directed at two null-terminated strings, strcat 

will append a copy of the string pointed to by pointer src, placing it at the end 

of the string pointed to by pointer dst. The pointer dst is returned. It is the 

programmer's responsibility to ensure the destination buffer is large enough. 

This function has undefined results if the strings overlap. 

Locate the First Occurrence of a Character in a String 

char* strchr(const char* string, int c); 

Assuming the pointer is directed at a null-terminated string, starting in memory 

at address string, strchr will search for the first occurrence of the character c 

(converted to a char). It will search until a match is found or stop at the end of 

the string. If successful, a pointer to the located character is returned, otherwise 

a NULL pointer is returned. 

Compare Two Strings (using Locale) 

int strcmp(const char* s1, const char* s2); 
int strcoll(const char* s1, const char* s2); 

Assuming the two pointers are directed at two null-terminated strings, strcmp 

will return a negative value if the string pointed to by s1 is lexicographically less 

than the string pointed to by s2. The return value will be zero if they match, and 

positive if the string pointed to by s1 is lexicographically greater than the string 

pointed to by s2. A consequence of the ordering used by strcmp is that if s1 is 

an initial substring of s2, then s1 is considered to be “less than” s2. 

In general C allows the comparison rule used in strcoll (string collate) to 

depend on the current locale, but in MX strcoll is the same as strcmp. 
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Copy a String 

char* strcpy(char* dst, const char* src); 

We assume src points to a null-terminated string and dst points to a memory 

buffer large enough to hold the string. strcpy will copy the string (including the 

null) pointed to by src, into the buffer pointed to by pointer dst. The pointer dst 

is returned. It is the programmer's responsibility to ensure the destination buffer 

is large enough. 

Get Span until Character in String 

size_t strcspn(const char* string, const char* stopset); 

The string function strcspn (string complement span) will compute the length 

of the maximal initial substring within the string pointed to by string that has 

no characters in common with the string pointed to by stopset. For example the 

following call returns the value 5: 

n = strcspn("label: movw r2,#4660 ;comment", " ;:*\n\t\l"); 

A common application of this routine is parsing for tokens. The first parameter 

is a line of text and the second parameter is a list of delimiters (e.g., space, 

semicolon, colon, star, return, tab and linefeed). The function returns the length 

of the first token (i.e., the size of label). 

Get String Length 

size_t strlen(const char* string); 

The string function strlen returns the length of the string pointed to by pointer 

string. The length is the number of characters in the string not counting the null-

termination. 
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Append Characters from a String 

char* strncat(char* dst, const char* src, size_t size); 

This function is similar to strcat. Assuming the two pointers are directed at two 

null-terminated strings, strncat will append a copy of the string pointed to by 

pointer src, placing it the end of the string pointed to by pointer dst. The 

parameter size limits the number of characters, not including the null, that will 

be copied. The pointer dst is returned. It is the programmer's responsibility to 

ensure the destination buffer is large enough. The behaviour of strncat is 

undefined if the strings overlap. 

Compare Characters of Two Strings 

int strncmp(const char* s1, const char* s2, size_t size); 

This function is similar to strcmp. Assuming the two pointers are directed at two 

null-terminated strings, strncmp will return a negative value if the string pointed 

to by s1 is lexicographically less than the string pointed to by s2. The return 

value will be zero if they match, and positive if the string pointed to by s1 is 

lexicographically greater than the string pointed to by s2. The parameter size 

limits the number of characters, not including the null, that will be compared. 

For example, the following function call will return a zero because the first 5 

characters are the same: 

n = strncmp("MK64FN1M0VMJ12", "MK64FX512VMJ12", 5); 

Copy Characters from a String 

char* strncpy(char* dst, const char* src, size_t size); 

We assume src points to a null-terminated string and dst points to a memory 

buffer large enough to hold the string. strncpy will copy the string (including 

the null) pointed to by src, into the buffer pointed to by pointer dst. The pointer 

dst is returned. The parameter size limits the number of characters, not 

including the null, that will be copied. If the size of the string pointed to by src 

is equal to or larger than size, then the null will not be copied into the buffer 

pointed to by dst. It is the programmer's responsibility to ensure the destination 

buffer is large enough. The behaviour of strncpy is undefined if the strings 

overlap. 
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Locate Characters in a String 

char* strpbrk(const char* string, const char* stopset); 

This function strpbrk (string pointer break) will search the string pointed to by 

string for the first instance of any of the characters in the string pointed to by 

stopset. A pointer to the found character is returned. If the search fails to find 

any characters of the string pointed to by stopset in the string pointed to by 

string, then a null pointer is returned. For example the following call returns a 

pointer to the colon: 

pt = strpbrk("label: movw r2,#4660 ;comment", " ;:*\n\t\l"); 

This function, like strcspn, can be used for parsing tokens.  

Locate the Last Occurrence of a Character in a String 

char* strrchr(const char* string, int c); 

The function strrchr will search the string pointed to by string from the right 

for the first instance of the character in c. A pointer to the found character is 

returned. If the search fails to find an occurrence of the character c (converted to 

a char) in the string pointed to by string, then a null pointer is returned. For 

example the following calls set pt1 to point to the 'm' in movw and pt2 to point to 

the second 'm' in ;comment: 

pt1 = strchr("label: movw r2,#4660 ;comment", 'm'); 
pt2 = strrchr("label: movw r2,#4660 ;comment", 'm'); 

Notice that strchr searches from the left while strrchr searches from the right. 
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Get Span of Character Set in String 

size_t strspn(const char* string, const char* skipset); 

The strspn (string span) function returns the length of the maximal initial 

substring of string that consists entirely of characters that are members of the 

set specified by the string skipset. The order of the characters in skipset is not 

important.  

In the following example the second string contains the valid set of hexadecimal 

digits. 

n = strspn("A12F05 + 12BAD * 45", "01234567890ABCDEF"); 

The function call will return 6 because there is a valid 6-digit hexadecimal string 

at the start of the line. 

Locate Substring 

char* strstr(const char* haystack, const char* needle); 

The function strstr will search the string pointed to by haystack from the left 

for the first instance of the string pointed to by needle. A pointer to the found 

substring within the first string is returned. If the search fails to find a match, 

then a null pointer is returned. For example, the following call sets pt to point to 

the 'm' in movw: 

pt = strstr("label: movw r2,#4660 ;comment", "movw"); 
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2.8.8 A FIFO Queue Example using Indices 

Another method to implement a statically allocated first-in-first-out FIFO is to 

use indices instead of pointers. The purpose of this example is to illustrate the 

use of arrays and indices. Just like the previous FIFO, this is used for order-

preserving temporary storage. The function FIFO_Put will enter one 8-bit byte 

into the queue, and FIFO_Get will remove one byte. If you call FIFO_Put while 

the FIFO is full (Size is equal to FIFO_SIZE), the routine will return a zero. 

Otherwise, FIFO_Put will save the data in the queue and return a one. The index 

PutI specifies where to put the next 8-bit data. The routine FIFO_Get actually 

returns two parameters. The queue status is the regular function return parameter, 

while the data removed from the queue is returned by reference, i.e., the calling 

routine passes in a pointer, and FIFO_Get stores the removed data at that address. 

If you call FIFO_Get while the FIFO is empty (Size is equal to zero), the routine 

will return a zero. Otherwise, FIFO_Get will return the oldest data from the queue 

and return a one. The index GetI specifies where to get the next 8-bit data. 
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The following FIFO implementation uses two indices and a counter. 

// Index, counter implementation of the FIFO 
#define FIFO_SIZE 10   // Number of 8 bit data in the FIFO 
 
unsigned char PutI;    // Index of where to put next 
unsigned char GetI;    // Index of where to get next 
unsigned char Size;    // Number currently in the FIFO 
               // FIFO is empty if Size == 0 
               // FIFO is full  if Size == FIFO_SIZE 
char FIFO[FIFO_SIZE];  // The statically allocated data 
 
void FIFO_Init(void) 
{ 
  PutI = GetI = Size = 0;   // Empty when Size==0 
} 
 
int FIFO_Put(const char data) 
{ 
  if (Size == FIFO_SIZE)  
    return 0;               // Failed, FIFO was full 
 
  Size++; 
  FIFO[PutI++] = data;      // Put data into FIFO 
  if (PutI == FIFO_SIZE) 
    PutI = 0;               // Wrap 
  return 1;                 // Successful 
} 
 
int FIFO_Get(char* const dataPt) 
{  
  if (Size == 0)  
    return 0;               // Empty if Size == 0 
 
  *dataPt = FIFO[GetI++];   // Get data out of FIFO 
  Size--; 
  if (GetI == FIFO_SIZE) 
    GetI = 0;               // Wrap 
  return 1;                 // Successful 
} 

Listing 2.72 – FIFO implemented with two indices and a counter 
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2.9 Structures 

A structure is a collection of variables that share a single name. In an array, each 

element has the same format. With structures we specify the types and names of 

each of the elements or members of the structure. The individual members of a 

structure are referenced by their subname. Therefore, to access data stored in a 

structure, we must give both the name of the collection and the name of the 

element. Structures are one of the most powerful features of the C language. In 

the same way that functions allow us to extend the C language to include new 

operations, structures provide a mechanism for extending the data types. With 

structures we can add new data types derived from an aggregate of existing 

types. 

2.9.1 Structure Declarations 

Like other elements of C programming, the structure must be declared before it 

can be used. The declaration specifies the tagname of the structure and the names 

and types of the individual members. The following example has three members: 

one 32-bit integer and three pointers to 32-bit unsigned integers: 

struct theport 
{ 
  // 0 for I/O, 1 for in only, -1 for out only 
  int mode;     
  // pointer to its output address 
  uint32_t volatile* outAddress; 
  // pointer to its input address 
  uint32_t volatile* inAddress; 
  // pointer to its data direction register 
  uint32_t volatile* ddr; 
};  

The above declaration does not create any variables or allocate any space. 

Therefore to use a structure we must define a global or local variable of this type. 

The tagname (theport) along with the keyword struct can be used to define 

variables of this new data type: 

struct theport PortA, PortB, PortC; 
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The previous line defines the four variables and allocates 16 bytes for each 

variable. If you knew you needed just three copies of structures of this type, you 

could have defined them as: 

struct theport 
{ 
  int mode; 
  uint32_t volatile* outAddress; 
  uint32_t volatile* inAddress; 
  uint32_t volatile* ddr; 
} PortA, PortB, PortC; 

Definitions like the above are hard to extend, so to improve code reuse we can 

use typedef to actually create a new data type (called port in the example below) 

that behaves syntactically like char, int, short etc. 

struct theport 
{ 
  int mode;     // 0 for I/O, 1 for in only, -1 for out only 
  uint32_t volatile* outAddress; // out address 
  uint32_t volatile* inAddress;  // in address 
  uint32_t volatile* ddr;        // data direction register 
};  
 
typedef struct theport port; 
 
port PortA, PortB, PortC; 

Once we have used typedef to create port, we don't need access to the name 

theport anymore. Consequently, some programmers use the following short-

cut: 

typedef struct 
{ 
  int mode;     // 0 for I/O, 1 for in only, -1 for out only 
  uint32_t volatile* outAddress; // out address 
  uint32_t volatile* inAddress;  // in address 
  uint32_t volatile* ddr;        // data direction register 
} port;  
 
port PortA, PortB, PortC; 
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2.9.2 Accessing Members of a Structure 

We need to specify both the structure name (name of the variable) and the 

member name when accessing information stored in a structure. The following 

examples show accesses to individual members: 

PortA.mode = -1;     // Specify Port A as output 
PortA.outAddress = (uint32_t volatile *)(0x400FF000); 
PortA.inAddress = (uint32_t volatile *)(0x400FF010); 
PortA.ddr = (uint32_t volatile *)(0x400FF014); 
(*PortA.ddr) = 0xFFFFFFFF; 
 
PortB.mode = 0;      // Port B is input and output 
PortA.outAddress = (uint32_t volatile *)(0x400FF040); 
PortA.inAddress = (uint32_t volatile *)(0x400FF050); 
PortB.ddr = (uint32_t volatile *)(0x400FF054); 
 
// Copy from PortB to PortA 
(*PortA.outAddress) = (*PortB.inAddress); 

The syntax can get a little complicated when a member of a structure is another 

structure as illustrated in the next example: 

typedef struct 
{ 
  int x1, y1;    // starting point 
  int x2, y2;    // starting point 
  char color;    // color 
} line;  
 
typedef struct  
{ 
  line L1, L2;   // two lines 
  char direction; 
} path; 
 
path p;          // global 
 
void Setup(void) 
{ 
  line myLine; 
  path q; 
  p.L1.x1 = 5;    // black line from 5,6 to 10,12 
  p.L1.y1 = 6; 
  p.L1.x2 = 10; 
  p.L1.y2 = 12; 
  p.L1.color = 255; 
  p.L2={5, 6, 10, 12, 255};  // black line from 5,6 to 10,12 
  p.direction = -1; 
  myLine = p.L1; 
  q = {{0, 0, 5, 6, 128}, {5, 6, -10, 6, 128}, 1};  
  q = p; 
} 

Listing 2.73 – Examples of accessing structures 
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The local variable declaration line myLine; will allocate 17 bytes on the stack 

while path q; will allocate 35 bytes on the stack. In actuality most C compilers 

in an attempt to maintain addresses on word boundaries will actually allocate 20 

and 44 bytes respectively. In particular, the K64 executes faster out of external 

memory if 32-bit accesses occur on word-aligned addresses. For example, a 32-

bit data access to an external odd address requires two bus cycles, while a 32-bit 

data access to an external word-aligned address requires only one bus cycle. 

There is no particular odd-address speed penalty for K64 internal addresses 

(internal RAM or Flash). Notice that the expression p.L1.x1 is of the type int, 

the term p.L1 has the type line, while just p has the type path. The expression q 

= p; will copy the entire 35 bytes that constitute the structure from p to q. 

2.9.3 Initialization of a Structure 

Just like any variable, we can specify the initial value of a structure at the time 

of its definition: 

path thePath = {{0, 0, 5, 6, 128}, {5, 6, -10, 6, 128}, 1};  
line theLine = {0, 0, 5, 6, 128};  
port PortE = 
{  
  0, 
  (uint32_t volatile *)(0x400FF100), 
  (uint32_t volatile *)(0x400FF110), 
  (uint32_t volatile *)(0x400FF114) 
}; 

If we leave part of the initialization blank it is filled with zeros. 

path thePath = {{0, 0, 5, 6, 128}, };  
line theLine = {5, 6, 10, 12, };  
port PortE = {1, (uint32_t volatile *)(0x400FF100), }; 
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To place a structure in Flash memory, we define it as a global constant. In the 

following example the structure fsm[3] will be allocated and initialized in Flash 

memory. The linked structure of a finite state machine is a good example of a 

Flash-based structure. 

typedef const struct State 
{ 
  unsigned char out;           // Output to Port A bits 0-7 
  unsigned short wait;         // Time (bus cycles) to wait 
  unsigned char andMask[4]; 
  unsigned char equMask[4]; 
  const struct State* next[4]; // Next states 
} TState; 
 
typedef TState* PState; 
 
#define Stop &FSM[0] 
#define Turn &FSM[1] 
#define Bend &FSM[2] 
 
TState FSM[3] = 
{ 
  { 
     0x34,   2000,   // stop 1 ms 
    {0xFF,   0xF0,   0x27,   0x00}, 
    {0x51,   0xA0,   0x07,   0x00}, 
    {Turn,   Stop,   Turn,   Bend} 
  }, 
  { 
     0xB3,   5000,   // turn 2.5 ms 
    {0x80,   0xF0,   0x00,   0x00}, 
    {0x00,   0x90,   0x00,   0x00}, 
    {Bend,   Stop,   Turn,   Turn} 
  }, 
  { 
     0x75,   4000,   // bend 2 ms 
    {0xFF,   0x0F,   0x01,   0x00}, 
    {0x12,   0x05,   0x00,   0x00}, 
    {Stop,   Stop,   Turn,   Stop} 
  } 
}; 

Listing 2.74 – Example of initializing a structure in Flash 



2.180 

Index Structures PMcL 

2 - Embedded C  2020 

2.9.4 Using pointers to access structures 

Just like other variables we can use pointers to access information stored in a 

structure. The syntax is illustrated in the following examples: 

void Setup(void) 
{ 
  path* ppt; 
  ppt = &p;        // pointer to an existing global variable 
  ppt->L1.x1 = 5;  // black line from 5,6 to 10,12 
  ppt->L1.y1 = 6; 
  ppt->L1.x2 = 10; 
  ppt->L1.y2 = 12; 
  ppt->L1.color = 255; 
  ppt->L2 = {5, 6, 10, 12, 255}; 
  ppt->direction = -1; 
  (*ppt).direction = -1; 
} 

Listing 2.75 – Examples of accessing a structure using a pointer 

Notice that the syntax ppt->direction is equivalent to (*ppt).direction. The 

parentheses in this access are required, because along with () and [], the 

operators . and -> have the highest precedence and associate from left to right. 

Therefore *ppt.direction would be a syntax error because ppt.direction 

cannot be evaluated. 
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As an another example of pointer access, consider the finite state machine 

controller for the fsm[3] structure shown previously. The state machine is 

illustrated below, along with the program. 
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 Figure 2.42 – Finite state machine 

void Control(void) 
{ 
  PState pt; 
  unsigned char input; 
  unsigned short startTime; 
 
  FTM0_MODE |= 0x01;       // Enable timer 
  FTM0_SC |= 0x01;         // timer/2 (500ns) 
  GPIOA_PDDR = 0x000000FF; // PortA bits 7-0 are outputs 
  GPIOB_PDDR = 0x00000000; // PortB bits 7-0 are inputs 
  pt = stop;               // Initial State  
 
  while(1) 
  { 
    // 1) output 
    GPIOA_PDOR = pt->out; 
    // Time (500 ns each) to wait 
    startTime = FTM0_CNT; 
    // 2) wait 
    while ((FTM0_CNT - startTime) <= pt->wait); 
    // 3) input 
    input = GPIOB_PDIR;             
    for (int i = 0; i < 4; i++) 
      if ((input & pt->andMask[i]) == pt->equMask[i]) 
      { 
        // 4) next depends on input 
        pt = pt->next[i];  
        i = 4; 
      } 
  } 
} 

Listing 2.76 – Finite state machine controller for K64 
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2.9.5 Passing Structures to Functions 

Like any other data type, we can pass structures as parameters to functions. 

Because most structures occupy a large number of bytes, it makes more sense to 

pass the structure by reference rather than by value. In the following "call by 

value" example, the entire 16-byte structure is copied on the stack when the 

function is called: 

unsigned char Input(port thePort) 
{ 
  return (*thePort.inAddress); 
} 

When we use "call by reference", a pointer to the structure is passed when the 

function is called. 

typedef const struct 
{ 
  int mode;     // 0 for I/O, 1 for in only, -1 for out only 
  uint32_t volatile* outAddress; // out address 
  uint32_t volatile* inAddress;  // in address 
  uint32_t volatile* ddr;        // data direction register 
} port;  
 
port PortC =  
{ 
  0, 
  (uint32_t volatile *)(0x400FF080), 
  (uint32_t volatile *)(0x400FF090), 
  (uint32_t volatile *)(0x400FF094) 
}; 
 
int MakeOutput(port* ppt) 
{ 
  if (ppt->mode == 1) 
    return 0; // input only 
  if (ppt->mode == -1) 
    return 1; // OK, output only 
  (*ppt->ddr) = 0xFFFFFFFF; // make output 
  return 1; 
} 
 
int MakeInput(port* ppt) 
{ 
  if (ppt->mode == -1) 
    return 0; // output only 
  if (ppt->mode == 1) 
    return 1;  // OK, input only 
  (*ppt->ddr) = 0x00000000; // make input 
  return 1; 
} 
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unsigned int Input(port* ppt) 
{ 
  return (*ppt->inAddress); 
} 
 
void Output(port* ppt, unsigned int data) 
{ 
  (*ppt->outAddress) = data; 
} 
 
void main(void) 
{ 
  unsigned int myData; 
 
  MakeInput(&PortC); 
  MakeOutput(&PortC); 
  Output(&PortC, 0); 
  myData = Input(&PortC); 
} 

Listing 2.77 – Port access organized with a data structure 

2.9.6 Linear Linked Lists 

One of the applications of structures involves linking elements together with 

pointers. A linear linked list is a simple one-dimensional data structure where 

the nodes are chained together one after another. Each node contains data and a 

link to the next node. The first node is pointed to by the HeadPt and the last node 

has a null-pointer in the next field. A node could be defined as: 

typedef struct node 
{ 
  unsigned short data;  // 16 bit information 
  struct node* next;    // pointer to the next node 
} TNode; 
 
TNode* HeadPt; 

Listing 2.78 – Linear linked list node structure 
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 Figure 2.43 – Linear linked list with 3 nodes 
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In order to store more data in the structure, we will first create a new node then 

link it into the list. The routine StoreData will return a true value if successful. 

#include <stdlib.h> 
 
int StoreData(unsigned short info) 
{ 
  TNode* pt; 
  pt = malloc(sizeof(TNode));  // create a new entry 
  if (pt) 
  { 
    pt->data = info;           // store data 
    pt->next = HeadPt;         // link into existing 
    HeadPt = pt; 
    return 1; 
  } 
  return 0;                   // out of memory 
} 

Listing 2.79 – Code to add a node at the beginning of a linear linked list 

In order to search the list we start at the HeadPt, and stop when the pointer 

becomes NULL. The routine Search will return a pointer to the node if found, and 

it will return a null-pointer if the data is not found. 

TNode* Search(unsigned short info) 
{ 
  TNode* pt; 
  
  pt = HeadPt; 
  while (pt) 
  { 
    if (pt->data == info) 
      return pt; 
    pt = pt->next;   // link to next 
  } 
  return pt;       // not found 
} 

Listing 2.80 – Code to find a node in a linear linked list 
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To count the number of elements, we again start at the HeadPt, and stop when 

the pointer becomes NULL. The routine Count will return the number of elements 

in the list. 

unsigned short Count(void) 
{ 
  TNode* pt; 
  unsigned short count; 
 
  count = 0; 
  pt = HeadPt; 
  while (pt) 
  { 
    count++; 
    pt = pt->next;   // link to next 
  } 
  return count; 
} 

Listing 2.81 – Code to count the number of nodes in a linear linked list 

If we wanted to maintain a sorted list, then we can insert new data at the proper 

place, in between data elements smaller and larger than the one we are inserting. 

In the following figure we are inserting the element 250 in between elements 

200 and 300.  
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 Figure 2.44 – Inserting a node in sorted order 
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There are 4 cases to consider. In case 1, the list is initially empty, and this new 

element is the first and only one. In case 2, the new element is inserted at the 

front of the list because it has the smallest data value. Case 3 is the general case 

depicted in the previous figure. In this situation, the new element is placed in 

between firstPt and secondPt. In case 4, the new element is placed at the end 

of the list because it has the largest data value. 

int InsertData(unsigned short info) 
{  
  TNode *firstPt, *secondPt, *newPt; 
 
  newPt = malloc(sizeof(TNode));  // create a new entry 
  if (newPt) 
  { 
    newPt->data = info;       // store data 
 
    // case 1 
    if (HeadPt == 0) 
    {  
      newPt->next = HeadPt;   // only element 
      HeadPt = newPt; 
      return 1; 
    } 
    // case 2 
    if (info <= HeadPt->data) 
    {  
      newPt->next = HeadPt;   // first element in list 
      HeadPt = newPt; 
      return 1; 
    } 
    // case 3 
    firstPt = HeadPt;         // search from beginning 
    secondPt = HeadPt->next;  
    while (secondPt) 
    { 
      if (info <= secondPt->data) 
      {  
        newPt->next = secondPt;   // insert element here 
        firstPt->next = newPt; 
        return 1; 
      } 
      firstPt = secondPt;     // search next 
      secondPt = secondPt->next;  
    } 
    // case 4 
    newPt->next = secondPt;   // insert at end 
    firstPt->next = newPt; 
    return 1; 
  } 
  return 0;                  // out of memory 
} 

Listing 2.82 – Code to insert a node in a sorted linear linked list 
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The following function will search and remove a node from the linked list. Case 

1 is the situation in which an attempt is made to remove an element from an 

empty list. The return value of zero signifies the attempt failed. In case 2, the 

first element is removed. In this situation the HeadPt must be updated to now 

point to the second element. It is possible the second element does not exist, 

because the list originally had only one element. This is okay because in this 

situation HeadPt will be set to NULL signifying the list is now empty. Case 3 is the 

general situation in which the element at secondPt is removed. The element 

before, firstPt, is now linked to the element after. Case 4 is the situation where 

the element that was requested to be removed did not exist. In this case, the return 

value of zero signifies the request failed. 

int Remove(unsigned short info) 
{  
  TNode *firstPt, *secondPt; 
 
  // case 1 
  if (HeadPt == 0) 
    return 0;   // empty list 
 
  // case 2 
  firstPt = HeadPt; 
  secondPt = HeadPt->next; 
  if (info == HeadPt->data) 
  {   
    HeadPt = secondPt; // remove first element in list 
    free(firstPt);     // return unneeded memory to heap 
    return 1; 
  } 
 
  // case 3 
  while (secondPt) 
  { 
    if (secondPt->data == info) 
    { 
      firstPt->next = secondPt->next; // remove this one 
      free(secondPt);   // return unneeded memory to heap 
      return 1; 
    } 
    firstPt = secondPt;   // search next 
    secondPt = secondPt->next;  
  } 
   
  // case 4 
  return 0;    // not found 
} 

Listing 2.83 – Code to remove a node from a sorted linear linked list 
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2.9.7 Example of a Huffman Code 

When information is stored or transmitted there is a fixed cost for each bit. Data 

compression and decompression provide a means to reduce this cost without loss 

of information. If the sending computer compresses a message before 

transmission and the receiving computer decompresses it at the destination, the 

effective bandwidth is increased. In particular, this example introduces a way to 

process bit streams using Huffman encoding and decoding. A typical application 

is illustrated by the following flow diagram. 
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Figure 2.45 – Data flow diagram showing a typical application of Huffman 

encoding and decoding 

The Huffman code is similar to the Morse code in that they both use short 

patterns for letters that occur more frequently. In regular ASCII, all characters 

are encoded with the same number of bits (8). Conversely, with the Huffman 

code, we assign codes where the number of bits to encode each letter varies. In 

this way, we can use short codes for letters like "e t a o i n" (that have a higher 

probability of occurrence) and long codes for seldom used consonants like "j x 

q z" (that have a lower probability of occurrence). 



2.189 

PMcL Structures Index 

2020  2 - Embedded C 

To illustrate the encode-decode operations, consider the following Huffman 

code for the letters M, I, P  and S. S is encoded as "0", I as "10", P as "110" and 

M as "111". We can store a Huffman code as a binary tree. 
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Figure 2.46 – Huffman code for the letters S I P M 

If "MISSISSIPPI" were to be stored in ASCII, it would require 10 bytes or 80 

bits. With this simple Huffman code, the same string can be stored in 21 bits.  

 

111 10 0 0 10 0 0 10 110 110 10

MISSISSIPPI

 

 

Figure 2.47 – Huffman encoding for MISSISSIPPI 

Of course, this Huffman code can only handle 4 letters, while the ASCII code 

has 128 possibilities, so it is not fair to claim we have an 80 to 21 bit saving. 

Nevertheless, for information that has a wide range of individual probabilities of 

occurrence, a Huffman code will be efficient. 
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In the following implementation the functions BitPut() and BitGet() are 

called to save and recover binary data. The implementations of these two 

functions are not shown. 

typedef const struct Node 
{ 
  char letter0;     // ASCII code if binary 0 
  char letter1;     // ASCII code if binary 1 
  // letter1 is NULL(0) if link is pointer to another node 
  const struct Node* link; // binary tree pointer 
} TNode; 
 
typedef TNode* PNode; 
 
// Huffman tree 
TNode twentysixth= {'Q','Z',0}; 
TNode twentyfifth= {'X',0,&twentysixth}; 
TNode twentyfourth={'J',0,&twentyfifth}; 
TNode twentythird= {'K',0,&twentyfourth}; 
TNode twentysecond={'V',0,&twentythird}; 
TNode twentyfirst= {'B',0,&twentysecond}; 
TNode twentyth=    {'P',0,&twentyfirst}; 
TNode ninteenth=   {'Y',0,&twentyth}; 
TNode eighteenth=  {'G',0,&ninteenth}; 
TNode seventeenth= {'F',0,&eighteenth}; 
TNode sixteenth=   {'W',0,&seventeenth}; 
TNode fifteenth=   {'M',0,&sixteenth}; 
TNode fourteenth=  {'C',0,&fifteenth}; 
TNode thirteenth=  {'U',0,&fourteenth}; 
TNode twelfth=     {'L',0,&thirteenth}; 
TNode eleventh=    {'D',0,&twelfth}; 
TNode tenth=       {'R',0,&eleventh}; 
TNode ninth=       {'H',0,&tenth}; 
TNode eighth=      {'S',0,&ninth}; 
TNode seventh=     {' ',0,&eighth}; 
TNode sixth=       {'N',0,&seventh}; 
TNode fifth=       {'I',0,&sixth}; 
TNode fourth=      {'O',0,&fifth}; 
TNode third=       {'A',0,&fourth}; 
TNode second=      {'T',0,&third}; 
TNode root=        {'E',0,&second}; 
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// ********encode*************** 
// convert ASCII string to Huffman bit sequence 
// input is a null-terminated ASCII string 
// returns bit count if OK 
// returns 0         if BitFIFO full 
// returns 0xFFFF    if illegal character 
 
short encode(char* sPt) 
{ 
  short notFound; 
  char data; 
  short bitCount = 0;    // number of bits created 
  PNode hpt;             // pointer into Huffman tree 
 
  while (data = (*sPt)) 
  { 
    sPt++;               // next character 
    hpt = &root;         // start search at root 
    notFound = 1;        // changes to 0 when found 
    while (notFound) 
    { 
      if ((hpt->letter0) == data) 
      { 
        if (!BitPut(0)) 
          return 0;      // data structure full 
        bitCount++; 
        notFound = 0; 
      } 
      else 
      { 
        if (!BitPut(1)) 
          return 0;      // data structure full 
        bitCount++; 
        if ((hpt->letter1) == data) 
          notFound = 0; 
        else 
        {      // doesn't match either letter0 or letter1 
          hpt = hpt->link; 
          if (hpt == 0) 
            return 0xFFFF; // illegal, end of tree? 
        } 
      } 
    } 
  } 
  return bitCount; 
} 
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// ********decode*************** 
// convert Huffman bit sequence to ASCII 
// output is a null-terminated ASCII string 
// will remove from the BitFIFO until it is empty 
// returns character count 
 
short decode(char* sPt) 
{ 
  short charCount = 0; // number of ASCII characters created 
  short notFound; 
  unsigned short data; 
  PNode hpt;           // pointer into Huffman tree 
 
  hpt = &root;         // start search at root 
  while (BitGet(&data)) 
  { 
    if (data == 0) 
    { 
      (*sPt) = hpt->letter0; 
       sPt++; 
       charCount++; 
       hpt = &root;    // start over and search at root 
    } 
    else  //data is 1 
      if (hpt->link == 0) 
      { 
        (*sPt) = hpt->letter1; 
        sPt++; 
        charCount++; 
        hpt = &root;   // start over and search at root 
      } 
      else       // doesn't match either letter0 or letter1 
        hpt = hpt->link; 
  } 
  (*sPt) = 0;  // null terminated 
  return charCount; 
} 

Listing 2.84 – A Huffman code implementation 
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2.10 Functions 

We have been using functions throughout this document, but have put off formal 

presentation until now because of their immense importance. The key to 

effective software development is the appropriate division of a complex problem 

into modules. A module is a software task that takes inputs and operates in a 

well-defined way to create outputs. In C, functions are our way to create 

modules. A small module may be a single function. A medium-sized module 

may consist of a group of functions together with global data structures, collected 

in a single file. A large module may include multiple medium-sized modules. A 

hierarchical software system combines these software modules in either a top-

down or bottom-up fashion. We can consider the following criteria when we 

decompose a software system into modules: 

1)  We wish to make the overall software system easy to understand; 

2)  We wish to minimize the coupling or interactions between modules; 

3)  We wish to group together I/O port accesses to similar devices; 

4)  We wish to minimize the size (maximize the number) of modules; 

5)  Modules should be able to be tested independently; 

6)  We should be able to replace / upgrade one module without affecting 

the others; 

7)  We would like to reuse modules in other situations. 

It is essential to divide a large software task into smaller, well-defined and easy 

to debug modules. 
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Figure 2.48 – A module has inputs and outputs 

As a programmer we must take special care when dealing with global variables 

and I/O ports. In order to reduce the complexity of the software we will limit 

access to global variables and I/O ports. 

The term function in C is based on the concept of mathematical functions. In 

particular, a mathematical function is a well-defined operation that translates a 

set of input values into a set of output values. In C, a function translates a set of 

input values into a single output value. We will develop ways for our C functions 

to return multiple output values and for a parameter to be both an input and an 

output parameter. As a simple example consider the function that converts 

temperature in degrees F into temperature in degrees C: 

short FtoC(short tempF) 
{  
  short tempC; 
 
  tempC = (5 * (tempF - 32)) / 9;   // conversion 
  return tempC; 
} 
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When the function's name is written in an expression, together with the values it 

needs, it represents the result that it produces. In other words, an operand in an 

expression may be written as a function name together with a set of values upon 

which the function operates. The resulting value, as determined by the function, 

replaces the function reference in the expression. For example, in the expression: 

// T+2 degrees Fahrenheit plus 4 degrees Centigrade  
FtoC(T + 2) + 4;     

the term FtoC(T + 2) names the function FtoC and supplies the variable T and 

the constant 2 from which FtoC derives a value, which is then added to 4. The 

expression effectively becomes: 

  ((5 * ((T + 2) - 32)) / 9) + 4;    

Although FtoC(T + 2) + 4 returns the same result as ((5 * ((T + 2) - 32)) / 

9) + 4, they are not identical. As will we see later, the function call requires the 

parameter (T + 2) to be passed on the stack and a subroutine call will be 

executed. 

2.10.1 Function Declarations 

Similar to the approach with variables, C differentiates between a function 

declaration and a function definition. A declaration specifies the syntax (name 

and input / output parameters), whereas a function definition specifies the actual 

program to be executed when the function is called. Many C programmers refer 

to a function declaration as a prototype. Since the C compiler is essentially a 

one-pass process (not including the preprocessor), a function must be declared 

(or defined) before it can be called. A function declaration begins with the type 

(format) of the return parameter. If there is no return parameter, then the type 

can be either specified as void or left blank. Next comes the function name, 

followed by the parameter list. In a function declaration we do not have to 

specify names for the input parameters, just their types. If there are no input 

parameters, then the type can be either specified as void or left blank. The 

following examples illustrate that the function declaration specifies the name of 

the function and the types of the function parameters. 
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//  declaration                    input            output 
void Init(void);                // none             none  
char InChar(void);              // none             8-bit 
void OutChar(char);             // 8-bit            none 
short InSDec(void);             // none             16-bit 
void OutSDec(short);            // 16-bit           none 
char Max(char, char);           // two 8-bit        8-bit 
int EMax(int, int);             // two 32-bit       32-bit 
void OutString(char*);          // pointer to 8-bit none 
char* alloc(int);               // 32-bit           pointer to 8-
bit 
int Exec(void(*fnctPt)(void));  // function pointer 32-bit 

Normally we place function declarations in the header file. We should add 

comments that explain what the function does. 

void InitUART(void);  // Initialize 38400 bits/sec 
char InChar(void);    // Reads in a character 
void OutChar(char);   // Output a character 
char UpCase(char);    // Converts lower case character to upper case 
void InString(char*, unsigned int); // Reads in a string of max length 

To illustrate some options when declaring functions, alternative declarations of 

these same five functions are given below: 

InitUART(); 
char InChar();  
void OutChar(char letter); 
char UpCase(char letter); 
InString(char* pt, unsigned int maxSize);  

Sometimes we wish to call a function that will be defined in another module. If 

we define a function as external, software in this file can call the function 

(because the compiler knows everything about the function except where it is), 

and the linker will resolve the unknown address later when the object codes are 

linked. 

extern void InitUART(void); 
extern char InChar(void);   
extern void OutChar(char);  
extern char UpCase(char);   
extern void InString(char*, unsigned int);  
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One of the powerful features of C is to define pointers to functions. A simple 

example follows: 

// pointer to a function with input and output 
int (*fp)(int); 
 
int fun1(int input) 
{ 
  return (input + 1);    // this adds 1 
} 
 
int fun2(int input) 
{ 
  return (input + 2);    // this adds 2 
} 
 
void Setup(void) 
{ 
  int data; 
 
  fp = &fun1;      // fp points to fun1 
  data = (*fp)(5); // data=fun1(5); 
  fp = &fun2;      // fp points to fun2 
  data = (*fp)(5); // data=fun2(5); 
} 

Listing 2.85 – Example of a function pointer 

The declaration of fp looks a bit complicated because it has two sets of 

parentheses and an asterisk. In fact, it declares fp to be a pointer to any function 

that takes one integer argument and returns an integer. In other words, the line 

int (*fp)(int); doesn't define the function. As in other declarations, the 

asterisk identifies the following name as a pointer. Therefore, this declaration 

reads "fp is a pointer to a function with a 32-bit signed input parameter that 

returns a 32-bit signed output parameter." Using the term object loosely, the 

asterisk may be read in its usual way as "object at." Thus we could also read this 

declaration as "the object at fp is a function with an int input that returns an 

int." 
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So why the first set of parentheses? By now you have noticed that in C 

declarations follow the same syntax as references to the declared objects. Since 

the asterisk and parentheses (after the name) are expression operators, an 

evaluation precedence is associated with them. In C, parentheses following a 

name are associated with the name before the preceding asterisk is applied to the 

result. Therefore, 

int *fp(int); 

would be taken as 

int *(fp(int)); 

saying that fp is a function returning a pointer to an integer, which is not at all 

like the declaration in Listing 2.85. 

2.10.2 Function Definitions 

The second way to declare a function is to fully describe it; that is, to define it. 

Obviously every function must be defined somewhere. So if we organize our 

source code in a bottom-up fashion, we would place the lowest level functions 

first, followed by the function that calls these low level functions. It is possible 

to define large projects in C without ever using a standard declaration (function 

prototype). On the other hand, most programmers like the top-down approach 

illustrated in the following example. This example includes three modules: the 

LCD interface, the COP functions, and some Timer routines. Notice the function 

names are chosen to reflect the module in which they are defined. If you are a 

C++ programmer, consider the similarities between this C function call 

LCD_Clear() and a C++ LCD class and a call to a member function LCD.Clear(). 

The *.h files contain function declarations and the *.c files contain the 

implementations. 

#include "LCD.h" 
#include "COP.h" 
#include "Timer.h" 
 
void main(void) 
{ 
  char letter; 
  short n = 0; 
 
  COP_Init(); 
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  LCD_Init(); 
  Timer_Init() 
  LCD_String("This is a LCD"); 
  Timer_MsWait(1000); 
  LCD_Clear(); 
  letter = 'a' - 1; 
  while(1) 
  { 
    if (letter == 'z') 
      letter = 'a'; 
    else 
      letter++; 
    LCD_PutChar(letter); 
    Timer_MsWait(250); 
    if (++n == 16) 
    { 
      n = 0; 
      LCD_Clear(); 
    } 
  } 
} 

Listing 2.86 – Modular approach to software development 

C function definitions have the following form: 

return_type Name(parameter list) 
{ 
  Compound Statement 
} 

Just like the function declaration, we begin the definition with the return_type, 

which is the data type of the value the function returns. Some functions perform 

the desired operations without returning a value. In this case, we can use void 

or leave it blank. Name is the name of the function. The parameter list is a list 

of zero or more names for the arguments that will be received by the function 

when it is called. The parameter list is also known as the formal parameters of 

the function. When a function is invoked, you pass a value to each parameter. 

This value is referred to as an actual parameter or argument. Both the type and 

name of each input formal parameter is required. MX passes the input parameters 

from left to right on the stack. If the last parameter has a simple type, it is not 

pushed but passed in a register. Function results are returned in registers, except 

if the function returns a result larger than 32 bits. Functions returning a result 

larger than 32 bits are called with an additional parameter. This parameter is the 

address where the result should get copied. 
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Since there is no way in C to declare strings, we cannot declare formal arguments 

as strings, but we can declare them as character pointers or arrays. In fact, C does 

not recognize strings, but arrays of characters. The string notation is merely a 

shorthand way of writing a constant array of characters. 

Furthermore, since an unsubscripted array name yields the array's address and 

since arguments are passed by value, an array argument is effectively a pointer 

to the array. It follows that the formal argument declarations arg[] and *arg are 

really equivalent. The compiler takes both as pointer declarations. Array 

dimensions in argument declarations are ignored by the compiler since the 

function has no control over the size of arrays whose addresses are passed to it. 

It must either assume an array's size, receive its size as another argument, or 

obtain it elsewhere. 

The last, and most important, part of the function definition above is Compound 

Statement. This is where the action occurs. Since compound statements may 

contain local declarations, simple statements, and other compound statements, it 

follows that functions may implement algorithms of any complexity and may be 

written in a structured style. Nesting of compound statements is permitted 

without limit. 

As an example of a function definition consider a function named add3 which 

takes three input arguments: 

int add3(int z1, int z2, int z3) 
{ 
  int y; 
  y = z1 + z2 + z3; 
  return y; 
} 

Listing 2.87 – Example function with 3 inputs and one output 



2.201 

PMcL Functions Index 

2020  2 - Embedded C 

2.10.3 Function Calls 

A function is called by writing its name followed by a parenthesized list of 

argument expressions. The general form is: 

Name(parameter list) 

where Name is the name of the function to be called. The parameter list 

specifies the particular input parameters used in this call. Each input parameter 

is in fact an expression. It may be as simple as a variable name or a constant, or 

it may be arbitrarily complex, including perhaps other function calls. Whatever 

the case, the resulting value is pushed onto the stack where it is passed to the 

called function. 

C programs evaluate arguments in any order, but push them onto the stack in the 

order left to right. MX allocates the stack space for the parameters at the start of 

the code that will make the function call. Then the values are stored into the pre-

allocated stack position before it calls the function. The input parameters are 

removed from the stack at the end of the function. The return parameter is 

generally located in a register. 

When the called function receives control, it refers to the first actual argument 

using the name of the first formal argument. The second formal argument refers 

to the second actual argument, and so on. In other words, actual and formal 

arguments are matched by position in their respective lists. Extreme care must 

be taken to ensure that these lists have the same number and type of arguments. 

Function calls can appear in expressions. Since expressions are legal statements, 

and since expressions may consist of only a function call, it follows that a 

function call may be written as a complete statement. Thus the statement: 

add3(--counter, time + 5, 3); 

is legal. It calls add3(), passing it three arguments: --counter, time + 5, and 3. 

Since this call is not part of a larger expression, the value that add3() returns will 

be ignored. 
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As a better example, consider: 

y = add3(--counter, time + 5, 3); 

which is also an expression. It calls add3() with the same arguments as before 

but this time it assigns the returned value to y. It is a mistake to use an assignment 

statement like the above with a function that does not return an output parameter. 

The ability to pass one function a pointer to another function is a very powerful 

feature of the C language. It enables a function to call any of several other 

functions with the caller determining which subordinate function is to be called.  

int fun1(int input) 
{ 
  return (input + 1);     // this adds 1 
} 
 
int fun2(int input) 
{ 
  return (input + 2);     // this adds 2 
} 
 
int execute(int (*fp)(int)) 
{ 
  int data; 
 
  data = (*fp)(5);        
  return data; 
} 
 
void main(void) 
{ 
  int result; 
 
  result = execute(&fun1); // result = fun1(5); 
  result = execute(&fun2); // result = fun2(5); 
} 

Listing 2.88 – Example of passing a function pointer 

Notice that fp is declared to be a function pointer. Also, notice that the 

designated function is called by writing an expression of the same form as the 

declaration. 
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2.10.4 Argument Passing 

Let us take a closer look at the matter of argument passing. With respect to the 

method by which arguments are passed, two types of subroutine calls are used 

in programming languages – call by reference and call by value. 

The call by reference method passes arguments in such a way that references to 

the formal arguments become, in effect, references to the actual arguments. In 

other words, references (pointers) to the actual arguments are passed, instead of 

copies of the actual arguments themselves. In this scheme, assignment 

statements have implied side effects on the actual arguments; that is, variables 

passed to a function are affected by changes to the formal arguments. Sometimes 

side effects are beneficial, and sometimes they are not. Since C supports only 

one formal output parameter, we can implement additional output parameters 

using call by reference. In this way the function can return parameters back using 

the reference. The function FIFO_Get, shown below, returns two parameters. The 

return parameter is an integer specifying whether or not the request was 

successful, and the actual data removed from the queue is returned via the call 

by reference. The calling program InChar passes the address of its local variable 

data. The assignment statement *datapt = FIFO[GetI++]; within FIFO_Get will 

store the return parameter into a local variable of InChar. Normally FIFO_Get 

does not have the scope to access local variables of InChar, but in this case 

InChar explicitly granted that right by passing a pointer to FIFO_Get. 

int FIFO_Get(char *datapt) 
{  
  if (Size == 0)  
    return 0;               // Empty if Size == 0 
  *datapt = FIFO[GetI++];   // Get data out of FIFO 
  Size--; 
  if (GetI == FIFO_SIZE) 
    GetI = 0;               // Wrap 
  return -1;                // Successful 
} 
 
char InChar(void) 
{ 
  char data; 
  while (!FIFO_Get(&data)); 
  return data; 
} 

Listing 2.89 – Multiple output parameters using call by reference 



2.204 

Index Functions PMcL 

2 - Embedded C  2020 

When we use the call by value scheme, the values, not references, are passed to 

functions. With call by value, copies are made of the parameters. Within a called 

function, references to formal arguments see copied values on the stack, instead 

of the original objects from which they were taken. At the time when the 

computer is executing within FIFO_Put() of the example below, there will be 

three separate and distinct copies of the 0x41 data (main, OutChar and FIFO_Put). 

int FIFO_Put(char data) 
{ 
  if (Size == FIFO_SIZE)  
    return 0;               // Failed, FIFO was full 
 
  Size++; 
  FIFO[PutI++] = data;      // Put data into FIFO 
  if (PutI == FIFO_SIZE) 
    PutI = 0;               // Wrap 
  return -1;                // Successful 
} 
 
void OutChar(char data) 
{   
  while (!FIFO_Put(data)); 
  UART2_C2 = 0xAC; 
} 
 
void main(void) 
{ 
  char data = 0x41; 
 
  OutChar(data); 
} 

Listing 2.90 – Call by value passes a copy of the data 

The most important point to remember about passing arguments by value in C is 

that there is no connection between an actual argument and its source. Changes 

to the arguments made within a function have no effect whatsoever on the objects 

that might have supplied their values. They can be changed at will and their 

sources will not be affected in any way. This removes a burden of concern for a 

programmer since they may use arguments as local variables without side 

effects. It also avoids the need to define temporary variables just to prevent side 

effects. 
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It is precisely because C uses call by value that we can pass expressions, not just 

variables, as arguments. The value of an expression can be copied, but it cannot 

be referenced since it has no existence in global memory. Therefore, call by 

value adds important generality to the language. 

Although the C language uses the call by value technique, it is still possible to 

write functions that have side effects; but it must be done deliberately. This is 

possible because of C's ability to handle expressions that yield addresses. Since 

any expression is a valid argument, addresses can be passed to functions. 

Since expressions may include assignment, increment, and decrement operators, 

it is possible for argument expressions to affect the values of arguments lying to 

their left or right (recall that C evaluates argument expressions in any order). 

Consider, for example: 

func(y = x + 1, 2 * y); 

If the arguments are evaluated left to right, then the first argument has the value 

x+1 and the second argument has the value 2*(x+1), but if the arguments are 

evaluated right to left, then the first argument has the value x+1 and the second 

argument has the value 2*y (whatever that may be). The order of evaluation of 

arguments is an example of unspecified behaviour in the C language. This is only 

an issue when the arguments consist of expressions that modify and use the same 

object. The safe way to write the function call is: 

y = x + 1; 

func(y, 2 * y); 

It is the programmer's responsibility to ensure that the parameters passed match 

the formal arguments in the function's definition. Some mistakes will be caught 

as syntax errors by the compiler, but this mistake is a common and troublesome 

problem for all C programmers. 

Occasionally, the need arises to write functions that work with a variable number 

of arguments. An example is printf() in the ANSI C library. To write a function 

with a variable number of arguments, you need to consult a reference on 

advanced C programming. 
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2.10.5 Private versus Public Functions 

For every function definition, MX generates an assembler directive declaring the 

function's name to be public. This means that every C function is a potential 

entry point and so can be accessed externally. One way to create private / public 

functions is to control which functions have declarations. Consider again the 

main program in Listing 2.86 shown earlier. Let’s look inside the Timer.h and 

Timer.c files. To implement private and public functions we place the 

function declarations of the public functions in the Timer.h file. 

void Timer_Init(void); 
void Timer_MsWait(unsigned int time); 

Listing 2.91 – Timer.h header file has public functions 

The implementations of all functions are written in the Timer.c file. The 

function TimerWait is private and can only be called by software inside the 

Timer.c file. We can apply this same approach to private and public global 

variables. Notice that in this case the global variable, TimerClock, is private and 

cannot be accessed by software outside the Timer.c file.  

static unsigned short TimerClock; // private global 
 
// public function 
void Timer_Init(void) 
{ 
  FTM0_MODE |= 0x01;  // Enable timer 
  FTM0_SC |= 0x01;    // timer/2 (500ns) 
  TimerClock = 2000;  // 2000 counts per ms 
} 
 
// private function 
static void TimerWait(unsigned short time) 
{ 
  FTM0_C5V = FTM0_CNT + TimerClock;  // 1.00ms wait 
  FTM0_CnSC(5) &= 0x80;              // clear C5F 
  while ((FTM0_CnSC(5) & 0x80) == 0); 
} 
 
// public function 
void Timer_MsWait(unsigned short time) 
{ 
  for (; time > 0; time--) 
    TimerWait(TimerClock); // 1.00ms wait 
} 

Listing 2.92 – Timer.c implementation file defines all functions 
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2.10.6 Finite State Machine using Function Pointers 

Now that we have seen how to declare, initialize and access function pointers, 

we can create very flexible finite state machines. In the finite state machine 

presented in Listing 2.74 and Listing 2.76, the output was a simple number that 

is written to the output port. In the next example, we will implement the exact 

same FSM, but in a way that supports much more flexibility in the operations 

that each state performs. In fact, we will define a general C function to be 

executed at each state. In this implementation the functions perform the same 

output as the previous FSM. 
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Figure 2.49 – Finite state machine 

Compare the following implementation to Listing 2.74, and see that the unsigned 

char out; constant is replaced with a void (*cmdPt)(void); function pointer. 

The three general functions DoStop(), DoTurn() and DoBend() are also added. 
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typedef const struct State 
{ 
  void (*cmdPt)(void);         // function to execute 
  unsigned short wait;         // Time (bus cycles) to wait 
  unsigned char andMask[4]; 
  unsigned char equMask[4]; 
  const struct State *next[4]; // Next states 
} TState; 
 
typedef TState* PState; 
 
#define Stop &FSM[0] 
#define Turn &FSM[1] 
#define Bend &FSM[2] 
 
void DoStop(void) 
{ 
  GPIOA_PDOR = 0x34; 
} 
 
void DoTurn(void) 
{ 
  GPIOA_PDOR = 0xB3; 
} 
 
void DoBend(void) 
{ 
  GPIOA_PDOR = 0x75; 
} 
 
TState FSM[3] = 
{ 
  { 
    &DoStop, 2000,   // stop 1 ms 
    {0xFF,   0xF0,   0x27,   0x00}, 
    {0x51,   0xA0,   0x07,   0x00}, 
    {Turn,   Stop,   Turn,   Bend} 
  }, 
  { 
    &DoTurn, 5000,   // turn 2.5 ms 
    {0x80,   0xF0,   0x00,   0x00}, 
    {0x00,   0x90,   0x00,   0x00}, 
    {Bend,   Stop,   Turn,   Turn} 
  }, 
  { 
    &DoBend, 4000,   // bend 2 ms 
    {0xFF,   0x0F,   0x01,   0x00}, 
    {0x12,   0x05,   0x00,   0x00}, 
    {Stop,   Stop,   Turn,   Stop} 
  } 
}; 

Listing 2.93 – Linked finite state machine structure stored in Flash 
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Compare the following implementation to Listing 2.76, and see that the 

GPIOA_PDOR = pt->out; assignment is replaced with a (*pt->cmdPt)(); function 

call. In this way, the appropriate function DoStop(), DoTurn() or DoBend() will 

be called. 

void Control(void) 
{ 
  PState pt; 
  unsigned char input; 
  unsigned short startTime; 
 
  FTM0_MODE |= 0x01;       // Enable timer 
  FTM0_SC |= 0x01;         // timer/2 (500ns) 
  GPIOA_PDDR = 0x000000FF; // PortA bits 7-0 are outputs 
  GPIOB_PDDR = 0x00000000; // PortB bits 7-0 are inputs 
  pt = stop;               // Initial State  
 
  while(1) 
  { 
    // 1) execute function 
    (*pt->cmdPt)(); 
    // Time (500 ns each) to wait 
    startTime = FTM0_CNT; 
    // 2) wait 
    while ((FTM0_CNT - startTime) <= pt->wait); 
    // 3) input 
    input = GPIOB_PDIR;             
    for (int i = 0; i < 4; i++) 
      if ((input & pt->andMask[i]) == pt->equMask[i]) 
      { 
        // 4) next depends on input 
        pt = pt->next[i];  
        i = 4; 
      } 
  } 
} 

Listing 2.94 – Finite state machine controller for K64 
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2.10.7 Linked List Interpreter using Function Pointers 

In the next example, function pointers are stored in a linked list. An interpreter 

accepts ASCII input from a keyboard and scans the list for a match. In this 

implementation, each node in the linked list has a function to be executed when 

the operator types the corresponding letter. The linked list LL has three nodes. 

Each node has a letter, a function and a link to the next node.  

// Linked List Interpreter 
typedef const struct Node 
{ 
  unsigned char letter;  
  void (*fnctPt)(void); 
  const struct Node *next; 
} TNode; 
 
typedef TNode* PNode; 
 
void CommandA(void) 
{ 
  OutString("\nExecuting Command a");  
} 
 
void CommandB(void) 
{ 
  OutString("\nExecuting Command b");  
} 
 
void CommandC(void) 
{ 
  OutString("\nExecuting Command c");  
} 
 
TNode LL[3] = 
{ 
  {'a', &CommandA, &LL[1]}, 
  {'b', &CommandB, &LL[2]}, 
  {'c', &CommandC, NULL} 
}; 
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void main(void) 
{ 
  PNode pt; 
  char string[40]; 
 
  UART_Init(); // Enable UART 
  OutString("\nEnter a single letter followed by <enter>");  
  while (1) 
  { 
    OutString("\n>");  
    InString(string, 1);  // first character is interpreted 
    pt = &LL[0];          // first node to check 
    while (pt) 
    { 
      if (string[0] == pt->letter) 
      { 
        pt->fnctPt(); // execute function 
        break;        // leave while loop 
      }        
      else 
      { 
        pt = pt->next; 
        if (pt == 0) 
          OutString(" Error"); 
      } 
    } 
  } 
} 

Listing 2.95 – Linked list implementation of an interpreter 

Compare the syntax of the function call, (*pt->cmdPt)();, in Listing 2.94, with 

the syntax in this example, pt->fnctPt();. In the MX compiler, these two 

expressions both generate code that executes the function.  
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2.11 Preprocessor Directives 

C compilers incorporate a preprocessing phase that alters the source code in 

various ways before passing it on for compiling. Four capabilities are provided 

by this facility in C. They are:  

 macro processing  

 conditional compiling  

 inclusion of text from other files  

 implementation-dependent features  

The preprocessor is controlled by directives which are not part of the C language. 

Each directive begins with a # character and is written on a line by itself. Only 

the preprocessor sees these directive lines since it deletes them from the code 

stream after processing them.  

Depending on the compiler, the preprocessor may be a separate program or it 

may be integrated into the compiler itself. MX has an integrated preprocessor 

that operates at the front end of its single pass algorithm.  

2.11.1 Macro Processing 

We use macros for three reasons: 

1) To save time we can define a macro for long sequences that we will need 

to repeat many times. 

2) To clarify the meaning of the software we can define a macro giving a 

symbolic name to a hard-to-understand sequence. The I/O port #define 

macros are good examples of this reason. 

3) To make the software easy to change, we can define a macro such that 

changing the macro definition automatically updates the entire software.  
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Macros define names which stand for arbitrary strings of text: 

#define Name CharacterString 

After such a definition, the preprocessor replaces each occurrence of Name 

(except in string constants and character constants) in the source text with 

CharacterString. As C implements this facility, the term macro is misleading, 

since parameterized substitutions are not supported. That is, CharacterString 

does not change from one substitution to another according to parameters 

provided with Name in the source text; it is simply a literal replacement of one 

set of characters with another. 

C accepts macro definitions only at the global level.  

The Name part of a macro definition must conform to the standard C naming 

conventions as described earlier. CharacterString begins with the first printable 

character following Name and continues through to the last printable character 

of the line or until a comment is reached. 

If CharacterString is missing, occurrences of Name are simply squeezed out of 

the text. Name matching is based on the whole name (up to 8 characters); part of 

a name will not match. Thus the directive: 

#define size 10 

will change: 

short data[size]; 

into: 

short data[10]; 

but it will have no effect on: 

short data[size1]; 

Replacement is also performed on subsequent #define directives, so that new 

symbols may be defined in terms of preceding ones.  

 



2.214 

Index Preprocessor Directives PMcL 

2 - Embedded C  2020 

The most common use of #define directives is to give meaningful names to 

constants; i.e. to define so-called manifest constants. The use of manifest 

constants in programs helps to ensure that code is portable by isolating the 

definition of these elements in a single header file, where they need to be 

changed only once. 

However, we may replace a name with anything at all: a commonly occurring 

expression or sequence of statements for instance. To disable interrupts during a 

critical section we could implement: 

#define ENTER_CRTITICAL() __asm("CPSID f"); 
#define EXIT_CRITICAL()   __asm("CPSIE f"); 
 
void function(void) 
{ 
  ... 
  ENTER_CRITICAL; // make atomic, entering critical section 
  // we have exclusive access to global variables 
  ... 
  EXIT_CRITICAL; // exit critical section 
} 

Listing 2.96 – Example of #define 

There is no restriction on what can go in a macro body.  Parentheses need not 

balance.  The body need not resemble valid C code (but if it does not, you may 

get error messages from the C compiler when you use the macro). 
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2.11.2 Conditional Compiling 

The preprocessing feature lets us designate parts of a program which may or may 

not be compiled depending on whether or not certain symbols have been defined. 

In this way it is possible to write into a program optional features which are 

chosen for inclusion or exclusion by simply adding or removing #define 

directives at the beginning of the program.  

When the preprocessor encounters  

#ifdef Name 

it looks to see if the designated name has been defined. If not, it throws away the 

following source lines until it finds a matching  

#else 

or  

#endif 

directive. The #endif directive delimits the section of text controlled by #ifdef, 

and the #else directive permits us to split conditional text into true and false 

parts. The first part (#ifdef...#else) is compiled only if the designated name 

is defined, and the second (#else...#endif) only if it is not defined.  

The converse of #ifdef is the  

#ifndef Name 

directive. This directive also takes matching #else and #ifndef directives. In 

this case, however, if the designated name is not defined, then the first 

(#ifndef...#else) or only (#ifndef...#endif) section of text is compiled; 

otherwise, the second (#else...#endif), if present, is compiled.  
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Nesting of these directives is allowed; and there is no limit on the depth of 

nesting. It is possible, for instance, to write something like  

#ifdef ABC 
... // ABC 
#ifndef DEF 
... // ABC and not DEF 
#else 
... // ABC and DEF 
#endif 
... // ABC 
#else 
... // not ABC 
#ifdef HIJ 
... // not ABC but HIJ 
#endif 
... // not ABC 
#endif 

Listing 2.97 – Examples on conditional compilation 

where the ellipses represent conditionally compiled code, and the comments 

indicate the conditions under which the various sections of code are compiled. 

A good application of conditional compilation is inserting debugging code. In 

this example the only purpose of writing to PORTC is to assist in performance 

debugging. Once the system is debugged, we can remove all the debugging code, 

simply by deleting the #define Debug line. 

#define Debug 
 
int Sub(int j) 
{ 
  int i; 
 
#ifdef Debug 
  GPIOC_PSOR = 0x01; // PC0 set when Sub is entered 
#endif 
  i = j + 1; 
#ifdef Debug 
  GPIOC_PCOR = 0x01; // PC0 cleared when Sub is exited 
#endif 
  return i; 
} 
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void ProgA(void) 
{ 
  int i; 
 
#ifdef Debug 
  GPIOC_PSOR = 0x02; // PC1 set when ProgA is entered 
#endif 
  i = Sub(5); 
  while (1) 
  { 
    i = Sub(i); 
  } 
} 
 
void ProgB(void) 
{ 
  int i; 
  
  i = 6; 
  ... 
#ifdef Debug 
  GPIOC_PCOR = 0x02; // PC1 cleared when ProgB is exited 
#endif 
} 

Listing 2.98 – Conditional compilation can help in debugging code 

2.11.3 Including Other Source Files 

The preprocessor also recognizes directives to include source code from other 

files. The two directives 

#include <Filename> 
#include "Filename" 

cause a designated file to be read as input to the compiler. The difference 

between these two directives is where the compiler looks for the file. The 

<Filename> version will search for the file in the standard include directory, 

while the "Filename" version will search for the file in the same directory as the 

original source file. The preprocessor replaces these directives with the contents 

of the designated files. When the files are exhausted, normal processing resumes. 

Filename follows the normal PC file specification format, including drive, path, 

filename, and extension. 
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2.11.4 Implementation-Dependent Features 

The #pragma directive is used to instruct the compiler to use pragmatic or 

implementation-dependent features. For example, in the GNU Compiler 

Collection (GCC) for ARM® processors, you can change the maximum 

alignment of members of structures and unions using the #pragma pack directive: 

#pragma pack(push) 
#pragma pack(1) 
 
typedef union 
{ 
  uint8_t bytes[5]; 
  struct 
  { 
    uint8_t byte1; 
    uint8_t byte2;  
    uint8_t byte3; 
    uint8_t byte4; 
    uint8_t byte5; 
  } packetStruct; 
} TPacket; 

The GCC compiler will then ensure that byte1, byte2, etc. are contiguous in 

memory, rather than aligned on 32-bit boundaries. In this way, we can use the 

union to access the same 5 bytes of memory via the array or by a unique name. 

Although GCC supports several types of pragmas (primarily in order to compile 

code originally written for other compilers), it does not recommend the use of 

pragmas for functions – instead function attributes are introduced by the 

__attribute__ keyword on a declaration, followed by an attribute specification 

inside double parentheses. 

For example, the function attribute interrupt is used to indicate that the 

specified function is an interrupt service routine. To declare an ISR for a UART, 

you would use: 

  void __attribute__ ((interrupt)) UART_ISR(void) 
  { 
    /* code goes here */ 
  } 

Listing 2.99 – Interrupt service routine as specified using GCC 
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2.12 Assembly Language Programming 

One of the main reasons for using the C language is to achieve portability. But 

there are occasional situations in which it is necessary to sacrifice portability in 

order to gain full access to the operating system or to the hardware in order to 

perform some interface requirement, or to maximize performance in time-

sensitive code. If these instances are kept to a minimum and are not replicated in 

many different programs, the negative effect on portability may be acceptable. 

There are two approaches to writing assembly language with GCC. The first 

method inserts assembly instructions directly into a C function using the 

__asm(string); feature. Everything within the string statement is assumed to 

be assembly language code and is sent straight to the output of the compiler 

exactly as it appears in the input. The second approach is to write an entire file 

in assembly language, which may include global variables and functions. In MX, 

we include assembly files by adding them to the project. Entire assembly files 

can also be assembled separately then linked at a later time to the rest of the 

program. The simple insertion method is discussed in this section. 

2.12.1 How to Insert Single Assembly Instructions 

To support this capability, GCC provides for assembly language instructions to 

be written into C programs anywhere a statement is valid. Since the compiler 

generates assembly language as output, when it encounters assembly language 

instructions in the input, it simply copies them directly to the output.  

A special directive delimits assembly language code. The following example 

inserts the assembly language instruction CPSID f (disable interrupts) into the 

program at that point. 

__asm("CPSID f"); 

A better way is to #define macros: 

#define INTR_OFF() __asm("CPSID f") 
#define INTR_ON()  __asm("CPSIE f") 
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The following function runs with interrupts disabled. 

void FIFO_Init(void) 
{ 
  INTR_OFF();      // make atomic, entering critical section 
  PutI=GetI=Size=0;// Empty when Size == 0 
  INTR_ON();       // end critical section 
} 

Listing 2.100 – Example of an assembly language macro 

Of course, to make use of the __asm feature, we must let the compiler know about 

the C variables modified by the instructions, the C expressions read by the 

instructions, and the registers or other values that are changed by the instructions. 

We also need to know how the compiler uses the CPU registers, how functions 

are called, and how the operating system and hardware works. It will certainly 

cause a programming error if your embedded assembly modifies the stack 

pointer, SP, for example.   

In GCC you can access a global or local variable directly using just its name: 

int Time; 
 
void Add1Time(void) 
{ 
   __asm (\ 
    "ldr  r3, %[input]\n\t"\ 
    "adds r2, r3, #1\n\t"\ 
    "str  r3, %[input]\n\t"\ 
    ::[input] "m" (Time)  \ 
    : "r2", "r3"); 
} 

Listing 2.101 – Assembly language access to a global variable 

For more information on this feature, see: 

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Extended-Asm 

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Extended-Asm
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2.13 Hardware Abstraction Layers 

A Hardware Abstraction Layer (HAL) is a set of routines in software that provide 

programs with access to hardware resources through programming interfaces. 

HALs allow programmers to write device-independent applications by providing 

standard software calls to hardware. 

For ARM® Cortex®-based processors, there is a HAL called the Cortex® 

Microcontroller Software Interface Standard (CMSIS). 

To quote from ARM: 

The CMSIS is a vendor-independent hardware abstraction layer for 

microcontrollers that are based on Arm® Cortex® processors. It defines 

generic tool interfaces and enables consistent device support. Its software 

interfaces simplify software re-use, reduce the learning curve for 

microcontroller developers, and improve time to market for new devices. 

The CMSIS provides interfaces to processor and peripherals, real-time 

operating systems, and middleware components. It includes a delivery 

mechanism for devices, boards, and software and enables the combination 

of software components from multiple vendors. 

CMSIS has been created to help the industry in standardization. It enables 

consistent software layers and device support across a wide range of 

development tools and microcontrollers. CMSIS is not a huge software layer that 

introduces overhead and does not define standard peripherals. The silicon 

industry can therefore support the wide variations of Cortex®-M processor-based 

devices with this common standard. 

This means that if you utilise the CMSIS HAL for various low-level functions, 

such as setting up and responding to interrupts or using the built-in SysTick,  

then your software will have a high degree of portability across the range of 

ARM® Cortex®-based microcontrollers. 

There are many individual HALs that support special features of the ARM® 

Cortex® architecture. For example, there is a HAL that supports the special 

digital signal processing instructions of the Cortex® M4/M7/M33/M35P – we 

can use this on the NXP K64 chips. 

For more information, see: 

https://developer.arm.com/tools-and-software/embedded/cmsis 

https://developer.arm.com/tools-and-software/embedded/cmsis
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Introduction 

You are studying at your desk at home. The phone rings (an interrupt). You stop 

studying and answer the phone (you accept the interrupt). It is your friend, who 

wants to know the URL for a particular Freescale datasheet relating to the K64 

so she can look up some information required to complete a laboratory 

assignment. You give her the URL (you process the interrupt request 

immediately). You then hang up and go back to studying. Note that the additional 

time it will take you to complete your study is miniscule, yet the amount of time 

for your friend to complete her task may be significantly reduced (she didn’t 

have to wait until you were free). This simple example clearly illustrates how 

interrupts can drastically improve response time in a real-time system. 

Interrupts are an essential feature of a microcontroller. They enable the software 

to respond, in a timely fashion, to internal and external hardware events. For 

example, the reception and transmission of bytes via the UART is more efficient 

(in terms of processor time) using interrupts, rather than using a polling method. 

Performance is improved because tasks can be given to hardware modules which 

“report back” when they are finished. 

Using interrupts requires that we first understand how a CPU processes an 

interrupt so that we can configure our software to take advantage of them. 

5.1 Exceptions 

Exceptions are events that cause changes to program flow. When one happens, 

the processor suspends the current executing task and executes a part of the 

program called an exception handler. After the execution of the exception 

handler is completed, the processor then resumes normal program execution. In 

the ARM® architecture, interrupts are one type of exception. 

 

An interrupt is a 
request by another 
module for access 
to CPU processing 
time 

Interrupts are 
essential features of 
real-time systems 
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5.2 Interrupts 

An interrupt is an event triggered inside the microcontroller, usually by internal 

or external hardware, and in some cases by software. The exception handler for 

an interrupt is referred to as an interrupt service routine (ISR). On completion 

of the ISR, software execution returns to the next instruction that would have 

occurred without the interrupt. 
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Figure 5.1 

A thread is defined as a sequence of instructions that has its own program 

counter, stack and registers; it shares its address space and system resources with 

other threads. By contrast, a process has its own virtual address space (stack, 

data, code) and system resources (e.g. open files). Processes are normally used 

in systems with an operating system, whereas threads are easily implemented in 

simple embedded systems using interrupt service routines. 

In the K64 microcontroller, the hardware automatically pushes the contents of 

most of the internal registers onto the stack, thus creating the correct 

environment for a new thread invoked by an ISR. 

An interrupt causes 
the main thread to 
be suspended, and 
the interrupt thread 
is run 
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5.2.1 Using Interrupts 

Each potential interrupt source has a separate arm bit, e.g. RIE (the UART 

receive interrupt enable bit). The software must set the arm bits for those devices 

from which it wishes to accept interrupts, and deactivate the arm bits within 

those devices from which interrupts are not to be allowed. After reset, all the 

interrupt arm bits are set to deactivate the corresponding interrupt. 

Each potential interrupt source has a separate flag bit, e.g. RDRF (the UART 

receive data register full flag). The hardware sets the flag when it wishes to 

request an interrupt. The software must clear the flag in the ISR to signify it has 

handled the interrupt request, and to allow the device to again trigger an 

interrupt. 

There are a number of special registers in the MCU that contain the processor 

status and define the operation states and interrupt/exception masking. Special 

registers are not memory mapped, which means special assembly language 

instructions are required to access them. 

The PRIMASK register is used for exception or interrupt masking. It is a 1-bit 

wide interrupt mask register. When set, it blocks all exceptions (including 

interrupts) apart from the Non-Maskable Interrupt (NMI) and the HardFault 

exception.  

Software enables all armed interrupts by setting PRIMASK = 0, 

(“__asm("cpsie i");” in C), and disables all interrupts by setting 

PRIMASK = 1 (“__asm("cpsid i");” in C). PRIMASK = 1 does not dismiss 

the interrupt requests, rather it postpones them. 

Four conditions must be true simultaneously for an interrupt to occur: 

 The hardware peripheral’s interrupt arm bit must be set (by software). 

 The hardware peripheral’s interrupt flag must be set (by hardware). 

 The interrupt has a higher priority than any executing ISR, and the 

PRIMASK register is 0 (interrupts are enabled). 

 The interrupt source is enabled in the Nested Vectored Interrupt 

Controller (NVIC). 
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The following figure shows the hardware arrangement for interrupt generation. 
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Figure 5.2 

5.2.2 Interrupt Processing 

When an interrupt occurs, the following sequence is followed. 

1. The execution of the main program is suspended by the hardware: 

 the current instruction is finished 

 all the registers are pushed onto the stack 

 the vector address is retrieved from the vector table and placed in the 

program counter, PC 

2. The interrupt service routine, or foreground thread, is executed. The ISR: 

 clears the flag that requested the interrupt 

 performs the necessary operations 

 communicates with other threads using global variables 

3. The main program is resumed when the ISR executes the EXC_RETURN 

instruction: 

 Hardware pulls all the registers from the stack, including the PC, so that 

the program continues from the point where it was interrupted. 
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5.2.3 Interrupt Polling 

Some interrupts share the same interrupt vector. For example, the reception and 

transmission of a byte via the UART leads to just one interrupt, and there is one 

vector associated with it. In Figure 5.2, the two interrupt sources are ORed 

together to create one interrupt request. In such cases, the ISR is responsible for 

polling the status flags to see which event actually triggered the interrupt. Care 

must be taken because both flags may be set, and only the hardware events that 

are enabled must be serviced by the software. 

For example, the UART shares an interrupt for transmit and receive operations. 

Therefore, in the ISR, we would need code to respond to either of those events, 

but only if the corresponding interrupt enable bit is enabled: 

... 
// Receive a character 
if (UART0->C2 & UART_C2_RIE_MASK) 
{ 
  // Clear RDRF flag by reading the status register 
  if (UART0->S1 & UART_S1_RDRF_MASK) 
    // Do something with the received byte 
    ... 
} 
 
// Transmit a character 
if (UART0->C2 & UART_C2_TIE_MASK) 
{ 
  // Clear TDRE flag by reading the status register 
  if (UART0->S1 & UART_S1_TDRE_MASK) 
  { 
    // Get a new byte and transmit it 
   ... 

Listing 5.1 – Polling the Source of an Interrupt in an ISR 

 



5.7 

PMcL The Vector Table Index 

2020  5 - Interrupts 

5.3 The Vector Table 

When an exception occurs, the processor will need to locate the starting point of 

the corresponding exception handler. A Cortex®-M processor will automatically 

locate the starting point of the exception handler from a vector table in the 

memory. The vector table is an array of word data inside the system memory, 

with each entry in the table giving the starting address of the exception type. 

The vector table starts at memory address 0. The first entry is special – it is not 

an address but the initial value of the stack pointer. It is needed because some 

exceptions such as the NMI could happen as the processor just comes out of reset 

and before any other initialization steps are executed. 
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Figure 5.3 – Vector Table 
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5.4 Interrupt Service Routines (ISRs) 

An interrupt service routine (ISR) is a section of code specifically designed to 

respond to the interrupt request. When the CPU begins to service an interrupt, 

the instruction queue is refilled, a return address calculated, and then the return 

address and the contents of the CPU registers are automatically stacked as shown 

below: 
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Figure 5.4 – Exception Stack Frame on Entry to Interrupts 

Execution continues at the address pointed to by the vector for the highest-

priority interrupt that was pending at the beginning of the interrupt sequence – 

this is the interrupt service routine. If an interrupt source of higher priority occurs 

during execution of the ISR, the ISR will itself be interrupted – this is called 

interrupt nesting. 

The body of an interrupt service routine varies according to the source of the 

interrupt. For an interrupt service routine written to handle external events, they 

typically respond to the interrupt by retrieving or sending external data, e.g. the 

reception of a byte of data via the UART is normally handled via an ISR which 

places the received byte into a FIFO for later processing by the main function. 

At the end of the interrupt service routine, an EXC_RETURN instruction restores 

context from the stacked registers, and normal program execution resumes 

(which could be recognition of another interrupt of lower priority). 

A higher priority 
exception pre-empts 
a currently 
executing exception 
handler – this is 
called a nested 
exception 
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5.4.1 Declaring Interrupt Service Routines in C for Generic Processors 

In GNU C, you use function attributes to declare certain things about functions 

called in your program which help the compiler optimize calls and check your 

code more carefully. You can also use attributes to control memory placement, 

code generation options or call/return conventions within the function being 

annotated. Many of these attributes are target-specific. For example, many 

targets support attributes for defining interrupt handler functions, which 

typically must follow special register usage and return conventions.  

Function attributes are introduced by the __attribute__ keyword on a 

declaration, followed by an attribute specification inside double parentheses. 

In the GNU Compiler Collection (GCC) for ARM® processors, the function 

attribute interrupt is used to indicate that the specified function is an 

interrupt service routine. For example, to declare an ISR for a UART, you would 

use: 

  void __attribute__ ((interrupt)) UART_ISR(void) 
  { 
    /* code goes here */ 
  } 

The interrupt function attribute for the ISR is really only needed for 

previous generations of ARM® processors, since the Cortex®-M has a special 

hardware instruction for exception return. 
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5.4.2 Declaring Interrupt Service Routines in C for ARM® Cortex®-M Processors 

In some processor architectures, a special instruction is used for exception return. 

However, this means that the exception handlers cannot be written and compiled 

as normal C code. In ARM® Cortex®-M processors, the exception return 

mechanism is triggered using a special return address called EXC_RETURN. 

This value is generated at exception entrance and is stored in the Link Register 

(LR). The LR is a register normally used to hold a return address. When the 

special value of LR is written to the Program Counter (PC) it triggers the 

exception return sequence. When the exception return mechanism is triggered, 

the processor accesses the previously stacked register values in the stack memory 

(that were placed there during exception entrance) and restores them back to the 

register bank. This process is called unstacking. 

The use of the EXC_RETURN value for triggering exception returns allows 

exception handlers (including interrupt service routines) to be written as normal 

C functions. 
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5.4.1 Specifying an ISR Address in the Vector Table 

MCUXpresso declares a vector table in the file startup_mk64f12.c in the 

startup folder. The vector table is declared as an array of pointers to functions 

that take void and return void (ISRs are never called by a program, so they 

don’t take arguments, and they don’t return values). The array lists the exception 

handlers in numerically ascending order according to ARM’s NVIC 

documentation. The linker will place the array of function pointers at the 

memory location corresponding to the actual vector table, which starts at 

0x00000000. An extract from the vector table as declared in MCUXpresso is 

shown below: 

... 
UART0_LON_IRQHandler,    // 46 : UART0 LON interrupt 
UART0_RX_TX_IRQHandler,  // 47 : UART0 Receive/Transmit interrupt 
UART0_ERR_IRQHandler,    // 48 : UART0 Error interrupt 
UART1_RX_TX_IRQHandler,  // 49 : UART1 Receive/Transmit interrupt 
UART1_ERR_IRQHandler,    // 50 : UART1 Error interrupt  
... 

Listing 5.2 – Vector Table Extract Showing Interrupt Handlers 

The vector number for a particular interrupt source is given in the comment, 

along with its name, which are documented in Table 3-5 of the K64 Sub-Family 

Reference Manual. 

Since MCUXpresso has already declared a vector table, we need a way of 

overwriting the pre-declared interrupt handler with our own. If you look in the 

startup_mk64f12.c file, you will see the pre-declared interrupt handlers 

declared as: 

... 
WEAK void UART0_LON_IRQHandler(void); 
WEAK void UART0_RX_TX_IRQHandler(void); 
WEAK void UART0_ERR_IRQHandler(void); 
WEAK void UART1_RX_TX_IRQHandler(void); 
WEAK void UART1_ERR_IRQHandler(void); 
... 

WEAK is a macro which expands as __attribute__ ((weak)). Thus, the pre-

declared interrupt handlers can easily be overridden simply by declaring our 

own “strong” interrupt handler. During linking, our “strong” interrupt handler 

will override the “weak” one of the same name. 
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5.5 Enabling and Disabling Interrupts 

Interrupts can be enabled and disabled with functions defined in the 

fsl_common.h file which you can include by placing #include 

”fsl_common.h” in your main file. The functions are: 

static inline uint32_t DisableGlobalIRQ(void) 
static inline void EnableGlobalIRQ(uint32_t primask) 

If you delve into the functions, which in turn call CMSIS provided functions, 

you will eventually come to some assembly language. The assembly language 

instruction cpsie stands for Change Processor State Interrupt Enable. The i 

parameter refers to the single-bit PRIMASK register. Some other 

implementations of disabling/enabling global interrupts use the f parameter 

which refers to the single-bit “fault mask” register FAULTMASK. This register is 

similar to PRIMASK, but it also blocks the HardFault exception. 

The above functions are meant to be used in pairs. The return value of 

DisableGlobalIRQ(void) is the current value of the PRIMASK register. This 

should be used in the call to EnableGlobalIRQ(uint32_t primask). The reason 

for this paired nature and the local storage of the PRIMASK register is so that 

paired calls can be nested. 

Interrupts are enabled by default on reset, so it is necessary to disable them 

before you embark on peripheral module initialization – so that no inadvertent 

interrupts occur whilst you set up the hardware. You should then enable 

interrupts before the main loop of your program: 

uint32_t priMask; 
 
priMask = DisableGlobalIRQ(); 
FreedomInit(); 
EnableGlobalIRQ(priMask); 
while (1) 
{ 
  /* Main loop */ 
} 
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5.5.1 Interrupt Latency 

Interrupts cannot disturb an instruction in progress, and thus are only recognized 

between the execution of two instructions (apart from special instructions on the 

K64 which are designed to be interrupted). Therefore the maximum latency from 

interrupt request to completion of the hardware response consists of the 

execution time of the slowest instruction plus the time required to complete the 

memory transfers required by the hardware response. 

5.6 Interrupt Priority 

Each exception (including interrupts) has a priority level where a smaller number 

is a higher priority and a larger number is a lower priority. 

In order to allow more flexible interrupt masking, the ARMv7-M architecture 

provides a special register called BASEPRI, which masks exceptions or 

interrupts based on priority level. The K64 has sixteen programmable exception 

priority levels (4-bit width). When BASEPRI is set to 0, it is disabled. When it 

is set to a non-zero value, it blocks exceptions (including interrupts) that have 

the same or lower priority level, while still allowing exceptions with a higher 

priority level to be accepted by the processor. By default, BASEPRI is 0, which 

means the masking (disabling of exceptions / interrupts) is not active. 

In many cases, rather than simply disabling all interrupts to carry out a certain 

time-sensitive task, you only want to disable interrupts with priority lower than 

a certain level. In this case, you write the required masking priority level to the 

BASEPRI register. 

When you enable an interrupt source in your application, you get to decide on 

its priority level (0-15). Some of the exceptions (reset, NMI and HardFault) have 

fixed priority levels. Their priority levels are represented with negative numbers 

to indicate that they are of higher priority than other exceptions. 
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5.7 The Nested Vectored Interrupt Controller (NVIC) 

All Cortex®-M processors provide a Nested Vectored Interrupt Controller 

(NVIC) for interrupt handling. The NVIC receives interrupt and exception 

requests from various sources: 
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Figure 5.5 – The Nested Vectored Interrupt Controller 

The K64 supports up to 240 interrupt requests (IRQs), a Non-Maskable Interrupt 

(NMI), a System Tick (SysTick) timer interrupt, and a number of system 

exceptions. Most of the IRQs are generated by peripherals such as timers, I/O 

ports, and communication interfaces (e.g. UART). The NMI is usually generated 

from peripherals like a watchdog timer or Brown-Out Detector (BOD). The rest 

of the exceptions are from the processor core. Interrupts can also be generated 

using software. 

There are various status attributes applicable to each interrupt: 

 disabled (default) or enabled 

 pending (a request is waiting to be served) or not pending 

 active (being served) or inactive 

To support this, the NVIC contains programmable registers for interrupt enable 

control, pending status, and read-only active status bits. 
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5.7.1 Pending Status 

The pending status of the interrupts are stored in programmable registers in the 

NVIC. When an interrupt input of the NVIC is asserted, it causes the pending 

status of the interrupt to be asserted. The pending status remains high even if the 

interrupt request is de-asserted. 

The pending status means it is put into a state of waiting for the processor to 

serve the interrupt. In some cases, the processor serves the request as soon as an 

interrupt becomes pending. However, if the processor is already serving another 

interrupt of higher or equal priority, or if the interrupt is masked by one of the 

interrupt masking registers (e.g. PRIMASK), the pended request will remain until 

the other interrupt service routine is finished, or when the interrupt masking is 

cleared. 

When the processor starts to process an interrupt request, the pending status of 

the interrupt is cleared automatically. 

The pending status of interrupts are stored in interrupt pending status registers, 

which are accessible from software code. Therefore, you can clear the pending 

status of an interrupt or set it manually. If an interrupt arrives when the processor 

is serving another higher-priority interrupt and the pending status is cleared 

before the processor starts responding to the pending request, the request is 

cancelled and will not be served. 

The pending status of an interrupt can be set even when the interrupt is disabled. 

In this case, when the interrupt is enabled later, it can be triggered and get served. 

In some cases this might not be desirable, so in this case you will have to clear 

the pending status manually before enabling the interrupt in the NVIC. 
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5.7.2 NVIC Registers for Interrupt Control 

There are a number of registers in the NVIC for interrupt control (exception type 

16 up to 255). By default, after a system reset, all interrupts: 

 are disabled (enable bit = 0) 

 have priority level of 0 (highest programmable level) 

 have their pending status cleared 

Interrupt Enable Registers 

The Interrupt Enable register is programmed through two addresses. To set the 

enable bit, you need to write to the NVIC’s Set Enable Register, NVICISERx; to 

clear the enable bit, you need to write to the NVIC’s Clear Enable Register 

NVICICERx. In this way, enabling or disabling an interrupt will not affect other 

interrupt enable states. The NVICISERx / NVICICERx registers are 32-bits wide; 

each bit represents one interrupt input. 

The registers use a write-1-to-enable and write-1-to-clear policy, both registers 

reading back the current enabled state of the corresponding 32 interrupts. As 

there are more than 32 external interrupts in the Cortex®-M4 processor, there is 

more than one NVICISERx and NVICICERx register. 

When an interrupt is disabled, interrupt assertion causes the interrupt to become 

pending, but the interrupt cannot become active. If an interrupt is active when it 

is disabled, it remains in the active state until this is cleared by a reset or an 

exception return. Clearing the enable bit prevents any new activation of the 

associated interrupt. 
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Interrupt Pending Registers 

The interrupt-pending status can be accessed through the Interrupt Set Pending 

(NVICISPx) and Interrupt Clear Pending (NVICICPx) registers. Similarly to the 

enable registers, there is more than one pending ISP and ICP register. 

The values of the pending status registers can be changed by software, so you 

can cancel a current pended exception through the NVICICPx register, or generate 

software interrupts through the NVICISPx register. 

The registers use a write-one-to-enable and write-one-to-clear policy, and a read 

of either register returns the current pending state of the corresponding 32 

interrupts. Writing 1 to a bit in the Clear-Pending Register has no effect on the 

execution status of an active interrupt. 

Interrupt Active Registers 

Active bit status is provided to enable software to determine whether an interrupt 

is inactive, active, pending, or active and pending The interrupt-active status can 

be accessed through the Interrupt Active Bit (NVICIABRx) registers. Similarly to 

the pending registers, there is more than one IAB register. 

Interrupt Priority-Level Registers 

Each interrupt has an associated interrupt priority-level register (IPR). The 16 

priority levels in the K64 are represented in the upper 4 bits of an IPR. The 

priority-level registers are generally accessed as 32-bit words, which means each 

NVICIPRx register holds 4 IRQ priorities. 

CMSIS Supporting Functions 

CMSIS implements functions to support NVIC operations. For example, we will 

often be using the following functions when setting up hardware interrupts: 

void __NVIC_ClearPendingIRQ(IRQn_Type IRQn); 
void __NVIC_EnableIRQ(IRQn_Type IRQn); 

The parameter passed to these functions is the interrupt request number (defined 

in the MK64F12.h file) corresponding to Table 3-5 of the K64 Sub-Family 

Reference Manual. 
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EXAMPLE 5.1 Real-Time Interrupt using the Low Power Timer 

Suppose we wish to make a simple application using the low-power timer 

interrupt to generate pulses on Port A, bits 0 and 1 (the pulses on these output 

pins could be used to keep track of the elapsed time by an external counter, or 

for viewing interrupt processing time on a DSO, for example). 

The code below shows a simple scheme that shows the duration of the ISR and 

the timing operation of the main loop. 

 

const gpio_pin_config_t PORTD_GPIO_PIN_CONFIG = 
{ 
  .pinDirection = kGPIO_DigitalInput, 
  .outputLogic = 0U 
}; 
 
const port_pin_config_t PORTD_PORT_PIN_CONFIG = 
{ 
  // Internal pull-up/down resistor is disabled 
  .pullSelect = kPORT_PullDisable, 
  // Slow slew rate is configured 
  .slewRate = kPORT_SlowSlewRate, 
  // Passive filter is disabled 
  .passiveFilterEnable = kPORT_PassiveFilterDisable, 
  // Open drain is disabled 
  .openDrainEnable = kPORT_OpenDrainDisable, 
  // Low drive strength is configured 
  .driveStrength = kPORT_LowDriveStrength, 
  // Pin is configured as PTB22 
  .mux = kPORT_MuxAsGpio, 
  // Pin Control Register fields [15:0] are not locked 
  .lockRegister = kPORT_UnlockRegister 
}; 
 
static uint32_t Count, Ack; 
 

  

Code to generate 
and respond to real-
time interrupts 
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/*! @brief Initializes PORTD bits 1-0. 
 * 
 */ 
void PORTD_Init(void) 
{ 
  // Enable clock gate for Port D to enable pin routing 
  CLOCK_EnableClock(kCLOCK_PortD); 
 
  // Set up PORTD bits 0-1 
  for (uint32_t bitNb = 0; bitNb < 2; bitNb++) 
  { 
    // Initialize GPIO functionality 
    // (set the data direction and output default value) 
    GPIO_PinInit(GPIOD, bitNb, &PORTD_GPIO_PIN_CONFIG); 
    // Set up pin configuration 
    PORT_SetPinConfig(PORTD, bitNb, &PORTD_PORT_PIN_CONFIG); 
  } 
} 
 
/*! @brief Initializes the low power timer. 
 * 
 */ 
void LPTMR_Init(void) 
{ 
  // Enable clock gate to LPTMR module 
  CLOCK_EnableClock(kCLOCK_Lptmr0); 
 
  // Disable the LPTMR while we set up 
  LPTMR0->CSR &= ~LPTMR_CSR_TEN_MASK; 
  // Enable LPTMR interrupts 
  LPTMR0->CSR |= LPTMR_CSR_TIE_MASK; 
  // Reset the LPTMR free running counter whenever 
  //  the 'counter' equals 'compare' 
  LPTMR0->CSR &= ~LPTMR_CSR_TFC_MASK; 
  // Set the LPTMR as a timer rather than a counter 
  LPTMR0->CSR &= ~LPTMR_CSR_TMS_MASK; 
 
  // Bypass the prescaler 
  LPTMR0->PSR |= LPTMR_PSR_PBYP_MASK; 
  // Select the clock source 
  LPTMR0->PSR |= LPTMR_PSR_PCS(1); 
 
  // Set compare value – 1000 ticks of the 1 kHz clock = 1s 
  LPTMR0->CMR = LPTMR_CMR_COMPARE(1000); 
 
  // Initialize NVIC - see IRQn_Type in MK64F12.h 
  // Clear any pending interrupts on port 
  NVIC_ClearPendingIRQ(LPTMR0_IRQn); 
  // Enable interrupts on port 
  NVIC_EnableIRQ(LPTMR0_IRQn); 
 
  //Turn on LPTMR and start counting 
  LPTMR0->CSR |= LPTMR_CSR_TEN_MASK; 
} 
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/*! @brief Low power timer interrupt handler. 
 * 
 */ 
void LPTMR0_IRQHandler(void) 
{ 
  // Acknowledge interrupt, clear interrupt flag 
  LPTMR0->CSR |= LPTMR_CSR_TCF_MASK; 
  // Set bit 0 
  GPIOD->PSOR = 0x00000001; 
  // Software handshake – means LPTMR interrupt happened 
  if (Ack == 1) 
    Ack = 0; 
  // Number of interrupts 
  Count++; 
  // Clear bit 0 
  GPIOD->PCOR = 0x00000001; 
} 
 
/*! 
 * @brief Main function 
 */ 
int main(void) 
{ 
  BOARD_InitPins(); 
  BOARD_InitBootClocks(); 
  // Globally disable interrupts while we set up 
  uint32_t priMask = DisableGlobalIRQ(); 
  PORTD_Init(); 
  LPTMR_Init(); 
  // Interrupt counter 
  Count = 0; 
  // Foreground is ready 
  Ack = 1; 
  // Globally enable interrupts 
  EnableGlobalIRQ(priMask); 
  for (;;) 
  { 
    if (Ack == 0) 
    { 
      Ack = 1; 
      // Toggle bit 1 
      GPIOD->PTOR = 0x00000002; 
    } 
  } 
} 
 

Note the name of the low power timer interrupts service routine, void 

LPTMR0_IRQHandler(void),  is the same as that already listed in the vector table 

in startup_mk64f12.c. The linker will automatically override the “weak” 

pre-declared ISR with our one. Thus, our ISR is “injected” into the vector table. 
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The figure below gives a flow chart of what is happening. 
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Flowchart for simple 
real-time interrupt 
program 
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5.8 Foreground / Background Threads 

In many systems where response time is critical, it is common to organize the 

program as a foreground / background system, as shown below. 
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Figure 5.6 

Most of the actual work is performed in the “foreground”, implemented as one 

or more interrupt service routines with each ISR processing a particular hardware 

event. This allows the system to respond to external events with a predictable 

amount of latency. To the extent that the external events are independent, there 

may be little or no communication between the various ISRs. 

The main program performs the necessary initialization and then enters the 

“background” portion of the program, which is often nothing more than a simple 

loop that processes non-critical tasks and waits for interrupts to occur. Examples 

of background processing include: processing data from an input device, 

creating data for an output device, making calculations based on analog-to-

digital conversion results, determining the next digital-to-analog output, and 

updating a display seen by human eyes. 

  

Organization of a 
foreground / 
background system 
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5.9 Serial Communication Interface using Interrupts 

Consider the common case of an application that uses the UART. The UART 

hardware receives characters at an asynchronous rate. In order to avoid loss of 

data in periods of high activity, the characters need to be stored in a FIFO buffer. 

The background task (main program) can process the characters at a rate which 

is independent of the rate at which the characters arrive. It must process the 

characters at an average rate which is faster than the average rate at which they 

can arrive, otherwise the FIFO buffer will become full and data will be lost. In 

other words, the buffer allows the input data to arrive in bursts, and the main 

program can access them when it is ready. 

The following figure shows the situation for character reception. 
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Figure 5.7 

An interrupt-driven 
input routine 
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The structure for interrupt-driven character transmission is similar, except for 

one minor detail which must be resolved. Output device interrupt requests come 

in two varieties – those that request an interrupt on the transition to the ready 

state, and those that request an interrupt when they are in the ready state. 

5.9.1 Output Device Interrupt Request on Transition to Ready 

In this case, an output device requests an interrupt when it finishes processing 

the current output to indicate that it is now ready for the next output. In other 

words, the output ISR is invoked only when the output device transitions from 

a “busy” condition to a “ready” condition. In the context of serial port 

transmission, this creates two problems: 

 When the background thread puts the first byte into the FIFO buffer, the 

output device is idle and already in the “ready” state, so no interrupt 

request from the output device is about to occur. The output ISR will not 

be invoked and the data will not be removed from the buffer. 

 If somehow started, the “interrupt – FIFO_Get – output” cycle will repeat 

as long as there is data in the buffer. However, if the output device ever 

becomes ready when the buffer is empty, no subsequent interrupt will 

occur to remove the next byte placed in the buffer. 

In these situations, the hardware normally provides a mechanism to determine 

whether or not the output device is busy processing data, such as a flag in a 

device status register. In these cases, the main work of the ISR should be placed 

in a separate function (e.g. SendData) that actually outputs the data. 

The background thread checks the output busy flag every time it writes data into 

the buffer. If the device is busy, then a device ready interrupt is expected and 

nothing needs to be done; otherwise, the background thread arms the output and 

calls SendData to “kick start” the output process. 

The SendData routine is responsible for retrieving the data from the buffer and 

outputting it. If there is no more data in the buffer, then it must disarm the output 

to prevent further interrupts. 

Output devices need 
to be kick started 
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The flowchart given below illustrates the process. 
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Kick starting an 
interrupt-driven 
output routine for a 
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5.9.2 Output Device Interrupt Request on Ready 

In this case, an output device sets its interrupt request flag when it is idle and 

ready for output (this will be the case after a reset condition, too). This means 

that upon initially arming the interrupt for such a device, an ISR will be invoked 

immediately. In the context of serial port transmission this creates two problems: 

 How and when do we generate the first interrupt? 

 What do we do if the device is ready but there is no data to output? 

The technique to handle this type of interrupt is to modify both the OutChar 

routine and the ISR. The UART transmit interrupt is armed after every FIFO_Put 

(if the UART transmit interrupt were already armed, then rearming would have 

no effect). If the transmit FIFO is empty, then the ISR should disarm the transmit 

interrupt. 

The flowchart given below illustrates the process. 
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5.10 Communicating Between Threads 

Communication between threads, without the support of an operating system, is 

accomplished with global variables. This leads to a problem – two (or more) 

threads may be trying to access and operate on the same variable at the same 

time. For example, in a FIFO buffer implementation for sending a byte out the 

serial port, the background thread (main) calls TxFIFO_Put to place a character 

into the buffer. This is a safe operation, because the byte is added to the end of 

the buffer. However, if the TxFIFO is keeping track of the number of bytes in the 

buffer with a global variable called NbBytes, then it must read, increment and 

write to this variable. A problem arises if a foreground thread (ISR) interrupts 

the background thread in the middle of the read-modify-write access to the 

global variable – erroneous values of NbBytes can result. 

A critical section of code is a sequence of program instructions that must not be 

interrupted if erroneous operation is to be avoided. A critical section must 

prevent access to a global variable by more than one thread. 

The solution to this simple problem is to implement access to NbBytes as an 

atomic operation. An atomic operation is one that is guaranteed to finish once it 

is started. In the K64, most assembly language instructions are atomic (apart 

from some special ones that are designed to be abandoned and restarted if an 

interrupt occurs). However, single lines of C code cannot be assumed to be 

atomic. 

Cortex®-M4 processors have 16 registers inside the processor core to perform 

data processing and control. These registers are grouped in a unit called the 

register bank. Each data processing instruction specifies the operation required, 

the source register(s), and the destination register(s) if applicable. In the ARM® 

architecture, if data in memory is to be processed, it has to be loaded from the 

memory to registers in the register bank, processed inside the processor, and then 

written back to the memory, if needed. This is commonly called a “load-store 

architecture”. 

Communication 
between threads is 
accomplished using 
global variables 
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Therefore, if the C code reads: 

NbBytes++; 

and NbBytes is byte-sized, then the compiler generates the following code: 

ldr     r3, [pc, #72]   ; load address of NbBytes into R3 

ldrb    r3, [r3, #0]    ; load value of NbBytes into R3 

uxtb    r3, r3          ; zero extend upper bytes to 32 bits 

adds    r3, #1          ; increment by one 

uxtb    r3, r3          ; zero extend again 

ldr     r2, [pc, #64]   ; load address of NbBytes into R2 

adds    r1, r3, #0      ; copy new NbBytes value to r1 

strb    r1, [r2, #0]    ; store new NbBytes in memory  

As you can see, the C code NbBytes++; is nonatomic at an assembly language 

level because it consists of many instructions which can be interrupted. Thus, a 

single line of C code can be a “critical section”. 

We must know the architecture of the processor and have a rudimentary 

knowledge of the assembly language output produced by the compiler to 

determine whether a section of code is critical or not. 

Since we are not using a real-time operating system (which would inherently 

support a multithreaded program by providing interthread communication 

mechanisms), one way of protecting the integrity of shared global variables is to 

disable interrupts during the critical section. This is a simple and acceptable 

method of protecting a critical section for a small embedded system. 

It is important not to disable interrupts too long so as not to affect the dynamic 

performance of other threads. There is a problem however – consider what would 

happen if you simply add an “interrupt disable” at the beginning and an 

“interrupt enable” at the end of a critical section: 

__disable_irq(); // disable interrupts 
NbBytes++;  // critical section 
__enable_irq(); // enable interrupts 

What if interrupts were in a disabled state on entry into the critical section? 

Unfortunately, we have enabled them on exiting the critical section! What we 

need to do is save the state of the interrupts (enabled or disabled) before we enter 

the critical section, and restore that state on exiting. 

A nonatomic 
sequence 

A problem with 
disabling and 
enabling interrupts 
to make a critical 
section 
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5.10.1 Critical Sections in C for the ARMv7-M 

In C, a way of implementing critical sections that preserves the interrupt state 

and allows nesting of critical sections (e.g. through function calls) is by declaring 

the following macros: 

// Save status register and disable interrupts 
#define EnterCritical() \ 
 do {\ 
  uint8_t SR_reg_local;\ 
   __asm ( \ 
     "MRS R0, FAULTMASK\n\t" \ 
     "CPSID f\n\t"            \ 
     "STRB R0, %[output]"  \ 
     : [output] "=m" (SR_reg_local)\ 
     :: "r0");\ 
   if (++SR_lock == 1u) {\ 
     SR_reg = SR_reg_local;\ 
   }\ 
 } while(0) 
 
  
// Restore status register 
#define ExitCritical() \ 
 do {\ 
   if (--SR_lock == 0u) { \ 
     __asm (                 \ 
       "LDRB R0, %[input]\n\t"\ 
       "MSR FAULTMASK, R0;\n\t" \ 
       ::[input] "m" (SR_reg)  \ 
       : "r0");                \ 
   }\ 
 } while(0) 

  

Some explanations are in order. 

Firstly, the \ character that appears at the end of each line is C’s way of extending 

a single expression across more than one line. 

Secondly, the do {...} while(0) construct is the only construct in C that you 

can use to #define a multistatement operation, put a semicolon after, and still 

use within an if statement. It also lets you declare local variables inside the block 

created with the braces. The multiple statements that appear between the braces 

{...} are only executed once due to the while(0). 

Thirdly, there are two global variables used by the macros, which are defined as: 

volatile uint8_t SR_reg;  // Current value of the FAULTMASK register 
volatile uint8_t SR_lock = 0x00U;      // Lock 

  

C macros for 
entering and exiting 
a critical section 
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The basic idea of the code is: 

1. EnterCritical() copies the value of FAULTMASK into register R0. It then 

disables all interrupts, including the HardFault exception, even if they were 

already disabled. All instructions from now on are guaranteed to execute 

without interruption. Importantly, this means that only this thread will have 

access to the global variable SR_reg. The saved value of FAULTMASK, which 

is stored in register R0, is then stored in the local variable SR_reg_local. 

Then, SR_lock is incremented (it is initially 0), and if equal to 1, the local 

variable SR_reg_local is copied to the global variable SR_reg. So, on “first 

entry”, the state of the FAULTMASK register is stored in the global variable 

SR_reg. In subsequent “calls” to  EnterCritical() the global variable does 

not get updated. The SR_lock variable is seen to be a count of the “nesting” 

of EnterCritical() “calls”, and only the first state of FAULTMASK is saved. 

2. ExitCritical() decrements the global SR_lock variable – an operation 

which is safe to perform since interrupts are disabled. If SR_lock is zero after 

decrementing, then we are leaving the last Enter/Exit pair. In this case the 

assembly language instructions will load SR_reg, the saved state from the 

first EnterCritical() “call”, and place it in FAULTMASK, thus restoring the 

interrupt state to its initial value. If the SR_lock variable after decrementing 

is not zero, then we are still “nested” and there is nothing to do. 
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You can use the macros, with nesting, as shown in the example below: 

void function(void) 
{ 
  EnterCritical(); 
  ... 
    EnterCritical(); 
    ... 
    ExitCritical(); 
  ... 
  ExitCritical(); 
} 

Listing 5.3 – Nesting Critical Sections 

To reiterate – whenever two (or more) threads share a global variable, you must 

protect access to that variable by operating in a critical section. The macros are 

not robust and you must guarantee that EnterCritical() and ExitCritical() 

occur in nested pairs. Be careful in your code that you do not enter a critical 

section inside a function and then exit that function without a corresponding 

ExitCritical(). Such a situation may arise when there are multiple exit points 

from a function: 

void function(void) 
{ 
  EnterCritical(); 
 ... 
  if (error) 
    return;  // Error! We have not “called” ExitCritical() 
  ... 
  ExitCritical(); 
} 

Listing 5.4 – Incorrect Coding for a Critical Section 

The advantage of the above macros, rather than using: 

uint32_t priMask; 
 
priMask = DisableGlobalIRQ(); 
... 
EnableGlobalIRQ(priMask); 

is that they make the code more readable and portable. 

5.11 References 

Yiu, J.: The Definitive Guide to ARM® Cortex®-M3 and ARM Cortex®-M4 

Processors, Newnes, 2014. ISBN-13: 978-0-12-408082-9 

ARM®v7-M Architecture Reference Manual, ARM, 2014. 
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6 Timing Generation and Measurements 
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Introduction 

The K64 has several timer modules: 

Module Description 

Programmable delay block (PDB) The PDB provides controllable delays 

from either an internal or an external 

trigger, or a programmable interval 

tick, to the hardware trigger inputs of 

ADCs and/or generates the interval 

triggers to DACs, so that the precise 

timing between ADC conversions 

and/or DAC updates can be achieved. 

FlexTimer modules (FTM) The FTM is an eight channel timer 

that supports input capture, output 

compare, and the generation of PWM 

signals. 

Periodic interrupt timers (PIT) The PIT module is an array of 4 timers 

that can be used to raise interrupts and 

trigger DMA channels. 

Low-power timer (LPTMR) The LPTMR can be configured to 

operate as a time counter with 

optional prescaler, or as a pulse 

counter with optional glitch filter, 

across all power modes, including the 

low-leakage modes. It can also 

continue operating through most 

system reset events, allowing it to be 

used as a time of day counter. 

Carrier modulator timer (CMT) The CMT module provides a means to 

generate the protocol timing and 

carrier signals for a variety of 

encoding schemes used in infrared 

remote controls. 

Real-time clock (RTC) The RTC operates off an independent 

power supply and 32 kHz crystal 

oscillator and has a 32-bit seconds 

counter with a 32-bit alarm. 

IEEE 1588 timers The IEEE 1588 standard provides 

accurate clock synchronization for 

distributed control nodes for 

industrial automation applications. 
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6.1 FlexTimer Module 

The FlexTimer Module (FTM) has the capability of capturing events and time-

stamping them, and of generating events at certain times. It also has logic to 

generate PWM waveforms without the need for software intervention. A 

simplified block diagram of the FlexTimer module is shown below: 

 

CNT

Input Capture /

PTn

16-bit

Timer

Free-Running

CnV

Pin

Logic Output Compare
interrupt

 

 

Figure 6.1 

There is a 16-bit free-running timer called CNT. This is used to time-stamp an 

input event (an input capture) or to trigger an output event (an output compare). 

The “input capture / output compare” block is just a register called CnV, where 

n is the channel number, that gets loaded with the current value of CNT for an 

input capture event, and which holds a desired value of CNT to trigger an output 

compare event. 

The types of events to capture, or to initiate on a successful compare, are setup 

through various control registers. For inputs, it is possible to capture rising and 

falling edges. Outputs can be made to toggle, clear or be set. 

There are numerous control registers used to set up the FTM module. Only a few 

are needed to interact with the FTM once it has been set up for a particular 

application. A complete description of the FTM can be found in Chapter 43 of 

NXP’s K64 Sub-Family Reference Manual. 

A simplified FTM 
block diagram 

The timer has a 
free-running counter 
and a value counter 
for each channel 
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6.1.1 Output Compare 

Output compare can be used to create square waves, generate pulses, implement 

time delays, and execute periodic interrupts. You can use output compare 

together with input capture to measure period and frequency over a wide range 

and with varying resolution. 

A channel set up as an output compare channel will trigger an output action when 

the output compare register is equal to the free-running timer. A block diagram 

of the output compare action is shown below: 

 

CNT

PTn
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Logic
Output Compare interrupt

 

 

Figure 6.2 

A compare result output action can be set up using the Channel Status and 

Control Register, CnSC, for the relevant channel. The options are: 

Action 

Timer disconnected from output pin logic 

Toggle output on match 

Clear output on match 

Set output on match 

 

A simplified output 
compare block 
diagram 

Output compare 
actions 
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6.1.2 Time Delay Using Output Compare 

One simple application of the output compare feature is to create a fixed timer. 

Timers are useful in situations where you start an operation, wait a certain 

amount of time, and then stop the operation. Usually the process looks like this: 

1. Start an operation (turn on or turn off an output device). 

2. Start the timer. 

3. When the timer expires, stop the operation (turn off or turn on the output 

device). 

You can also use timers to detect timeout conditions. For example, you turn on 

a motor and then start a timer. You expect the speed of the motor to increase, 

and if the speed doesn’t exceed a threshold before a timer times out, then you 

might turn the motor off and notify an operator. In these cases, you start an 

operation then monitor the process to see if conditions are met before the timer 

expires: 

1. Start an operation (turn on or turn off an output device). 

2. Start the timer. 

3. Monitor for desired conditions. If conditions are met, stop the timer. 

4. If the timer times out, stop the operation and notify the operator. 

Let delay be the number of cycles you wish to wait. The steps to start a timer 

are: 

1. Read the current 16-bit CNT. 

2. Set the 16-bit output compare register to CNT + delay; 

3. Clear the output compare flag. 

4. The output compare flag will set and trigger an interrupt after the required 

delay. 

This method will only work for values of delay that fall between a minimum 

value (the time it takes to implement steps 1 to 3) and 65536. It will function 

properly even if CNT rolls over from 0xFFFF to 0, since the 16-bit addition is really 

a modulo 0x10000 addition. 
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EXAMPLE 6.1 Creating a Timer Using Output Compare 

The output compare feature is a convenient mechanism to create a simple timer. 

We will turn an LED on when the timer on channel 3 of FTM0 times out, after 

1 second. 

 

// Timer value for 1 second  
const uint16_t RATE = 24414; 
 
void FTM0_Init(void) 
{ 
  // Set up FTM0 
  ... 
  // Initialize NVIC 
  ... 
} 
 
/*! @brief FTM0 interrupt handler. 
 * 
 */ 
void FTM0_IRQHandler(void) 
{ 
  // Clear interrupt flag 
  FTM0->CONTROLS[3].CnSC &= ~FTM_CnSC_CHF_MASK; 
 
  // Call user function 
  LED_On(); 
} 
 
/*! @brief Timer output compare 3 initialization. 
 * 
 */ 
void TOC3_Init(void) 
{ 
  // Ensure interrupts are disabled 
  __disable_irq(); 
 
  // Initialise the FTM0 module 
  FTM0_Init(); 
 
  // Enable Ch 3 as output compare with interrupts enabled 
  FTM0->CONTROLS[3].CnSC = (FTM_CnSC_MSA_MASK | FTM_CnSC_CHIE_MASK); 
 
  // Time out for 1 second 
  FTM0->CONTROLS[3].CnV = FTM0->CNT + RATE; 
 
  // Enable interrupts 
  __enable_irq(); 
} 

Note that the FTM0 ISR has taken on the pre-declared name of FTM0_IRQHandler 

which will be automatically placed in the vector table by the linker. 
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6.1.3 Input Capture 

A channel can be set up as an input capture channel. We can use input capture 

to measure the period or pulse width of 3.3V CMOS signals. The input capture 

system can also be used to trigger interrupts on rising or falling transitions of 

external signals. A simplified block diagram of a channel set up for input capture 

is shown below: 

 

CNT

PTn

16-bit

Timer

Free-Running

CnV

Pin

Logic
Input Capture interrupt

 

 

Figure 6.3 

The input capture edge detection circuits can be set up using the CnSC register. 

The options are: 

Configuration 

Capture disabled 

Capture on rising edges only 

Capture on falling edges only 

Capture on any edge (rising or falling) 

Two or three actions result from a capture event: 

1. The current 16-bit CNT value is copied into the 

input capture register, CnV. 

2. The input capture flag is set in CnSC. 

3. An interrupt is requested when the CHIE bit is 1 in CnSC. 

  

A simplified input 
capture block 
diagram 

Input compare 
configurations 
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EXAMPLE 6.2 Pulse-Width Measurement 

The basic idea of pulse-width measurement is to cause an input capture event on 

first the rising edge and then the falling edge of an input signal. The difference 

between these two times will be the pulse width. 

+3.3 V

0 V

K64

FTM0_CH1

PulseWidth

IC1 interrupt

on falling edge

IC1 interrupt

on rising edge

 

The resolution of the measurement is determined by the rate at which CNT is 

incremented. We will use Channel 1 of the timer for the implementation. 

 

uint16_t PulseWidth;     // Pulse width in CNT units 
bool Done;               // True when pulse width is measured 
 
void FTM0_Init(void) 
{ 
  // Set up FTM0 
  ... 
  // Initialize NVIC 
  ... 
} 
 
void FTM0_IRQHandler(void) 
{ 
  // Value of CNT at rising edge 
  static uint16_t rising; 
 
  // Clear interrupt flag 
  FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHF_MASK; 
 
  // See if a rising edge is detected 
  if (FTM0_CH1) 
  { 
    // Record time of rising edge 
    rising = FTM0->CONTROLS[1].CnV; 
    // Set edge detection to falling edge only 
    FTM0->CONTROLS[1].CnSC = (FTM_CnSC_ELSB_MASK | FTM_CnSC_CHIE_MASK); 
  } 
  else 
  { 
    // Falling edge detected – calculate the pulse width 
    PulseWidth = FTM0->CONTROLS[1].CnV - rising; 
    Done = true; 
  } 
} 
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/*! @brief Timer input capture 1 initialization. 
 * 
 */ 
void TIC1_Init(void) 
{ 
  // Ensure interrupts are disabled 
  __disable_irq(); 
 
  // Initialize the FTM0 module 
  FTM0_Init(); 
 
  // Enable Ch1 as input capture on rising edge 
  FTM0->CONTROLS[1].CnSC = (FTM_CnSC_ELSA_MASK | FTM_CnSC_CHIE_MASK); 
 
  // No measurement yet 
  Done = false; 
 
  // Enable interrupts 
  __enable_irq(); 
} 

Note that the FTM0 ISR has taken on the pre-declared name of FTM0_IRQHandler 

which will be automatically placed in the vector table by the linker. 

  



6.10 

 

Index Periodic Interrupt Timer PMcL 

6 - Timing Generation and Measurements  2020 

6.2 Periodic Interrupt Timer 

A block diagram of one of the periodic interrupt timer (PIT) is shown below: 
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Figure 6.4 

A PIT generates triggers at periodic intervals, when enabled. The timer loads the 

start value as specified in the LDVAL register, counts down to 0 and then loads the 

respective start value again. Each time the timer reaches 0, it will generate a 

trigger pulse and set the interrupt flag. 

Note that an interrupt will occur (if enabled) when the CVAL register reaches zero 

and the next clock “tick” reloads the start value as specified in the LDVAL register. 

For example, to create a timer with a period of 1000 “ticks” of the module clock, 

the LDVAL register needs to be loaded with 999. 

A complete description of the PIT can be found in Chapter 41 of NXP’s K64 

Sub-Family Reference Manual. 

A simplified periodic 
interrupt timer block 
diagram 
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6.3 Real Time Clock 

The management of time is important in many embedded systems. The real time 

clock (RTC) unit in the K64 has the ability to operate in a separate power domain 

– it operates from Vbat, which can be connected to a battery. It therefore has the 

potential to keep track of the time while the main power is off. 

On the FRDM-K64 board, the RTC is powered via the USB and not a battery. 

Therefore, it does not have the ability to keep the time when powered off. 

The RTC unit relies on an external 32.768 kHz crystal for its timekeeping. The 

crystal must have “load” capacitors connected to it to function properly. The K64 

has the ability to select internal load capacitors (and therefore minimise external 

hardware). The selection of the internal load capacitors is accomplished by bits 

in the RTC Control register, RTC_CR. However, for the FRDM-K64 board, the 

load capacitors are external:  

 

C2

R f

X1C1

K64
OSC32K
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Figure 6.5 

The RTC has the ability to generate an interrupt every second. 

A complete description of the RTC can be found in Chapter 44 of NXP’s K64 

Sub-Family Reference Manual. 
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7 Concurrent Software 
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Introduction 

A program is a list of instructions for the computer to execute. A thread is an 

executing program, including the current values of the program counter, registers 

and variables. A thread has an execution state (such as running, ready, waiting) 

and a saved thread context when not running. Conceptually, each thread has its 

own CPU. In reality, of course, the real CPU switches back and forth from thread 

to thread. 

By contrast, a process is a conceptual entity used when dealing with multiple 

programs running on a general purpose computer (such as a PC with Windows®). 

A process has its own virtual address space and has protected access to the CPU, 

other processes, files, and I/O resources. 

In an embedded system, there is no need for multiple programs to be executing, 

since the embedded system is usually designed for a specific application. Thus, 

in an embedded system there is no need for the concept of a process and we will 

deal exclusively with threads. 

The execution of the main program is called the background thread. In most 

embedded applications, the background thread executes a loop that never ends. 

This thread can be broken (execution suspended, then restarted) by foreground 

threads (interrupt service routines). These threads are run using a simple 

algorithm. The ISR of an input device is invoked when new input is available. 

The ISR of an output device is invoked when the output device is idle and needs 

more data. Last, the ISR of a periodic task is run at a regular rate. The main 

program runs in the remaining intervals. Many embedded applications are small 

in size, and static in nature, so this configuration is usually adequate. 

The limitation of a single background thread comes as the size and complexity 

of the system grows. Projects where the software modules are loosely coupled 

(independent) more naturally fit a multiple background thread configuration. 

A thread is an 
executing program, 
with a context 

A process is a 
multiprogramming 
concept 

Simple embedded 
systems only have 
threads 

Simple embedded 
systems are 
foreground / 
background systems 
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A scheduler is a piece of software that implements multiple background threads, 

and forms the basis of a program known as an operating system (OS). 

Synchronization tools that allow threads to interact with each other (such as 

semaphores) are also a key feature of operating systems. 

Systems that implement a thread scheduler still may employ regular I/O driven 

interrupts. In this way, the system supports multiple foreground threads and 

multiple background threads. 

A scheduler lets us 
implement multiple 
background threads 
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7.1 Threads 

A thread is the execution of a software task that has its own stack and registers. 

Since each thread has a separate stack, its local variables are private, which 

means it alone has access. 

 

Thread 1
R0

...

R12

SP

LR

Stack

PC

Thread 2
R0

...

R12

SP

LR

Stack

PC

Thread 3
R0

...

R12

SP

LR

Stack

PC

 

 

Figure 7.1 

Multiple threads cooperate to perform an overall function. Since threads interact 

for a common goal, they do share resources, such as global memory, and I/O 

devices. 
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Figure 7.2 

In summary, a thread: 

 is the execution of a software task 

 has its own stack and registers 

 has local variables which are private 

 cooperates to perform an overall function 

Each thread has its 
own registers and 
stack 

Threads share 
global memory and 
I/O ports 
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A thread can be in one of three states. 
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Figure 7.3 

A thread is in the ready state if it is ready to run but waiting for its turn. 

A thread is in the running state if it is currently executing. With a single 

instruction stream (i.e. one core) processor like the K64, at most one thread can 

be in the run state at a time. 

A thread is in the waiting state when it is waiting for some external event like 

I/O (keyboard input available, printer ready, I/O device available). If a thread 

communicates with other threads, then it can be waiting for an input message or 

waiting for another thread to be ready to accept its output message. If a thread 

wishes to output to the serial port, but another thread is currently outputting, it 

will wait. If a thread needs information from a FIFO (calls FIFO_Get), then it will 

wait if the FIFO is empty (because it cannot retrieve any information). On the 

other hand, if a thread outputs information to a FIFO (calls FIFO_Put), then it 

will wait if the FIFO is full (because it cannot save its information). 

Thread states 



7.6 

Index Threads PMcL 

7 - Concurrent Software  2020 

An OS may use a linked list data structure to hold the ready and waiting threads. 

It may create a separate waiting linked list for each reason why the thread cannot 

execute. For example, one waiting list for “full” during a call to FIFO_Put, and 

one for “empty” during a call to FIFO_Get. In general, the OS could have one 

waiting list associated with each cause of waiting. 

In the figure below, thread 5 is running, threads 1 and 2 are ready to run, and 

threads 3 and 4 are waiting because a FIFO is empty. 
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Figure 7.4 

Threads are placed 
in linked lists 
depending on 
whether they are 
ready or waiting 
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7.1.1 Thread Control Blocks (TCBs) 

If a thread is ready, it may be granted control of the CPU by the OS at any time. 

Conversely, while running, the OS may stop the thread executing and make it 

ready. We therefore need a way for the scheduler to save and restore the state of 

a thread. A thread control block (TCB) is used to store the information about 

each thread. 

The TCB must contain: 

1) a pointer to its private stack; 

2) a pointer so it can be chained into a linked list; 

3) a stack area that includes local variables 

While a thread is running, it uses the actual hardware registers, R0-R15. In 

addition to these necessary components, the TCB might also contain: 

4) Thread number, type, or name; 

5) Age, or how long this thread has been active; 

6) Priority; 

7) Resources that this thread has been granted. 

Essential thread 
control block 
components 

Optional thread 
control block 
components 
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The structure of a typical TCB is shown below: 
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Figure 7.5 

The running thread uses the actual registers, while the other threads have their 

register values saved on the stack. 

7.2 Schedulers 

A scheduler is an OS component that has responsibility for switching threads 

between states. A scheduler has to implement two aspects of this operation. One 

aspect is to save the currently running thread’s state in its TCB and to restore the 

state of the next thread to run (the process of changing threads, which is also 

called a context switch). The other aspect is when the scheduler actually changes 

threads, and what it does with waiting threads. 

In a preemptive scheduler, the OS interrupts each thread regardless of whether 

the thread is “in the middle of something important” – the OS is the sole arbiter 

of when the thread will actually get CPU time. 

The simplest scheduling system is a round-robin scheduler – a scheduler that 

runs each “ready” thread for a certain amount of time in a fixed cyclic order. It 

does this by “hooking” into a periodic timer whose ISR performs the thread 

changeover function. 

TCB structure 

A scheduler is 
responsible for 
changing the 
running thread 

A round-robin 
scheduler runs each 
thread in a fixed 
order for a certain 
amount of time 
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EXAMPLE 7.1 Round-Robin Shceduler 

Suppose we have three dynamically allocated threads that are executed in a 

round-robin fashion. Even though there are three threads, there are only two 

programs to run, ProgA and ProgB. Recall that a thread is not simply the software 

but the execution of the software. We will have two threads executing the same 

program, ProgA. 

void main(void) 
{ 
  OS_AddThread(&ProgA); 
  OS_AddThread(&ProgA); 
  OS_AddThread(&ProgB); 
  OS_Start(TIMESLICE); // doesn't return 
} 

A circular linked list allows the scheduler to run all three threads equally. 

 

saved SP

threadID

stack

SP

saved SP

threadID

stack

saved SP

threadID

stack

next

ProgA
PC

ProgB

RunPt

Thread 1 Thread 2 Thread 3

next next

 

 

Figure 8.1 

This example illustrates the difference between a program (e.g. ProgA and ProgB) 

and a thread (e.g. Thread 1, Thread 2 and Thread 3). Notice that Threads 1 and 

2 both execute ProgA. There are many applications where the same program is 

being executed multiple times. 

Round-robin 
scheduling 
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7.2.1 Other Scheduling Algorithms 

A non-preemptive (cooperative) scheduler trusts each thread to voluntarily 

release control on a periodic basis. Although easy to implement, because it 

doesn’t require interrupts, it is not appropriate for real-time systems. 

A priority scheduler assigns each thread a priority number (e.g. 0 is the highest, 

15 is the lowest). Two or more threads can have the same priority. A priority 1 

thread is run only if no priority 0 threads are ready to run. Similarly, we run a 

priority 2 thread only if no priority 0 or priority 1 threads are ready. If all threads 

have the same priority, then the scheduler reverts to a round-robin system. The 

advantage of priority is that we can reduce the latency (response time) for 

important tasks by giving those tasks a high priority. The disadvantage is that on 

a busy system, low-priority threads may never be run. This situation is called 

starvation. 

Non-preemptive 
scheduling 

Priority scheduling 



7.11 

PMcL The SysTick Timer Index 

2020  7 - Concurrent Software 

7.3 The SysTick Timer 

The Cortex®-M processors have a small integrated timer called the SysTick 

(System Tick) timer. It is integrated as a part of the NVIC and can generate the 

SysTick exception (exception type #15). The SysTick timer is a simple 

decrement 24-bit timer, and runs off the processor’s core clock. 

In modern operating systems, a periodic interrupt is needed to ensure that the OS 

kernel can be invoked regularly for task management and context switching. 

This enables a processor to handle different tasks in different time slots. The 

SysTick timer is similar to the PIT module: 

 

CVR

create a periodic timer

reloads          toCVR

interrupt when CVR=0

RVR

counts down

and a reload occurs  

 

Figure 7.6 

There is a current value CVR and a reload value RVR. When the SysTick counter 

is enabled, the CVR decrements every clock cycle. If it reaches zero, it will then 

load the value from RVR and continue. If the SysTick interrupt is enabled, it will 

generate an interrupt when it reloads the value. 

There is a Control and Status Register (CSR) that allows us to control and check 

the status of the SysTick timer. To generate a periodic interrupt using SysTick, 

we need to: 

 set the RVR reload value for the desired period 

 set CSR bit 0 to a 1 to enable the SysTick timer 

 set CSR bit 1 to a 1 to enable interrupt generation 

An overview of the 
SysTick timer 
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7.4 A Simple Operating System 

The following example shows how a simple operating system can be created 

using the SysTick timer, a simple TCB structure, and some low-level assembly 

language context switching. 

EXAMPLE 7.2 Simple Operating System 

Suppose we have three statically allocated threads that are each allowed to 

execute for 125 ms in a round-robin fashion. Even though there are three threads, 

there are only two programs to run, ProgA and ProgB. We will have two threads 

executing the same program, ProgA, and one thread executing ProgB. The code 

for these programs is shown below. 

int Inc(const int j) 
{  
  int i; 
  i = j + 1; 
  return i; 
} 
 
void ProgA(void) 
{  
  int i; 
  i = 5; 
  while (1) 
  { 
    i = Inc(i); 
  } 
} 
 
void ProgB(void) 
{  
  int i; 
  i = 6; 
  while (1) 
  { 
    i = Inc(i); 
  } 
} 

Notice that both threads call the same subroutine Inc(). 
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The thread control block is defined in OS.h as follows: 

// Thread control block structure 
struct TCB 
{ 
  unsigned long *savedSP;        // saved stack pointer 
  unsigned long threadId;        // 1, 2, 3, ... 
  struct TCB *nextTCB;           // link to next TCB 
  unsigned long moreStack[99];   // the free stack 
  unsigned long stackedR7;       // the ARM "stack frame" when  
  unsigned long stackedR0;       // an exception occurs... 
  unsigned long stackedR1; 
  unsigned long stackedR2; 
  unsigned long stackedR3; 
  unsigned long stackedR12; 
  unsigned long stackedLR; 
  void (*stackedPC)(void); 
  unsigned long stackedxPSR; 
}; 
 
typedef struct TCB TCBType; 
typedef TCBType* TCBPtr; 
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The main() module statically declares the threads as global variables: 

TCBType Threads[3] __attribute__ ((aligned(0x08))) = 
{ 
  { 
    &Threads[0].stackedR7,    // initial SP 
    1,                        // thread ID 
    &Threads[1],              // pointer to next TCB 
    { 0 },                    // empty stack 
    7,                        // R7 
    0, 1, 2, 3, 12, 0,        // R0-R3, R12, LR 
    ProgA,                    // PC 
    0x01000000                // xPSR 
  }, 
  { 
    &Threads[1].stackedR7,    // initial SP 
    2,                        // thread ID 
    &Threads[2],              // pointer to next TCB 
    { 0 },                    // empty stack 
    7,                        // R7 
    0, 1, 2, 3, 12, 0,        // R0-R3, R12, LR 
    ProgA,                    // PC 
    0x01000000                // xPSR 
  }, 
  { 
    &Threads[2].stackedR7,    // initial SP 
    3,                        // thread ID 
    &Threads[0],              // pointer to next TCB 
    { 0 },                    // empty stack 
    7,                        // R7 
    0, 1, 2, 3, 12, 0,        // R0-R3, R12, LR 
    ProgB,                    // PC 
    0x01000000                // xPSR 
  } 
}; 

Even though the threads have not yet been allowed to run, they are created with 

an initial stack area that “looks like” the thread has been suspended by the K64 

exception mechanism (i.e. the stack looks the same as if an interrupt has 

occurred). When a thread is launched for the first time, it will execute the 

program specified by the value in the .stackedPC location. 

The main() function initialises the low-level hardware and calls OS_Init() and 

OS_Start() to start multithreading. 

int main(void) 
{ 
  Board_Init(); 
  // Initialise OS - sets up SysTick 
  OS_Init(); 
  // Call OS to start multitasking - never returns 
  OS_Start(Threads); 
} 
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The OS module provides three functions. SysTick_Handler() handles the 

context switching for the threads: 

// Pointer to current thread 
static TCBPtr RunPtr; 
 
static uint32_t Count; 
 
void SysTick_Handler(void) 
{ 
  // Save current context 
  __asm (\ 
    "str r7, %[input]\n\t"\ 
    ".align 4\n\t"\ 
    ::[input] "m" (*RunPtr)  \ 
    : ); 
 
  // Increment the number of elapsed ticks 
  Count++; 
 
  // Get the next thread pointer - round robin scheduler 
  RunPtr = RunPtr->nextTCB; 
 
  // Load next context 
  __asm (\ 
    "ldr r0, %[input]\n\t"\ 
    "msr msp, r0\n\t"\ 
    "pop {r7}\n\t"\ 
    "bx lr\n\t"\ 
    ".align 4\n\t"\ 
    ::[input] "m" (*RunPtr)  \ 
    : "r0"); 
} 

Note that the SysTick ISR has taken on the pre-declared name of 

SysTick_Handler which will be automatically placed in the vector table by the 

linker. 

The assembly language with the comment “Save current context” does exactly 

that – it saves the current value of the stack pointer (held in R7) into the thread 

control block structure (using *RunPtr). 

It then increments its own internal counter Count, and advances the RunPtr 

through the linked list to get the next thread control block – this is round-robin 

scheduling. 
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The assembly language with the comment “Load next context” does exactly that 

– it loads the stack pointer with the value that was previously saved in the new 

thread’s control block, pops the contents of R7 off the stack, and then carries out 

an “exception return” using the EXC_RETURN value held in the LR register. 

Program execution will now continue from wherever the thread was interrupted. 

The OS_Init() function initialises the SysTick timer for a 125 ms interval: 

 
// Set the tick frequency to 8 Hz (1/8 s period) 
static const uint32_t TICK_FREQUENCY = 8U; 
 
void OS_Init(void) 
{ 
  // Disable interrupts 
  __disable_irq(); 
 
  // Set reload value for the timer period 
  SysTick_Config(SystemCoreClock / TICK_FREQUENCY); 
} 

OS_Start() initialises the RunPtr and launches the first thread. 

void OS_Start(TCBType threads[]) 
{ 
  uint32_t initialSP, initialPC; 
 
  // Specify Thread 1 as the first thread to launch 
  RunPtr = &threads[0]; 
 
  // Get the address of the top of the Thread 1 stack 
  initialSP = (uint32_t)RunPtr + sizeof(TCBType); 
 
  // Set MSP to top of Thread 1 stack 
  __asm (                 \ 
    "ldr r0, %[input]\n\t"\ 
    ::[input] "m" (initialSP)  \ 
    : "r0"); 
  __asm ("msr msp, r0\n\t"); 
  __asm (".align 4\n\t"); 
 
  // Enable interrupts 
  __enable_irq(); 

 
  // Launch Thread 1 by loading the PC directly 
  initialPC = (uint32_t)RunPtr->stackedPC; 
  __asm (                 \ 
    "ldr pc, %[input]\n\t"\ 
    ::[input] "m" (initialPC)  \ 
    : "r0"); 
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7.5 The Semaphore 

An operating system, at the very least, provides scheduling and synchronization 

tools for threads. One of the most important synchronization tools provided by 

an OS is the semaphore. 

A semaphore is a non-negative integer, which may only be operated on by the 

primitive operations wait and signal. These wait and signal operations are 

indivisible. Indivisibility implies that only one thread can access each of these 

primitives at any one time. That is, only one primitive can modify the value of 

some semaphore, say s. The primitives can’t be interrupted or logically cut into 

any smaller pieces. 

The primitive operations are defined as follows: 

wait(s) Decrease (indivisibly) the value of s by 1 

signal(s) Increase (indivisibly) the value of s by 1 

Note: A semaphore s may only be a non-negative integer, so that if the wait(s) 

cannot be completed, then a thread will be put into the waiting state. Conversely 

a signal(s) may cause a waiting thread to be made active. 

Every signal(s) increments s but a wait(s) is only completed if s > 0. 

Semaphores 
defined 
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7.5.1 Mutual Exclusion with Semaphores 

Listing 7.1 shows how semaphores can be used to guarantee that a thread will 

have uninterrupted access to its critical code section. That is, there is mutual 

exclusion of other threads. 

void p1(void) 
{ 
  while (1) 
  { 
    ... 
 OS_Wait(&Mutex); 
    // critical code of p1 
    ... 
 OS_Signal(&Mutex); 
    // remainder of p1 
    ... 
  } 
} 
 
void p2(void) 
{ 
  while (1) 
  { 
    ... 
 OS_Wait(&Mutex); 
    // critical code of p2 
    ... 
 OS_Signal(&Mutex); 
    // remainder of p2 
    ... 
  } 
} 
 
int Mutex; // a binary semaphore 
 
void main(void) 
{ 
  // Mutually excluded threads 
  Mutex  = 1; 
  OS_AddThread(&p1); 
  OS_AddThread(&p2); 
 
  OS_Launch(TIMESLICE); // doesn't return 
} 

Listing 7.1 – Mutual exclusion using Semaphores 

There are two separate functions p1 and p2, each with a critical section of code. 

Each of these critical sections are protected between OS_Wait and OS_Signal 

operations. A semaphore Mutex is initialised to 1 at the beginning of the main 

Mutual exclusion 
between threads 
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program. This value guarantees only one thread can be in its critical section at 

one time. 

Since the speed of each thread is indeterminate we have no way of knowing 

which one will try to execute an OS_Wait(&Mutex) first. Let us assume that p1 

tries first. Since the semaphore has a value of 1 at this point, the OS_Wait will 

complete (that is, OS_Wait will decrement Mutex to 0) and p1 will enter it's critical 

section. 

If while p1 is in the critical section p2 attempts a OS_Wait(&Mutex) then the 

OS_Wait will not complete and p2 will be waiting (internally to the operating 

system, p2 will be added to a queue of threads that are all waiting on the 

semaphore Mutex). 

At some later time p1 will complete its OS_Signal(&Mutex) operation, and p2 

may now complete its OS_Wait(&Mutex) and enter it's critical section. After each 

thread completes its OS_Signal operation, the value of the semaphore again 

becomes 1 allowing either thread to again gain mutually exclusive access to its 

critical section. 

7.5.2 Simple Mutual Exclusion 

Semaphores should be used with care in embedded systems. The use of a 

semaphore to access a simple shared variable is overkill in most situations. The 

overhead involved in acquiring and releasing the semaphore consumes valuable 

CPU time. You can perform the job more efficiently by disabling and enabling 

interrupts. However there is an indirect cost to disabling interrupts: even higher 

priority tasks that do not share the specific resource are blocked from using the 

CPU. Disabling interrupts also increases interrupt latency, which may not be 

acceptable. 

7.5.3 Priority Inversion in Real-Time Systems 

Semaphores are subject to a serious problem in real-time systems called priority 

inversion, which only occurs when using an OS based on a priority-based pre-

emptive kernel. To solve this, most RTOSs provide for a special type of 

semaphore called a mutual-exclusion semaphore. 
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7.5.4 Synchronisation using Semaphores 

Listing 7.2 shows how two threads p1 and p2 can synchronise their operations 

with each other. 

void p1(void) 
{ 
  while (1) 
  { 
    // some amount of code 
    ... 
 OS_Wait(&Proceed); 
    // remainder of p1 
    ... 
  } 
} 
 
void p2(void) 
{ 
  while (1) 
  { 
    // some other amount of code 
    ... 
 OS_Signal(&Proceed); 
    // remainder of p2 
    ... 
  } 
} 
 
int Proceed; // a binary semaphore 
 
void main(void) 
{ 
 
  // Synchronized threads 
  Proceed = 0; 
  OS_AddThread(&p1); 
  OS_AddThread(&p2); 
 
  OS_Launch(TIMESLICE); // doesn't return 
} 

Listing 7.2 – Synchronization using Semaphores 

In this example p1 will pause until p2 executes a OS_Signal(&Proceed) before it 

continues. Of course if p2 executes the OS_Signal before p1 can execute the 

OS_Wait operation, then p1 will not be held up. 

This is known as asymmetric synchronisation – can you re-design this example 

so that symmetrical synchronisation between the two threads results? 

Synchronization 
between threads 
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7.5.5 The Producer / Consumer Problem using Semaphores 

A classical problem in concurrent programming is the  producer / consumer 

problem. Here two threads communicate through a buffer. The buffer has a finite 

amount of space and the producer, at its own speed, produces items and deposits 

them in this buffer of size SpaceAvailable. 

The consumer, at its own speed, removes items from the buffer. Of course the 

consumer cannot extract items from an empty buffer nor can the producer 

deposit items into a full buffer. 

There are to be three semaphores: 

SpaceAvailable This has an initial value of the size of the empty buffer. 

ItemsAvailable This has a value equal to the items in the buffer at 

initialisation (that is, 0). 

BufferAccess This controls access to the buffer so that only one thread, 

producer or consumer, can gain access at one time. 

Synchronization is achieved through the semaphores SpaceAvailable and 

ItemsAvailable whose initial values are the size of the buffer 40 and 0 

respectively. Mutual exclusion of threads accessing the buffer simultaneously is 

effected by the semaphore BufferAccess with initial value 1. 
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void Producer(void) 
{ 
  while (1) 
  { 
    // produce item 
    ... 
 OS_Wait(&SpaceAvailable); 
 OS_Wait(&BufferAccess); 
    // deposit item in buffer 
    ... 
 OS_Signal(&BufferAccess); 
 OS_Signal(&ItemsAvailable); 
  } 
} 
 
void Consumer(void) 
{ 
  while (1) 
  { 
 OS_Wait(&ItemsAvailable); 
 OS_Wait(&BufferAccess); 
    // extract item from buffer 
    ... 
 OS_Signal(&BufferAccess); 
 OS_Signal(&SpaceAvailable); 
    // consume item 
    ... 
  } 
} 
 
int SpaceAvailable = BUFFER_SIZE; // size of the buffer 
int ItemsAvailable = 0; 
int BufferAccess = 1; 
 
void main(void) 
{ 
  // producer and consumer threads 
  OS_AddThread(&Producer); 
  OS_AddThread(&Consumer); 
 
  OS_Launch(TIMESLICE); // doesn't return 
} 

Listing 7.3 – Producer / Consumer problem using Semaphores 

 

Producer / 
consumer problem 
using semaphores 
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Introduction 

An embedded system is normally designed to interact with the external world. 

They sometimes need to provide a human-machine interface for simple input / 

output operations. They also may need to measure analog quantities and output 

analog quantities. The following sections look at various techniques of 

interfacing to our microcontroller. 

8.1 Input Switches 

8.1.1 Interfacing a Switch to the Microcontroller 

Several simple switch interfaces are shown below: 

 

+3.3 V

K64

input port

+3.3 V

K64

input port

+3.3 V

K64

PTA1 with pull-down

PTA0 with pull-up

(a) (b) (c)  

 

Figure 8.1 

CMOS digital logic can use either pull-up or pull-down resistors, and the supply 

is typically 1.8 V, 2.5 V or 3.3V. In Figure 8.1 (a), a pull-up resistor is used to 

convert the mechanical signal into an electrical signal. When the switch is open, 

the input port is pulled to +3.3 V. When the switch is closed, the input port is 

forced to 0V. 

Simple switch 
interfaces 
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Figure 8.1 (b) shows a pull-down circuit. When the switch in this circuit is open, 

the input is pulled to 0 V. When the switch is closed, the output is forced to 

+3.3 V. Notice the logic level of the switch input is reversed in the pull-down 

interface as compared to the pull-up case. 

All ports on the K64 support both internal pull-ups and pull-downs. That is, 

either of the first two circuits in Figure 8.1 could be implemented on the K64 

without the resistor, as shown in Figure 8.1 (c). 

The software initialization for using a port sets the pull enable (PE) bit in the 

PORTx_PCRn register to enable pull-up or pull-down. For each port pin that is 

enabled for pull-up or pull-down, the corresponding pull select (PS) bit in the 

PORTx_PCRn register determines if it is pull-up (1) or pull-down (0). 

EXAMPLE 8.1 Switch Interfacing with Internal Pull 

Suppose we wish to initialize Port A for the circuit shown in Figure 8.1 (c). The 

software below will initialize Port A with the appropriate pull-up and pull-down. 

// Port A Bit 0 is connected through a switch to 0 V 
//   and uses internal pull-up  
// Port A Bit 1 is connected through a switch to +3.3 V 
//   and uses internal pull-down  
 
void PortA_Init(void) 
{ 
  // Enable clock gate for Port A to enable pin routing 
  SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; 
 
  // Set Port A Bit 0 as an input 
  GPIOA->PDDR &= ~0x00000001;  
  // PORTA_PCR0: ISF=0, MUX=1, PE = 1, PS = 1 
  PORTA->PCR0 = PORT_PCR_ISF_MASK | PORT_PCR_MUX(1)  
                 | PORT_PCR_PE_MASK | PORT_PCR_PS_MASK; 
 
  // Set Port A Bit 1 as an input 
  GPIOA->PDDR &= ~0x00000002;  
  // PORTA_PCR1: ISF=0, MUX=1, PE = 1, PS = 0 
  PORTA->PCR1 = PORT_PCR_ISF_MASK | PORT_PCR_MUX(1)  
                 | PORT_PCR_PE_MASK; 
} 
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8.1.2 Hardware Debouncing Using a Capacitor 

Most inexpensive switches mechanically “bounce” when touched and when 

released. Typical bounce times range from 1 ms to 25 ms. Ideally, the switch 

resistance is zero (actually about  1.0 ) when closed and infinite when open. 

This gives rise to the following switch timing: 

 

open

closed

5 ms

release

5 ms

touch

pin

voltage

actual

pin

voltage

model of

noise

bounce
+

noise

bounce
+

 

 

Figure 8.2 

Hence, the electrical output “bounces” when using inexpensive switches and 

circuits having just a pull-up or pull-down resistor. It may or may not be 

important to debounce the switch. For example, if we are entering data via a 

keyboard, then we want to record only individual key presses. On the other hand, 

if the switch position specifies some static condition, and the operator sets the 

switch before turning on the microcontroller, then debouncing is not necessary. 

Switch bounce 
causes multiple 
input changes on an 
input pin 

Switch timing 
showing bounce on 
touch and release 
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A hardware method to debounce a switch places a capacitor across the switch to 

limit the rise time, followed by an inverter with hysteresis. With this circuit there 

is a significant delay from the release of the switch until the fall of the output. 

 

10   F

+3.3 V

K64

input port

1 k

22



74HC14

v i vo

C

R

 

 

Figure 8.3 

If the input switch is closed, its resistance will be about  1.0 , and the output of 

the 74HC14 will be high (logic 1). If the input switch is open, its resistance will 

be infinite, and the output of the 74HC14 will be low (logic 0). The  22  is used 

to limit the discharge current when the switch is pressed (which causes sparks 

that produce carbon deposits to build up until the switch no longer works). 

A hardware circuit 
that removes switch 
bounce 
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The touch timing with and without the capacitor is shown below: 
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Figure 8.4 

Notice that there is minimal delay between the touching of the switch and the 

transition of the Schmitt inverter output. This is because the capacitor is quickly 

discharged through the  22  resistor. 

With a capacitor-based debounced switch, there is 

minimal delay between the closing of the switch and the 

rising edge at the microcontroller input. 

(9.1) 

 

Switch touch 
bounce is removed 
by the capacitor 
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The voltage rise during a bounce interval when the switch is open is given by: 

   RCt

OH eVtv  1  
(9.2) 

The capacitor is chosen such that the input voltage does not exceed the input 

high threshold voltage of the Schmitt trigger during the bouncing. 

EXAMPLE 8.2 Choosing a Capacitor for Debouncing 

In the example,  k 1R , and the bounce time is ms 5t . 
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0 V
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= 0t
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We choose C so that the voltage rise doesn’t pass the Schmitt trigger input high 

threshold of V 2TV  until ms 5  has passed: 
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Therefore, choose μF 10C . 

 

 

Timing used to 
calculate the 
capacitor value 
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The release timing with and without the capacitor is shown below: 
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Figure 8.5 

There is a significant delay from the release of the switch until the fall of the 

output, since the capacitor charges up slowly through the k 1  resistor. 

With a capacitor-based debounced switch, there is a large 

delay between the opening of the switch and the falling 

edge at the microcontroller input. 

(9.3) 

 

Switch release 
bounce is also 
removed by the 
capacitor 
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Hysteresis is required on the inverter logic gate because the capacitor causes the 

“logic” input to rise very slowly. Thus, while the input voltage is in the transition 

region between “low” and “high”, a regular logic gate will be operating in its 

linear region, and the output will be undefined. Furthermore, any noise on the 

input whilst in the transition region would cause a regular gate to toggle with the 

noise. The hysteresis removes the extra transitions that might occur with a 

regular gate: 
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Figure 8.6 

 

Timing showing why 
a logic gate with 
hysteresis is used 
instead of a regular 
logic gate 
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8.1.3 Software Debouncing 

It is less expensive to remove switch bounce using software methods. It is 

appropriate to use a software approach because the software is fast compared to 

the bounce time. Typically we use a pull-up resistor to convert the switch 

position into a CMOS-level digital signal. 

 

touch

+3.3 V

0 V

10 ms

release

10 ms

K64

PTA3

+3.3 V

 

 

Figure 8.7 

There are several ways to implement software debouncing. In the examples 

below, it is assumed that the switch bounce is less than 10 ms. 

A switch interface 
for software 
debouncing 
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EXAMPLE 8.3 Software Debouncing – Simple Time Delay 

In this example, the microcontroller is dedicated to the interface and does not 

perform any other functions while the routines are running. The routine waits for 

the switch to be pressed (PTA3 low) and returns 10 ms after the switch is pressed. 

We set up the FlexTimer module 0 (FTM0) as a free-running counter, and the 

clock module is 50 MHz. We use Channel 1 as a simple output compare and poll 

its flag: 

void WaitPress(void) 
{ 
  // Loop here until switch is pressed 
  while ((GPIOA->PDIR & 0x00000008) == 0x00000008); 
 
  // Set the compare value 10 ms into the future 
  FTM0->CONTROLS[1].CnV = FTM0->CNT + 15625; 
 
  // Wait for switch to stop bouncing 
  while ((FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) == 0); 
} 
 
void WaitRelease(void) 
{ 
  // Loop here until switch is released 
  while ((GPIOA->PDIR & 0x00000008) == 0); 
 
  // Set the compare value 10 ms into the future 
  FTM0->CONTROLS[1].CnV = FTM0->CNT + 15625; 
   
  // Wait for switch to stop bouncing 
  while ((FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) == 0); 
} 
 

void PortA_Init(void) 
{ 
  // Enable clock gate for Port A to enable pin routing 
  SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; 
 
  // Set Port A Bit 0 as an input 
  GPIOA->PDDR &= ~0x00000001;  
  // PORTA_PCR0: ISF=0, MUX=1, PE = 0, PS = 0 
  PORTA->PCR0 = PORT_PCR_ISF_MASK | PORT_PCR_MUX(1);  
} 
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void FTM_Init(void) 
{ 
  // Enable clock gate to FTM0 module 
  SIM->SCGC6 |= SIM_SCGC6_FTM0_MASK; 
 
  // Ensure the counter is a free-running counter 
  FTM0->CNTIN = 0; 
  FTM0->MOD = 0xffff; 
  FTM0->CNT = 0; 
 
  // Use the system clock for the counter (50 MHz) 
  // and set the prescale to 32 
  FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PS(5); 
 
  // Set Channel 1 as an output compare 
  FTM0->CONTROLS[1].CnSC |= FTM_CnSC_MSA_MASK; 
   
  // Enable the timer module in FTM mode 
  FTM0->MODE |= FTM_MODE_FTMEN_MASK; 
} 

 



8.13 

PMcL Input Switches Index 

2020  8 - Interfacing 

EXAMPLE 8.4 Software Debouncing - Waiting for Stability 

In this example, the microcontroller reads the current value of the switch. If the 

switch is currently bouncing, it will wait for stability. 

start timer

10 ms wait

delay not over

read switch

same

return(old)

old=switch

old==switch

different

delay is over

 

A return value of 0 means pressed (PTA3 = 0), and 1 means not pressed 

(PTA3 = 1). Notice that the software always waits in a “do nothing” loop for 10 

ms. This inefficiency can be eliminated by placing the switch I/O in a foreground 

interrupt-driven thread. 
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uint32_t ReadPTA3(void) 
{ 
  uint32_t old; 
 
  // Get current value 
  old = (GPIOA->PDIR & 0x00000008); 
  // Set the compare value 10 ms into the future 
  FTM0->CONTROLS[1].CnV = FTM0->CNT + 15625; 
  // Unchanged for 10 ms? 
  while ((FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) == 0) 
  { 
    // Changed? 
    if (old != (GPIOA->PDIR & 0x00000008)) 
    { 
      old = (GPIOA->PDIR & 0x00000008); // new value 
      FTM0->CONTROLS[1].CnV = FTM0->CNT + 15625; // restart delay 
    } 
  } 
  return old; 
} 
 

void PortA_Init(void) 
{ 
  // As before... 
} 
 
void FTM_Init(void) 
{ 
  // As before... 
} 

 

 

With a software-based debounced switch, the signal 

arrives at the microcontroller input without delay, but 

software delays may occur at either touch or release. 

(9.4) 

Input capture is a convenient mechanism to detect changes on the digital signal. 

The input capture can be configured to interrupt either on the rise , the fall or 

both the rise and fall. Because of the bounce, any of these modes will generate 

an interrupt request when the key is touched or released. A combination of input 

capture and output compare interrupts allows the switch interface to be 

performed in the background. 
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EXAMPLE 8.5 Software Debouncing - Interrupts 

This example simply counts the number of times the switch is pressed. The IC0 

interrupt occurs immediately after the switch is pressed and released. Because 

the IC0 handler disarms itself, the bounce will not cause additional interrupts. 

The OC1 interrupt occurs 10 ms after the switch is pressed and 10 ms after the 

switch is released. At this time the switch position is stable (no bounce). 

switch
pressed

released

C1V=CNT+15625

CHF0 set

EXC_RETURN

occurs on
press and
release

IC0disarm

OC1arm

CHF1 set
occurs 10 ms
after press
and release

OC1disarm

IC0arm

Count++

EXC_RETURN
 

The first IC0 interrupt occurs when the switch is first touched. The first OC1 

interrupt occurs 10 ms later. At this time the global variable Count is 

incremented. The second IC0 interrupt occurs when the switch is released. The 

second OC1 interrupt does not increment the Count but simply rearms the input 

capture system. The initialization routine initializes the system with IC0 armed 

and OC1 disarmed. 

+3,3 V

0 V

K64

PTA3

+3.3 V

IC0

10 ms

OC1 IC0

10 ms

OC1

Count++
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// Counts the number of button pushes 
// Button connected to PTA3 = Ch0 of FTM0 
 
uint32_t Count;              // Number of button pushes 
const uint16_t WAIT = 15625; // The bounce wait time 
 
void PortA_Init(void) 
{ 
  // Enable clock gate for Port A to enable pin routing 
  SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; 
 
  // Set up PTA3 to be an input on FTM0 Ch0 
  // PORTA_PCR3: ISF=0, MUX=3 
  PORTA->PCR3 = PORT_PCR_MUX(3); 
} 
 
void FTM_Init(void) 
{ 
  // Disable interrupts 
  __disable_irq(); 
 
  // Enable clock gate to FTM0 module 
  SIM->SCGC6 |= SIM_SCGC6_FTM0_MASK; 
 
  // Ensure the counter is a free-running counter 
  FTM0->CNTIN = 0; 
  FTM0->MOD = 0xffff; 
  FTM0->CNT = 0; 
 
  // Use the system clock for the counter (50 MHz) 
  // and set the prescale to 32 
  FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PS(5); 
 
  // Set Channel 0 as an input capture 
  FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_MSA_MASK 
  // Capture on rising or falling edge 
  FTM0->CONTROLS[0].CnSC |= FTM_CnSC_ELSB_MASK | FTM_CnSC_ELSA_MASK; 
  // Clear the IC0 flag if it is set 
  FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
  // Enable interrupts on Channel 0 
  FTM0->CONTROLS[0].CnSC |= FTM_CnSC_CHIE_MASK; 
 
  // Set Channel 1 as an output compare - output pin disabled 
  FTM0->CONTROLS[1].CnSC |= FTM_CnSC_MSA_MASK; 
  // Disable interrupts on Channel 1 
  FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHIE_MASK; 
 
  // Enable the timer module in FTM mode 
  FTM0->MODE |= FTM_MODE_FTMEN_MASK; 

   
  // Reset counter to zero 
  Count = 0; 
 
  // Enable interrupts 
  __enable_irq(); 
} 
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void FTM0_IRQHandler(void) 
{ 
  uint8_t channelNb; 
 
  // Respond to IC0 interrupt if it occurred 
  if (FTM0->CONTROLS[0].CnSC & FTM_CnSC_CHIE_MASK) 
  { 
 if (FTM0->CONTROLS[0].CnSC & FTM_CnSC_CHF_MASK) 
 { 
      // Clear interrupt flag 
      FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn IC0 interrupt off 
      FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHIE_MASK; 
      // Turn OC1 interrupt on 
   FTM0->CONTROLS[1].CnSC |= FTM_CnSC_CHIE_MASK; 
   // Wait for 10 ms 
      FTM0->CONTROLS[1].CnV = FTM0->CNT + WAIT; 
    } 
  } 
 
  // Respond to OC1 interrupt if it occurred 
  if (FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHIE_MASK) 
  { 
 if (FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) 
 { 
      // Clear interrupt flag 
      FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn OC1 interrupt off 
      FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHIE_MASK; 
   // Clear the IC0 flag if it is set 
   FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn IC0 interrupt on 
   FTM0->CONTROLS[0].CnSC |= FTM_CnSC_CHIE_MASK; 
   // Increment counter if button is pressed 
   if ((GPIOA->PDIR & 0x00000008) == 0) 
     Count++; 
    } 
  } 
} 
 

Note that the FTM0 ISR has taken on the pre-declared name of FTM0_IRQHandler 

which will be automatically placed in the vector table by the linker. 
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EXAMPLE 8.6 Software Debouncing – Interrupts with Low Latency 

The latency of the previous example is defined as the time when the switch is 

touched until the time when the count is incremented. Because of the delay 

introduced by the OC1 interrupt, the latency is 10 ms. If we assume the switch is 

not bouncing (currently being touched or released) at the time of the 

initialization, we can reduce this latency to less than μs 1  by introducing a global 

Boolean variable called SwitchPushed. If SwitchPushed is false, then the switch 

is currently not pushed and the software is searching for a touch. If SwitchPushed 

is true, then the switch is currently pushed and the software is searching for a 

release. 

// Counts the number of button pushes 
// Button connected to PTA3 = Ch0 of FTM0 
 
uint32_t Count;              // Number of button pushes 
const uint16_t WAIT = 15625; // The bounce wait time 
bool SwitchPushed;           // State of button 
  // bFALSE means open,  looking for a touch 
  // bTRUE means closed, looking for release 
 
void FTM_Init(void) 
{ 
  // Disable interrupts 
  __disable_irq(); 
 
  // Enable clock gate to FTM0 module 
  SIM->SCGC6 |= SIM_SCGC6_FTM0_MASK; 
 
  // Ensure the counter is a free-running counter 
  FTM0->CNTIN = 0; 
  FTM0->MOD = 0xffff; 
  FTM0->CNT = 0; 
 
  // Use the system clock for the counter (50 MHz) 
  // and set the prescale to 32 
  FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PS(5); 
 
  // Set Channel 0 as an input capture 
  FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_MSA_MASK 
  // Capture on rising or falling edge 
  FTM0->CONTROLS[0].CnSC |= FTM_CnSC_ELSB_MASK | FTM_CnSC_ELSA_MASK; 
  // Clear the IC0 flag if it is set 
  FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
  // Enable interrupts on Channel 0 
  FTM0->CONTROLS[0].CnSC |= FTM_CnSC_CHIE_MASK; 
 
  // Set Channel 1 as an output compare - output pin disabled 
  FTM0->CONTROLS[1].CnSC |= FTM_CnSC_MSA_MASK; 
  // Disable interrupts on Channel 1 
  FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHIE_MASK; 
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  // Enable the timer module in FTM mode 
  FTM0->MODE |= FTM_MODE_FTMEN_MASK; 
 
  // Reset counter to zero 
  Count = 0; 
 
  // Get initial state of button 
  SwitchPushed = ((GPIOA->PDIR & 0x00000008) == 0); 
 
  // Enable interrupts 
  __enable_irq(); 
} 
 
void FTM0_ IRQHandler (void) 
{ 
  uint8_t channelNb; 
 
  // Respond to IC0 interrupt if it occurred 
  if (FTM0->CONTROLS[0].CnSC & FTM_CnSC_CHIE_MASK) 
  { 
 if (FTM0->CONTROLS[0].CnSC & FTM_CnSC_CHF_MASK) 
 { 
      // Clear interrupt flag 
      FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn IC0 interrupt off 
      FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHIE_MASK; 
      // Turn OC1 interrupt on 
   FTM0->CONTROLS[1].CnSC |= FTM_CnSC_CHIE_MASK; 
   // Wait for 10 ms 
      FTM0->CONTROLS[1].CnV = FTM0->CNT + WAIT; 
      // An edge occurred - toggle state 
       SwitchPushed = !SwitchPushed; 
       // If a touch occurred, increment the counter 
      if (SwitchPushed) 
        Count++; 
    } 
  } 
 
  // Respond to OC1 interrupt if it occurred 
  if (FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHIE_MASK) 
  { 
 if (FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) 
 { 
      // Clear interrupt flag 
      FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn OC1 interrupt off 
      FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHIE_MASK; 
   // Clear the IC0 flag if it is set 
   FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; 
      // Turn IC0 interrupt on 
   FTM0->CONTROLS[0].CnSC |= FTM_CnSC_CHIE_MASK; 
    } 
  } 
} 
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Note that the FTM0 ISR has taken on the pre-declared name of FTM0_IRQHandler 

which will be automatically placed in the vector table by the linker. 

Now the latency is simply the time required for the microcontroller to recognize 

and process the input capture interrupt. Assuming there are no other interrupts, 

this time is less than 50 cycles. 
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8.2 Analog to Digital Conversion 

An analog-to-digital converter (ADC) is used to quantize an external analog 

signal so as to represent it digitally. If the samples of an analog signal are taken 

at a sufficiently high rate, then the samples furnish enough information for the 

analog signal to be reconstructed exactly. Once the analog signal has been 

converted to a digital form, it can be filtered, manipulated, and processed. The 

processed signal can then be converted back to an analog signal through the use 

of a digital-to-analog converter (DAC). 

8.2.1 ADC Module 

The Analog-to-Digital Converter (ADC) module has the capability of sampling 

up to four pairs of differential and 24 single-ended analog channels with either 

8-bit, 10-bit, 12-bit or 16-bit quantization. The output format is in 2’s 

complement 16-bit sign extended for differential mode and unsigned 16-bit for 

single-ended modes. The signed notation is useful when converting shifted 

bipolar inputs (a shifted bipolar input will have its “zero” at exactly half way 

between the minimum and maximum conversion values). The ADC can also be 

set up to automatically sample a sequence of analog channels. 

A simplified block diagram of the ADC module is shown below: 
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Figure 8.8 

The analog multiplexer (MUX) is just an analog switch that connects one of the 

analog channels to the sample-and-hold (S/H) block. 

A simplified ADC 
block diagram 

The analog 
multiplexer is just a 
switch 
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The sample-and-hold circuit consists of a sample capacitor and a buffer. It is 

important to take into account the characteristics of the S/H block in the design 

of the analog interface hardware external to the microcontroller. The external 

hardware’s output resistance and the sample capacitor form a first-order lowpass 

filter, also known as a single time constant (STC) circuit, or just a lowpass RC 

circuit. This first-order filter determines the amount of time that is needed to 

charge the sample capacitor to a voltage that is almost equal to the true analog 

voltage. 
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Figure 8.9 

The voltage held on the sample capacitor is fed into the analog-to-digital 

converter. There are many types of ADC – the type used in the K64 series of 

microcontrollers is a successive approximation architecture (SAR). It functions 

by comparing the stored analog sample voltage with a series of digitally 

generated analog voltages. By following a binary search algorithm, the ADC 

locates the approximating voltage that is nearest to the sampled voltage. 

The results of the analog-to-digital conversions are stored in separate result 

registers. The completion of an analog-to-digital conversion can be used to 

trigger an interrupt. 

Further Information 
A complete description of the ADC module can be found in Chapter 35 of 

Freescale’s K64 Sub-Family Reference Manual. 

The sample and 
hold block is used to 
charge a sample 
capacitor to a 
voltage very close to 
the applied analog 
voltage 

Analog input circuit, 
showing external 
resistance and 
sample capacitor 
that form a first-
order lowpass filter 
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8.3 Digital to Analog Conversion 

The K64 has two on-board 12-bit low-power, general-purpose digital-to-analog 

converters. The output of the DAC can be placed on an external pin or set as one 

of the inputs to the analog comparators, or ADC. 

A simple DAC can also be made from a pulse width modulated (PWM) 

waveform. If a PWM waveform is passed through a lowpass filter, and the PWM 

has a sufficiently high frequency, then the output of the filter will be a smooth 

analog waveform corresponding to the average value of the PWM taken over 

many periods. 
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8.3.1 Pulse Width Modulator 
A pulse width modulator is a device which varies the duty cycle (the “on time” 

versus “total time”, in percent) of a square wave. They can be used to turn 

transistors on and off in an external circuit to drive devices such as DC motors 

and 3-phase AC motors. They can also be used to create a simple digital-to-

analog converter. 

In the K64, PWM waveforms are generated by the FlexTimer module (FTM). A 

conceptual block diagram of the PWM functionality is shown below: 
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Figure 8.10 

Each of the 8 channels of the FTM can be set up as a PWM. Each channel uses 

the common 16-bit counter CNT, and the common modulus value held in MOD. 

For each channel, the counter compares to two values: a duty value held in CnV; 

and the common period value held in MOD. In its simplest mode of operation, 

known as edge-aligned PWM, the output is set high when the counter equals the 

period value, and the output is set low when the counter equals the duty value. 
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Figure 8.11 

A simplified PWM 
block diagram 

The PWM uses a 
duty value and a 
period value 

PWM waveform 
generation 



8.25 

PMcL Digital to Analog Conversion Index 

2020  8 - Interfacing 

Various constant duty cycle waveforms are shown below: 
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Figure 8.12 

The generation of fixed duty cycle square waves is only one application of the 

PWM function. It is more generally used to modulate the pulse width of the 

square wave. Such a waveform is shown below: 

 

PWM waveform that approximates a sine wave  

 

Figure 8.13 

Such a PWM waveform can be used to generate a continually varying analog 

signal. The area under the PWM waveform approximates the area under the 

desired analog waveform. The PWM waveform needs to be filtered by external 

hardware to remove the high frequency components, and to leave just the 

fundamental and DC components. You can think of the analog output as 

responding to the average value of the PWM waveform (over a small time 

interval). 

Various constant 
duty cycle PWM 
waveforms 

A PWM waveform 
that approximates a 
sine wave 
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An external filter is usually not required when the device being driven provides 

an inherent filtering function. For example, a DC motor, which exhibits 

mechanical inertia, cannot respond to the rapid fluctuations of the PWM 

waveform – but it can respond to the slowly varying “average” value of the 

waveform. In this case, the DC motor speed would be seen to vary sinusoidally. 

There may also be an audible “hum” or “”buzz” due to the high frequency 

components being within the range of human hearing (20 Hz – 

20 kHz). If such a hum is undesirable, then the designer can increase the 

frequency of the PWM wave so that the high frequency components are out of 

audio range. 

If an analog voltage is required, a simple buffered RC circuit can be used: 
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Figure 8.14 

Further Information 
A complete description of the FlexTimer Module can be found in Chapter 40 of 

Freescale’s K64 Sub-Family Reference Manual. 

Generation of an 
analog voltage via a 
PWM output 
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9 Fixed-Point Processing 
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Introduction 

Most microprocessors are fixed-point devices – they only have support for 

arithmetic with integers. For example, the ARM® Cortex®-M3 processor does 

not have a floating-point unit (FPU). The Cortex®-M4 is a relatively special 

MCU because it has the option to include hardware that directly supports single-

precision floating-point numbers – but at the expense of increased cost and 

power consumption. PC processors since the 80486DX (released in 1989) have 

a “math coprocessor on chip”, and all subsequent generations have included an 

FPU. This is why PCs are fast, and expensive – a large proportion of the die area 

and power consumption of the CPU is taken up by the FPU. 

If you do not use the FPU then compiled code can be used on another Cortex-M 

microcontroller product that does not have FPU support, such as the M3. 

Floating-point operations can be emulated in software on a fixed-point processor 

using special maths libraries, but the resulting overhead results in programs that 

run 40-100 times slower than a program that uses just fixed-point operations. 

Therefore, when cost, power consumption and speed (i.e. time) is of primary 

importance in a design, it is necessary to perform arithmetic operations using a 

fixed-point processor. We therefore need to examine processing techniques that 

use integers but provide an interpretation of the resulting numbers as having 

fractional parts. 

Fixed-point means 
‘integer’ 

Fixed-point 
calculations are 
important when time 
is important 
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9.1 Q Notation 

Fixed-point calculations are capable of performing fractional mathematics if an 

implied binary point is used in the interpretation of the integer used to represent 

a fractional quantity. In accordance with accepted digital signal processing 

(DSP) notation, we use what is called “Q notation”. The “Q” stands for quotient, 

or a number with a fractional part. 

Most quantities in signal processing use either 16 bits or 32 bits for their 

representation. To express a fractional part, an implied binary point is required 

for each quantity. It is up to us as designers to keep track of these implied binary 

points throughout any and all calculations. For each quantity, we express its 

fractional part with the notation mQn where n is an integer ranging from 0 to 16 

for 16-bit quantities or 0-32 for 32-bit quantities. The m tells how many bits are 

used in total, either 16 or 32. The n tells how many bits are to the right of the 

implied binary point. 

Just like a decimal point, a binary point interprets digits to the right of it as being 

negative powers of the base. A comparison of a decimal number and its 

equivalent binary number is given below: 

 

5.625

Decimal number Equivalent binary number

101.101

=5 x 10 + 6 x 10 + 2 x 10 + 5 x 10
0 -1 -2 -3

=1 x 2 + 0 x 2 + 1 x 2 + 1 x 2 + 0 x 2 + 1 x 2
0 -1 -2 -32 1

Decimal point Binary point

 

 

Figure 9.1 

Comparison of a 
decimal number and 
equivalent binary 
number 

Mapping integers to 
fractional quantities 
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For example, a 6Q3 number implies 3 bits to the right of the implied binary point. 

A mapping of the CPU’s integer values to quantities that we interpret is made as 

follows: 

  

1 0 01 1 1 1 0 01 1 1 1 0 01 1 1

Register value Interpreted as a 6Q0 number Interpreted as a 6Q3 number

= 45 / 2   = 45 / 8 = 5.625
3

 = 45 = 45 / 2   = 45 / 1 = 45
0

 

 

Figure 9.2 

From this, it should be apparent that to interpret a register value as a mQn value, 

we simply divide the raw value by n2 . To store a fractional number in mQn 

notation, we multiply it by n2  and truncate or round the answer to an integer. 

This inherent round-off error cannot be prevented. 

For example, if we wished to store the number 5.628 in 16Q3 notation, we get: 

 
45 as store

024.458628.52628.5 3




 

(9.1) 

In this case it is impossible to distinguish between 5.625 and 5.628 in 16Q3 

notation. 

The resolution of mQn numbers can therefore be expressed as n2 . For example, 

in 16Q3 notation the resolution of the stored numbers is 125.02 3 
. Every 

number in Q3 notation will be a multiple of 0.125. Clearly it is desirable to have 

a large n to store fractional values with the greatest accuracy. It is in fact 

impossible to store 5.628 exactly (no round-off error). The best we can do using 

32-bits is to store the integer part (5 in 5.628) using the least amount of bits (3 

in this case) and use the rest for the fractional part. 
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We therefore would use a 32Q29 number: 

 

Interpreted as a Q29 number = 3021509492 / 2     = 3021509492 / 536870912 = 5.6279999999
29

Register value  = 3021509492

1 0 11 1 10 0 1 1 10 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 10 0 0

01 0 11 1 10 0 1 1 10 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 10 0

 

 

Figure 9.3 

The reason we can’t store this number exactly is because when we multiply 

5.628 by successive powers of two to obtain an integer, the last digits form a 

cyclic pattern, that will never reach a multiple of 10: 

 

etc.

192.3602096.180

096.1802048.90

048.902024.45

024.452512.22

512.222256.11

256.112628.5













 (9.2) 

This shouldn’t really worry us, because a 32Q29 number has a resolution of 

929 108626451.12   . The error in storing the above number as shown is 

therefore less than 0.00000003 %.  

As an aside, we should not forget that using floating-point numbers does not 

increase our accuracy. Accuracy is determined purely by the number of bits, not 

in the way the number is stored. It shocks some people to find that floating-point 

units cannot store the number 0.1, precisely because of the problem stated above. 

However, the floating-point number can get very close to 0.1 in the same way 

that we can get very close to 5.628. 

5.628 as a 32Q29 
number 
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9.2 Other Notations 

The Q notation is convenient because it expresses a number as powers of two. It 

will be shown later that this provides an efficient method to convert numbers 

from one Q representation to another. 

We can also express numbers using a base other than 2. For example, suppose 

we say that the number 1000 is to be interpreted as 1. We say that the number 

has 1000 as a base, or unity value, and that 1000 = 1 per unit (p.u.). The number 

5.628 in this method would be represented as 5628, which is exact. Why don’t 

we use this method over Q notation? The answer is because other numbers can 

now not be represented exactly. Remember – the fundamental limit in accuracy 

is set by the number of bits, and not how they are interpreted. 

Complications arise in calculations involving multiplications and divisions. For 

example, multiplying two numbers with a base of 1000 produces a number 

whose base is 1000000. To normalise this result back to 1000, the result would 

have to be divided by 1000 – this division is expensive in terms of CPU time and 

is to be avoided. 

It should be noted that Q notation is just representing numbers with bases that 

are multiples of two. For example a 16Q3 number is a number with a base or 

p.u. value of 8. 
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9.3  Fixed-Point Calculations 

9.3.1 Multiplication 

Multiplying two numbers together changes the base or “per unit” value. For 

example, consider the following multiplication: 

 

1 0 01 1 1

0 01 1 1 0 01

Register value = 45
Interpreted as a 6Q3 number = 45 / 2   = 45 / 8 = 5.625

3
x

Register value = 10

0 0 0 Register value = 450

Interpreted as a 5Q2 number = 10 / 2   = 10 / 4 = 2.5
2

Interpreted as an 11Q5 number = 450 / 2   = 450 / 32 = 14.0625
5

10 010

 

 

Figure 9.4 

Two things happen – 1) the length of the result is equal to the sum of the lengths 

of the two multiplicands and 2) the Q notation of the result is equal to the sum 

of the individual Q notations. 

We can state this formally as follows: 

   jnimjinm  Q QQ  (9.3) 

The ARM® Cortex®-M4 processor has two multiply instructions – one giving a 

32-bit result, and one giving a 64-bit result. The C compiler will not 

automatically increase the result length – two 32-bit operands will theoretically 

give a 64-bit result for multiplication, but the C compiler will use the instruction 

with a 32-bit result to preserve “type”. Even if we could arrange for a 64-bit 

result (we can with assembly language), we can’t multiply the result by another 

number, because that would involve a 64-bit x 32-bit multiplication which is not 

directly supported by a 32-bit CPU. We have to emulate what a floating-point 

unit would do – normalise. This means the 64-bit result must be converted back 

to a 32-bit number that has some arbitrary Q notation. For example, if we wished 

to convert a result from a 64Q5 number (base 32) to a 32Q3 (base 8) number, 

we shift it right 2 bits (divide by 4 which is the amount the base has changed), 

and only keep the lower 32 bits. We should note that in shifting, we inevitably 

Multiplication 
changes the base 
value 
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lose accuracy. This is the price paid for maintaining successive calculation 

results within 32-bits. 

We can see now why Q notation is efficient – normalisation is carried out by 

shifts which are very quick in terms of CPU time (much quicker than a divide – 

1 cycle time for a shift, compared with 2-12 cycles for a divide on the K64). 

9.3.2 Division 

For division, we similarly have: 

   jnimjnmjinm  ,Q QQ  (9.4) 

For example, a 32Q16 number divided by a 16Q8 number results in a 32Q8 

quotient. 

9.3.3 Addition 

Additions must be performed with numbers of the same Q notation. If they are 

different, then normalisation to the larger base is required. For example, to add 

a 6Q3 number and a 5Q2 number, we have to shift the 5Q2 number to the left by 

one to create a 6Q3 number before adding: 

 

0 01 0

0

1

Register value = 45
Interpreted as a Q3 number = 45 / 2   = 45 / 8 = 5.625

3+

Register value = 20

0 0
Register value = 65

Interpreted as a Q3 number = 20 / 2   = 20 / 8 = 2.5
3

Interpreted as a Q3 number = 65 / 2   = 65 / 8 = 8.125
3

10 010

1 0 01 1 1

=
10 010

1 0 01 1 1 +

 

 

Figure 9.5 

9.3.4 Subtraction 

Similarly, subtraction requires normalisation of the bases so that the larger base 

is common. 

Normalisation 
before addition 
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EXAMPLE 9.1 Fixed-Point Calculations 

We will develop the equations that K64 software could need to implement a 

digital scale. Assume the range of a position measurement system is 0 to 

3 m, and the system uses the K64’s ADC to perform the measurement. We will 

assume that the ADC has been put into single-ended 10-bit mode so that the 

digital output varies from 0 to 1023. Suppose also that the analog input range is 

0 to +3.3 V. Let x be the distance to be measured in metres, inV  be the analog 

voltage in volts and N be the 10-bit digital ADC output. Then the equations that 

relate the variables are: 

1024/*3.3 NVin              and              V 3.3/*m 3 inVx   

Thus: 

NNx *0029296875.01024/*3         where x is in m 

From this equation, we can see that the smallest change in distance that the ADC 

can detect is about 0.003 m. In other words, the distance must increase or 

decrease by 0.003 m for the digital output of the ADC to change by at least one 

number. It would be inappropriate to save the distance as an integer, because the 

only integers in this range are 0, 1, 2 and 3. To save power, we decide not to use 

the K64’s FPU and therefore the distance data will be saved in fixed-point 

format. Decimal fixed-point is chosen because the distance data for this distance-

meter will be displayed for a human to read. A fixed-point resolution of 0.001 m 

could be chosen, because it matches the resolution determined by the hardware. 

The table below shows the performance of the system with the resolution set to 

0.001 m. The table shows us that we need to store the fixed-point number in a 

signed or an unsigned 16-bit variable. 

x (m) 

 

distance 

Vin (V) 

 

analog input 

N 

 

ADC input 

I 

internal 

representation 

 

Approximation 
(41 * N + 7) / 14 

0 0.000 0 0 0 

0.003 0.003 1 3 3 

0.600 0.660 205 600 600 

1.500 1.650 512 1500 1499 

3.000 3.300 1023 3000 2996 
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It is very important to carefully consider the order of operations when 

performing multiple integer calculations. There are two mistakes that can 

happen. The first error is overflow, and it is easy to detect. Overflow occurs when 

the result of a calculation exceeds the range of the number system. The following 

fixed-point calculation, although mathematically correct, has an overflow bug: 

I = (3000 * N) / 1024; 

because when N is greater than 21, 3000*N exceeds the range of a 16-bit 

unsigned integer. If possible, we try to reduce the size of the integers. In this 

case, an approximate calculation can be performed without overflow 

I = (41 * N) / 14; 

You can add one-half of the divisor to the dividend to implement rounding. In 

this case: 

I = (41 * N + 7) / 14; 

The addition of “7” has the effect of rounding to the closest integer. 

For example, when N = 4, the calculation (41 * 4) / 14 = 11, whereas the 

“(41 * 4 + 7) / 14” calculation yields the better answer of 12. 

No overflow occurs with this equation using unsigned 16-bit maths, because the 

maximum value of 41 * N is 41943. If you cannot rework the problem to 

eliminate overflow, the best solution is to use promotion. Promotion is the 

process of performing the operation in a higher precision. For example, in C we 

cast the input as unsigned long, and cast the result as unsigned short: 

I = (unsigned short)((3000 * (unsigned long)N)/1024); 
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Again, you can add one-half of the divisor to the dividend to implement 

rounding. In this case: 

I = (unsigned short)((3000 * (unsigned long)N + 512) / 1024); 

The other type of error we may experience with fixed-point arithmetic is called 

drop out. Drop out occurs after a right shift or a divide, and the consequence is 

that an intermediate result loses its ability to represent all of the values. It is very 

important to divide last when performing multiple integer calculations. If you 

divided first: 

I = 41 * (N / 14); 

then the values of I would be only 0, 41, 82, … or 2993. 

The display algorithm for the unsigned decimal fixed-point number with 0.001 

resolution is simple: 

1) display (I / 1000) as a single digit value 

2) display a decimal point 

3) display (I % 1000) as a three-digit value 

4) display the units “m” 
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9.3.5 Fixed-Point Operations Using a Universal 32Q16 Notation 

Finding the optimum choice of Q notation for a fixed-point variable requires 

knowing what range of values it will have during execution. When range and 

resolution requirements are modest, however, a simple approach is to use 32 bits 

for all fixed-point numbers, with 16 bits in both the whole and the fractional 

parts, i.e. a 32Q16 notation: 

 

Whole part

15

Fractional part

Implied binary point

01631

 

 

Figure 9.6 

This is the method used by Sony (original Playstation) and Nintendo (DS, 

Gamecube, Gameboy Advance) in their 3D graphics engines to achieve fast 

processing performance without an FPU. 

With all operands using the same notation, addition and subtraction no longer 

require pre-alignment of operands. Multiplication and division, however, still 

require some adjustment or else the result will not have the same notation as the 

operands. Remember that when you multiply two fixed-point operands together, 

their Q notations add: 

Q32 64Q1632Q1632   (9.5) 

 

32Q16 notation 
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What we need is a product in 32Q16 format. In other words, the integer product 

needs to be right-shifted by 16 bits. Multiplying the two 32-bit integers produces 

a 64-bit product, with an implied binary point in the middle. Right-shifting this 

product by 16 bits and then putting the result back into a 32-bit location means 

we are discarding 16 bits from each end of the integer product: 

 

Whole part

15

Fractional part Multiplicand

01631

Whole part Fractional part Multiplier

Whole part

15

Discarded Product

01631

Discarded

47

Fractional part

324863

 

 

Figure 9.7 

Discarding the least significant 16 bits simply causes some loss of precision; 

discarding the most significant 16 bits requires imposing a maximum magnitude 

restriction on the operands to avoid overflow. 

When you divide one 32Q16 fixed-point operand by another, we require the 

result to be a 32Q16 number. We therefore need a 64Q32 dividend, since: 

Q16 32Q1632Q3264   (9.6) 

We create a 64Q32 dividend by sign extending the original 32Q16 dividend, and 

then left-shifting by 16 bits. The division is then done with a 64-bit dividend and 

a 32-bit divisor, to give a 32-bit quotient: 

 

Whole part

15

Fractional part Quotient

01631

Whole part Fractional part Divisor

Whole part

15

Filled with 0's Dividend

01631

Sign-extended

47

Fractional part

324863

÷

 

 

Figure 9.8 

Using integer 
multiplication to 
produce a fixed-
point product 

Using integer 
division to produce a 
fixed-point quotient 
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EXAMPLE 9.2 Fixed-Point Calculations Using Universal 32Q16 Notation 

We can use fixed-point algorithms to perform complex operations using the 

integer functions of our K64. For example, consider the following digital filter 

calculation: 

y = x - 0.0532672 * x1 + x2 + 0.0506038 * y1 - 0.9025 * y2; 

In this case, the variables y, y1, y2, x, x1, and x2 are all 32Q16 fixed-point 

integers, and we need to express the constants in 32Q16 fixed-point format. The 

value 0532672.0  is approximated by 3491655360532672.0  . The 

value 0.0506038 will be approximated by 3316655360506038.0  . Lastly, 

the value 9025.0  will be approximated by 59146655369025.0  . The 

fixed-point implementation of this digital filter is: 

int64_t t1, t2, t3, t4; 
 
t1 =  -3491 * (int64_t)x1; 
t2 =   3316 * (int64_t)y1; 
t3 = -59146 * (int64_t)y2; 
t4 = t1 + t2 - t3; 
y = x + x2 + (int32_t)(t4 >> 16); 

Note that since we are using C types, we need to allocate space for a 64-bit 

product, and thus the 32-bit integer variables are promoted and sign-extended to 

64-bits using a typecast. If we did not do this, then the multiplication of two 32-

bit quantities may overflow the 32-bit storage space. 

The approximations of the constants using 32Q16 notation may be unsuitable if 

they do not give us enough resolution. In that case, we have to sacrifice speed 

and use a different non-power-of-2 base or increase the resolution of the Q 

notation numbers. 
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9.4  Square Root Algorithm for a Fixed-Point Processor 

The evaluation of the square root of a number using integer arithmetic is a 

common operation in many embedded systems. For example, in the calculation 

of RMS quantities, such as voltage and current, a square root is involved. Any 

time a complex number is used (such as in an FFT), it is convenient to know its 

magnitude, which involves Pythagoras’ Theorem and a square root operation. 

There are numerous algorithms used on fixed-point processors to find square 

roots. Many of them are optimised in assembly language, and many are 

optimised on a “per bit” basis, i.e. a square root may take 3 or 4 instruction cycles 

per bit, plus a few cycles extra for initialising/ finalising. We will examine a 

more general technique which may be optimal in scenarios where a good 

estimate of the root is already known (as occurs often in practice).  

To evaluate the square root of a number, we can use Newton’s method to solve 

the equation: 

   02  xRxf  (9.7) 

where R is the number whose square root we wish to evaluate. According to a 

first-order Taylor series approximation of any function, we have: 

      xfhxfhxf   (9.8) 

If we have an estimate of the square root, *x , then we can use the above formula 

to determine an h to add to *x , which will hopefully be a better estimate of the 

square root. We therefore seek an h that satisfies: 
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(9.9) 
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This process is then repeated in an iterative manner until a desired accuracy is 

reached: 

 xx

hxx

n





*

**

lim  
(9.10) 

Applying the above analysis to Eq. (9.7) gives a formula for the new estimate of 

the square root as: 
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(9.11) 

This is easily performed on an integer processor and involves only one division, 

one addition and a shift, which is very efficient. 

When calculating an RMS value, we can calculate Eq. (9.11) once every sample 

time, and use the previous RMS value as the initial estimate. In many instances 

we don’t need to iterate more than once since the previous RMS value will 

always be a good estimate of the current RMS value. 

C maths libraries provide square root routines, but when we understand their 

operation, we can optimise our code for performance. 

If we understand 
fixed-point 
techniques, we can 
optimize 
performance 
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EXAMPLE 9.3 Magnitude of a Complex Number 

The following C function calculates the approximate magnitude of a complex 

number. 

 

// Number of iterations to perform for square-root algorithm 
const uint8_t NB_ITERATIONS = 5; 
 
uint16_t Magnitude(int16_t real, int16_t imag) 
{ 
  uint32_t magSquared; 
  uint16_t mag; 
  uint8_t i; 
 
  magSquared = (uint32_t)((int32_t)real * (int32_t)real + 
                          (int32_t)imag * (int32_t)imag); 
 
  // Initial guess = magSquared / 2 
  mag = (uint16_t)(magSquared / 2); 
 
  // Estimate magnitude using Newton's method 
  for (i = 0; i < NB_ITERATIONS; i++) 
    mag = (uint16_t)((magSquared / mag + mag) / 2); 
 
  return mag; 
} 

The function above will return an approximate result since the number of 

iterations is fixed. This may be acceptable in certain applications – otherwise the 

error between the square of the current root estimate and the original number to 

be squared can be used to terminate the iterations. 

The function also contains two bugs: 

1. The initial estimate of the magnitude may exceed the range of a  uint16_t. 

2. Division by zero is not tested for or handled. The ARM® Cortex®-M4 can 

produce an exception (usage fault) on division by zero, so we would need 

to write an exception handler. 

Obviously a more robust function would need to handle these sources of 

potential error. 
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9.4.1 Number of Iterations 

On an ARM® Cortex®-M, the unsigned integer division assembly instruction 

UDIV takes between 2 and 12 clock cycles to complete, with the number of 

cycles dependent on the input operands. It is therefore an “expensive” operation, 

timewise, and is something that we want to minimise. 

Normally, in a mathematical operation involving iteration, we do not know 

beforehand the number of iterations to perform to achieve a desired level of 

accuracy. We need a way to stop iterating when the “error” reduces to a certain 

level (therefore saving redundant operations that will not increase the accuracy). 

For the square root algorithm, we can perform the following analysis. The 

relative error in the square root “answer”, 
*x , is to be less than a certain value, 

 , so we have the relation: 
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(9.12) 

Squaring both sides: 
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(9.13) 

Since *x  is the square root, we have: 

Rx 2

*  (9.14) 

so that: 

2*
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(9.15) 
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Multiplying both sides by R, we get: 

 
2

*

2 2 RRxxx   (9.16) 

If we make the approximation that our iterated value is close to the real answer, 

then: 

Rxx *  (9.17) 

and substituting this into Eq. (9.17) we get: 

22 RRx   (9.18) 

To keep the mathematics integer based, suppose that the allowed relative error 

  is expressed to the resolution of 1%: 

integeran  is 
100

e
e


 

(9.19) 

Then we have: 

10000

2
2 e

RRx 
 

(9.20) 

Multiplying both sides by 10000 gives a relationship that uses integers only that 

we can use in C code to halt the iterative process: 

do 
  { 
    // Do an iteration to find a new sqrt value 
    ... 
    // Find error 
    error = sqrt * sqrt - sqr; 
    // Take absolute error 
    if (error < 0) 
      error = -error; 
  } while ((error * 10000) > (sqr * tolerance * tolerance)); 

Listing 9.1 – Detecting when to stop iterating the sqrt algorithm 
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10 Real-Time Operating Systems 
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Introduction 

A real-time operating system (RTOS) for an embedded system simplifies the 

design of real-time software by allowing the application to be divided into 

multiple threads managed by the RTOS. The kernel of an embedded RTOS needs 

to support multithreading, pre-emption, and thread priority. The RTOS will also 

provide services to threads for communication, synchronization and 

coordination. A RTOS is to be used for a “hard” real-time system – i.e. threads 

have to be performed not only correctly but also in a timely fashion. 

Operating systems for larger computers (such as the PC) are non-real-time 

operating systems and usually provide a much larger range of application 

services, such as memory management and file management which normally do 

not apply to embedded systems. 
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10.1 Real-Time Kernel Concepts 

The following sections describe real-time kernel concepts. 

10.1.1 Threads 

A thread is a simple program that thinks it has the CPU all to itself. The design 

process for a real-time application involves splitting the work to be done into 

threads which are responsible for a portion of the problem. Each thread is 

assigned a priority, its own set of CPU registers and its own stack area. 

Each thread is typically an infinite loop that can be in one of four states: READY, 

RUNNING, WAITING or INTERRUPTED. 

 

READY RUNNING

Resource Available Thread Waiting for Resource

Context Switch

WAITING

INTERRUPTED
Interrupt

 

 

Figure 10.1 – Thread states 

A thread is READY when it can execute but its priority is less than the current 

running thread. A thread is RUNNING when it has control of the CPU. A thread 

is WAITING when the thread suspends itself until a certain amount of time has 

elapsed, or when it requires the occurrence of an event: waiting for an I/O 

operation to complete, a shared resource to be available, a timing pulse to occur 

etc. Finally, a thread is INTERRUPTED when an interrupt occurred and the CPU 

is in the process of servicing the interrupt. 



10.4 

Index Real-Time Kernel Concepts PMcL 

10 - Real-Time Operating Systems  2020 

10.1.2 Context Switch 

When the multithreading kernel decides to run a different thread, it simply saves 

the current thread’s context (CPU registers) in the current thread’s context 

storage area (the thread control block, or TCB). Once this operation is 

performed, the new thread’s context is restored from its TCB and the CPU 

resumes execution of the new thread’s code. This process is called a context 

switch. Context switching adds overhead to the application. 

10.1.3 Kernel 

The kernel is the part of an OS that is responsible for the management of threads 

(i.e., managing the CPU’s time) and for communication between threads. The 

fundamental service provided by the kernel is context switching. 

10.1.4 Scheduler 

The scheduler is the part of the kernel responsible for determining which thread 

will run next. Most real-time kernels are priority based. Each thread is assigned 

a priority based on its importance. Establishing the priority for each thread is 

application specific. In a priority-based kernel, control of the CPU will always 

be given to the highest priority thread ready to run. In a preemptive kernel, when 

a thread makes a higher priority thread ready to run, the current thread is pre-

empted (suspended) and the higher priority thread is immediately given control 

of the CPU. If an interrupt service routine (ISR) makes a higher priority thread 

ready, then when the ISR is completed the interrupted thread is suspended and 

the new higher priority thread is resumed. 

 

High-Priority Thread

Low-Priority Thread

Time

ISR

Low-Priority Thread
ISR makes the high-
priority thread ready

 

 

Figure 10.2 – Preemptive kernel 
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With a preemptive kernel, execution of the highest priority thread is 

deterministic; you can determine when the highest priority thread will get control 

of the CPU. 

Application code using a preemptive kernel should not use non-reentrant 

functions, unless exclusive access to these functions is ensured through the use 

of mutual exclusion semaphores, because both a low- and a high-priority thread 

can use a common function. Corruption of data may occur if the higher priority 

thread preempts a lower priority thread that is using the function.   

To summarize, a preemptive kernel always executes the highest priority thread 

that is ready to run. An interrupt preempts a thread. Upon completion of an ISR, 

the kernel resumes execution to the highest priority thread ready to run (not the 

interrupted thread). Thread-level response is optimum and deterministic. 
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10.2 Reentrancy 

A reentrant function can be used by more than one thread without fear of data 

corruption. A reentrant function can be interrupted at any time and resumed at a 

later time without loss of data. Reentrant functions either use local variables (i.e., 

CPU registers or variables on the stack) or protect data when global variables are 

used. An example of a reentrant function is shown below: 

char* strcpy(char* dst, const char* src) 
{ 
  char* ptr = dst; 
  while (*dst++ = *src++); 
  return ptr; 
} 

Since copies of the arguments to strcpy() are placed on the thread's stack, and 

the local variable is created on the thread’s stack, strcpy() can be invoked by 

multiple threads without fear that the threads will corrupt each other's pointers.   

An example of a non-reentrant function is shown below: 

static int Temp; 
 
void swap(int* x, int* y) 
{ 
  Temp = *x; 
  *x   = *y; 
  *y   = Temp; 
} 

swap() is a simple function that swaps the contents of its two arguments. Since 

Temp is a global variable, if the swap() function gets preempted after the first line 

by a higher priority thread which also uses the swap() function, then when the 

low priority thread resumes it will use the Temp value that was used by the high 

priority thread. 

You can make swap() reentrant with one of the following techniques: 

 Declare Temp local to swap(). 

 Disable interrupts before the operation and enable them afterwards. 

 Use a semaphore. 
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10.3 Thread Priority   

A priority is assigned to each thread. The more important the thread, the higher 

the priority given to it. 

10.3.1  Static Priorities   

Thread priorities are said to be static when the priority of each thread does not 

change during the application's execution. Each thread is thus given a fixed 

priority at compile time. All the threads and their timing constraints are known 

at compile time in a system where priorities are static.   

10.3.2 Dynamic Priorities   

Thread priorities are said to be dynamic if the priority of threads can be changed 

during the application's execution; each thread can change its priority at run time. 

This is a desirable feature to have in a real-time kernel to avoid priority 

inversions. 

10.3.3 Priority Inversions 

Priority inversion is a problem in real-time systems and occurs mostly when you 

use a real-time kernel. Priority inversion is any situation in which a low priority 

thread holds a resource while a higher priority thread is ready to use it. In this 

situation the low priority thread prevents the high priority thread from executing 

until it releases the resource. 

To avoid priority inversion a multithreading kernel should change the priority of 

a thread automatically to help prevent priority inversions. This is called priority 

inheritance. 
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10.4 Mutual Exclusion   

The easiest way for threads to communicate with each other is through shared 

data structures. This is especially easy when all threads exist in a single address 

space and can reference global variables, pointers, buffers, linked lists, FIFOs, 

etc. Although sharing data simplifies the exchange of information, you must 

ensure that each thread has exclusive access to the data to avoid contention and 

data corruption. The most common methods of obtaining exclusive access to 

shared resources are: 

 disabling interrupts,   

 performing test-and-set operations,   

 disabling scheduling, and   

 using semaphores.   

10.4.1 Disabling and Enabling Interrupts   

The easiest and fastest way to gain exclusive access to a shared resource is by 

disabling and enabling interrupts, as shown in the pseudocode: 

Disable interrupts; 
Access the resource (read/write from/to variables); 
Reenable interrupts;  

Kernels use this technique to access internal variables and data structures. In 

fact, kernels usually provide two functions that allow you to disable and then 

enable interrupts from your C code: OS_EnterCritical() and 

OS_ExitCritical(), respectively. You need to use these functions in tandem, 

as shown below: 

void Function(void) 
{ 
  OS_EnterCritical(); 
  · 
  ·    /* You can access shared data in here */ 
  · 
  OS_ExitCritical(); 
}  

You must be careful, however, not to disable interrupts for too long because this 

affects the response of your system to interrupts. This is known as interrupt 

latency. You should consider this method when you are changing or copying a 
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few variables. Also, this is the only way that a thread can share variables or data 

structures with an ISR. In all cases, you should keep interrupts disabled for as 

little time as possible. 

If you use a kernel, you are basically allowed to disable interrupts for as much 

time as the kernel does without affecting interrupt latency. Obviously, you need 

to know how long the kernel will disable interrupts. 

10.4.2 Semaphores   

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a 

protocol mechanism offered by most multithreading kernels. Semaphores are 

used to: 

 control access to a shared resource (mutual exclusion),   

 signal the occurrence of an event, and   

 allow two threads to synchronize their activities. 

A semaphore is a key that your code acquires in order to continue execution. If 

the semaphore is already in use, the requesting thread is suspended until the 

semaphore is released by its current owner. In other words, the requesting thread 

says: ''Give me the key. If someone else is using it, I am willing to wait for it!" 

There are two types of semaphores: binary semaphores and counting 

semaphores. As its name implies, a binary semaphore can only take two values: 

0 or 1. A counting semaphore allows values between 0 and 255, 65535, or 

4294967295, depending on whether the semaphore mechanism is implemented 

using 8, 16, or 32 bits, respectively. The actual size depends on the kernel used. 

Along with the semaphore's value, the kernel also needs to keep track of threads 

waiting for the semaphore's availability. 

Generally, only three operations can be performed on a semaphore: Create(), 

Wait(), and Signal(). The initial value of the semaphore must be provided when 

the semaphore is initialized. The waiting list of threads is always initially empty. 

A thread desiring the semaphore will perform a Wait() operation. If the 

semaphore is available (the semaphore value is greater than 0), the semaphore 
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value is decremented and the thread continues execution. If the semaphore's 

value is 0, the thread performing a Wait() on the semaphore is placed in a waiting 

list. Most kernels allow you to specify a timeout; if the semaphore is not 

available within a certain amount of time, the requesting thread is made ready to 

run and an error code (indicating that a timeout has occurred) is returned to the 

caller.   

A thread releases a semaphore by performing a Signal() operation. If no thread 

is waiting for the semaphore, the semaphore value is simply incremented. If any 

thread is waiting for the semaphore, however, one of the threads is made ready 

to run and the semaphore value is not incremented; the key is given to one of the 

threads waiting for it. Depending on the kernel, the thread that receives the 

semaphore is either: 

 the highest priority thread waiting for the semaphore, or   

 the first thread that requested the semaphore (First In First Out).   

Some kernels have an option that allows you to choose either method when the 

semaphore is initialized. For the first option, if the readied thread has a higher 

priority than the current thread (the thread releasing the semaphore), a context 

switch occurs (with a preemptive kernel) and the higher priority thread resumes 

execution; the current thread is suspended until it again becomes the highest 

priority thread ready to run. 

Listing 10.1 shows how you can share data using a semaphore. Any thread 

needing access to the same shared data calls OS_SemaphoreWait(), and when the 

thread is done with the data, the thread calls OS_SemaphoreSignal(). Both of 

these functions are described later. You should note that a semaphore is an object 

that needs to be initialized before it is used; for mutual exclusion, a semaphore 

is initialized to a value of 1. Using a semaphore to access shared data doesn't 

affect interrupt latency. If an ISR or the current thread makes a higher priority 

thread ready to run while accessing shared data, the higher priority thread 

executes immediately.   

OS_ECB* SharedDataSemaphore; 
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void Function(void) 
{ 
  OS_ERROR error; 
 
  error = OS_SemaphoreWait(SharedDataSemaphore, 0); 
  · 
  ·    // You can access shared data in here 
  .    // (interrupts are recognized) 
  · 
  error = OS_SemaphoreSignal(SharedDataSemaphore); 
}  

Listing 10.1 – Accessing shared data by obtaining a semaphore 

Semaphores are especially useful when threads share I/O devices. Imagine what 

would happen if two threads were allowed to send characters to a printer at the 

same time. The printer would contain interleaved data from each thread. For 

instance, the printout from Thread 1 printing "I am Thread 1!" and Thread 

2 printing "I am Thread 2!" could result in:   

“I Ia amm T Threahread d1 !2!” 

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore). The 

rule is simple: to access the printer each thread first must obtain the resource's 

semaphore. 
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Figure 10.3 shows threads competing for a semaphore to gain exclusive access 

to the printer. Note that the semaphore is represented symbolically by a key, 

indicating that each thread must obtain this key to use the printer. 

 

Acquire semaphore

PRINTER

THREAD 2

THREAD 1

SEMAPHORE

Acquire semaphore

"I am Thread 1!"

"I am Thread 2!"

 

 

Figure 10.3 – Using a semaphore to get permission to access a printer 

The above example implies that each thread must know about the existence of 

the semaphore in order to access the resource. There are situations when it is 

better to encapsulate the semaphore. Each thread would thus not know that it is 

actually acquiring a semaphore when accessing the resource. For example, the 

UART port may be used by multiple threads to send commands and receive 

responses from a PC: 

   

DRIVER

THREAD 2

THREAD 1

Semaphore

Packet_Put()

Packet_Put()

UART

 
 

Figure 10.4 – Hiding a semaphore from threads 
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The function Packet_Put() is called with two arguments: the packet and a 

timeout in case the device doesn't respond within a certain amount of time. The 

pseudocode for this function is shown in Listing 10.2. 

uint8_t Packet_Put(TPacket* packet, const uint16_t timeout) 
{ 
  Acquire serial port's semaphore; 
  Send packet to device; 
  Wait for response (with timeout); 
  Release semaphore; 
  if (timed out) 
    return (error code); 
  else 
    return (no error); 
}   

Listing 10.2 – Encapsulating a semaphore 

Each thread that needs to send a packet to the serial port has to call this function. 

The semaphore is assumed to be initialized to 1 (i.e., available) by the 

communication driver initialization routine. The first thread that calls 

Packet_Put() acquires the semaphore, proceeds to send the packet, and waits for 

a response. If another thread attempts to send a command while the port is busy, 

this second thread is suspended until the semaphore is released. The second 

thread appears simply to have made a call to a normal function that will not 

return until the function has performed its duty. When the semaphore is released 

by the first thread, the second thread acquires the semaphore and is allowed to 

use the serial port. 
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A counting semaphore is used when a resource can be used by more than one 

thread at the same time. For example, a counting semaphore is used in the 

management of a buffer pool as shown in Figure 10.5. 
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Figure 10.5 – Using a counting semaphore 

Assume that the buffer pool initially contains 10 buffers. A thread would obtain 

a buffer from the buffer manager by calling Buffer_Request(). When the buffer 

is no longer needed, the thread would return the buffer to the buffer manager by 

calling Buffer_Release(). The pseudocode for these functions is shown in 

Listing 10.3. 

BUF* Buffer_Request(void) 
{ 
  BUF* ptr; 
 
  Acquire a semaphore; 
  Disable interrupts; 
  ptr         = BufFreeList; 
  BufFreeList = ptr->next; 
  Enable interrupts; 
  return (ptr); 
} 
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void Buffer_Release(BUF* ptr) 
{ 
  Disable interrupts; 
  ptr->next = BufFreeList; 
  BufFreeList = ptr; 
  Enable interrupts; 
  Release semaphore; 
}  

Listing 10.3 – Buffer management using a semaphore 

The buffer manager will satisfy the first 10 buffer requests because there are 10 

keys. When all semaphores are used, a thread requesting a buffer is suspended 

until a semaphore becomes available. Interrupts are disabled to gain exclusive 

access to the linked list (this operation is very quick). When a thread is finished 

with the buffer it acquired, it calls Buffer_Release() to return the buffer to the 

buffer manager; the buffer is inserted into the linked list before the semaphore is 

released. By encapsulating the interface to the buffer manager in 

Buffer_Request() and Buffer_Release(), the caller doesn't need to be 

concerned with the actual implementation details. 

Semaphores are often overused. The use of a semaphore to access a simple 

shared variable is overkill in most situations. The overhead involved in acquiring 

and releasing the semaphore can consume valuable time. You can do the job just 

as efficiently by disabling and enabling interrupts. Suppose that two threads are 

sharing a 32-bit integer variable. The first thread increments the variable while 

the other thread clears it. If you consider how long a processor takes to perform 

either operation, you will realize that you do not need a semaphore to gain 

exclusive access to the variable. Each thread simply needs to disable interrupts 

before performing its operation on the variable and enable interrupts when the 

operation is complete. A semaphore should be used, however, if the variable is 

a floating-point variable and the microprocessor doesn't support floating point in 

hardware. In this case, the processing time involved in processing the floating-

point variable could have affected interrupt latency if you had disabled 

interrupts. 
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10.4.3 Deadlock (or Deadly Embrace) 

A deadlock, also called a deadly embrace, is a situation in which two threads are 

each unknowingly waiting for resources held by the other. Assume thread T1 has 

exclusive access to resource R1 and thread T2 has exclusive access to resource 

R2. If T1 needs exclusive access to R2 and T2 needs exclusive access to R1, neither 

thread can continue. They are deadlocked. The simplest way to avoid a deadlock 

is for threads to:  

 acquire all resources before proceeding,   

 acquire the resources in the same order, and   

 release the resources in the reverse order 

Most kernels allow you to specify a timeout when acquiring a semaphore. This 

feature allows a deadlock to be broken. If the semaphore is not available within 

a certain amount of time, the thread requesting the resource resumes execution. 

Some form of error code must be returned to the thread to notify it that a timeout 

occurred. A return error code prevents the thread from thinking it has obtained 

the resource. Deadlocks generally occur in large multithreading systems, not in 

embedded systems. 
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10.5 Synchronization 

A thread can be synchronized with an ISR (or another thread when no data is 

being exchanged) by using a semaphore as shown in Figure 10.6. 
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Figure 10.6 – Synchronizing threads and ISRs 

Note that, in this case, the semaphore is drawn as a flag to indicate that it is used 

to signal the occurrence of an event (rather than to ensure mutual exclusion, in 

which case it would be drawn as a key). When used as a synchronization 

mechanism, the semaphore is initialized to 0. Using a semaphore for this type of 

synchronization is called a unilateral rendezvous. A thread initiates an I/O 

operation and waits for the semaphore. When the I/O operation is complete, an 

ISR (or another thread) signals the semaphore and the thread is resumed. 

If the kernel supports counting semaphores, the semaphore would accumulate 

events that have not yet been processed. Note that more than one thread can be 

waiting for an event to occur. In this case, the kernel could signal the occurrence 

of the event either to: 

 the highest priority thread waiting for the event to occur or   

 the first thread waiting for the event.   

Depending on the application, more than one ISR or thread could signal the 

occurrence of the event.   

Two threads can synchronize their activities by using two semaphores, as shown 

in Figure 10.7. This is called a bilateral rendezvous. A bilateral rendezvous is 
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similar to a unilateral rendezvous, except both threads must synchronize with 

one another before proceeding. 

   

THREAD

Signal Wait

SignalWait

THREAD

 

 

Figure 10.7 – Threads synchronizing their activities 

For example, two threads are executing as shown in Listing 10.4. When the first 

thread reaches a certain point, it signals the second thread (1) then waits for a 

return signal (2). Similarly, when the second thread reaches a certain point, it 

signals the first thread (3) and waits for a return signal (4). At this point, both 

threads are synchronized with each other. A bilateral rendezvous cannot be 

performed between a thread and an ISR because an ISR cannot wait on a 

semaphore. 

void Thread1(void) 
{ 
  for (;;) 
  { 
    Perform operation 1; 
    Signal thread #2;               (1) 
    Wait for signal from thread #2; (2) 
    Continue operation 1; 
  } 
} 
 
void Thread2(void) 
{ 
  for (;;) 
  { 
    Perform operation 2; 
    Signal thread #1;               (3) 
    Wait for signal from thread #1; (4) 
    Continue operation 2; 
  } 
} 

Listing 10.4 – Bilateral rendezvous 
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10.6 Interthread Communication   

It is sometimes necessary for a thread or an ISR to communicate information to 

another thread. This information transfer is called interthread communication. 

Information may be communicated between threads in two ways: through global 

data or by sending messages. 

When using global variables, each thread or ISR must ensure that it has exclusive 

access to the variables. If an ISR is involved, the only way to ensure exclusive 

access to the common variables is to disable interrupts. If two threads are sharing 

data, each can gain exclusive access to the variables either by disabling and 

enabling interrupts or with the use of a semaphore (as we have seen). Note that 

a thread can only communicate information to an ISR by using global variables. 

A thread is not aware when a global variable is changed by an ISR, unless the 

ISR signals the thread by using a semaphore or unless the thread polls the 

contents of the variable periodically. To correct this situation, you should 

consider using either a message mailbox or a message queue. 
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10.6.1 Message Mailboxes   

Messages can be sent to a thread through kernel services. A Message Mailbox, 

also called a message exchange, is typically a pointer-size variable. Through a 

service provided by the kernel, a thread or an ISR can deposit a message (the 

pointer) into this mailbox. Similarly, one or more threads can receive messages 

through a service provided by the kernel. Both the sending thread and receiving 

thread agree on what the pointer is actually pointing to. 

A waiting list is associated with each mailbox in case more than one thread wants 

to receive messages through the mailbox. A thread desiring a message from an 

empty mailbox is suspended and placed on the waiting list until a message is 

received. Typically, the kernel allows the thread waiting for a message to specify 

a timeout. If a message is not received before the timeout expires, the requesting 

thread is made ready to run and an error code (indicating that a timeout has 

occurred) is returned to it. When a message is deposited into the mailbox, either 

the highest priority thread waiting for the message is given the message (priority 

based) or the first thread to request a message is given the message (First-In-

First-Out, or FIFO). Figure 10.8 shows a thread depositing a message into a 

mailbox. Note that the mailbox is represented by an I-beam and the timeout is 

represented by an hourglass. The number next to the hourglass represents the 

number of clock ticks the thread will wait for a message to arrive. 
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Figure 10.8 – Message mailbox 
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Kernels typically provide the following mailbox services:  

 Initialize the contents of a mailbox. The mailbox initially may or may not 

contain a message.   

 Deposit a message into the mailbox (POST).   

 Wait for a message to be deposited into the mailbox (WAIT).   

 Get a message from a mailbox if one is present, but do not suspend the 

caller if the mailbox is empty (ACCEPT). If the mailbox contains a 

message, the message is extracted from the mailbox. A return code is 

used to notify the caller about the outcome of the call. 

Message mailboxes can also simulate binary semaphores. A message in the 

mailbox indicates that the resource is available, and an empty mailbox indicates 

that the resource is already in use by another thread. 

10.6.2 Message Queues   

A message queue is used to send one or more messages to a thread. A message 

queue is basically an array of mailboxes. Through a service provided by the 

kernel, a thread or an ISR can deposit a message (the pointer) into a message 

queue. Similarly, one or more threads can receive messages through a service 

provided by the kernel. Both the sending thread and receiving thread agree as to 

what the pointer is actually pointing to. Generally, the first message inserted in 

the queue will be the first message extracted from the queue (FIFO). 

As with the mailbox, a waiting list is associated with each message queue, in 

case more than one thread is to receive messages through the queue. A thread 

desiring a message from an empty queue is suspended and placed on the waiting 

list until a message is received. Typically, the kernel allows the thread waiting 

for a message to specify a timeout. If a message is not received before the timeout 

expires, the requesting thread is made ready to run and an error code (indicating 

a timeout has occurred) is returned to it. When a message is deposited into the 

queue, either the highest priority thread or the first thread to wait for the message 

is given the message. Figure 10.9 shows an ISR (Interrupt Service Routine) 

depositing a message into a queue. Note that the queue is represented graphically 
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by a double I-beam. The ''10" indicates the number of messages that can 

accumulate in the queue. A "0" next to the hourglass indicates that the thread 

will wait forever for a message to arrive. 
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Figure 10.9 – Message queue 

Kernels typically provide the message queue services listed below.   

 Initialize the queue. The queue is always assumed to be empty after 

initialization.   

 Deposit a message into the queue (POST).   

 Wait for a message to be deposited into the queue (WAIT).   

 Get a message from a queue if one is present, but do not suspend the 

caller if the queue is empty (ACCEPT). If the queue contains a message, 

the message is extracted from the queue. A return code is used to notify 

the caller about the outcome of the call. 
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10.7 Interrupts 

An interrupt is a hardware mechanism used to inform the CPU that an 

asynchronous event has occurred. When an interrupt is recognized, the CPU 

saves all of its context (i.e., registers) and jumps to a special subroutine called 

an Interrupt Service Routine, or ISR. The ISR processes the event, and upon 

completion of the ISR, the program returns to: 

 the background for a foreground / background system,   

 the interrupted thread for a non-preemptive kernel, or   

 the highest priority thread ready to run for a preemptive kernel.   

Interrupts allow a microprocessor to process events when they occur. This 

prevents the microprocessor from continuously polling an event to see if it has 

occurred. Microprocessors allow interrupts to be ignored and recognized through 

the use of two special instructions: disable interrupts and enable interrupts, 

respectively. In a real-time environment, interrupts should be disabled as little 

as possible. Disabling interrupts affects interrupt latency and may cause 

interrupts to be missed. Processors generally allow interrupts to be nested. This 

means that while servicing an interrupt, the processor will recognize and service 

other (more important) interrupts, as shown in Figure 10.10. 
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Figure 10.10 – Interrupt nesting 
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10.7.1 Interrupt Latency   

Probably the most important specification of a real-time kernel is the amount of 

time interrupts are disabled. All real-time systems disable interrupts to 

manipulate critical sections of code and reenable interrupts when the critical 

section has executed. The longer interrupts are disabled, the higher the interrupt 

latency. Interrupt latency is given by Eq. (10.1). 

Interrupt latency  

= Maximum amount of time interrupts are disabled 

+ Time to start executing the first instruction in the ISR  

(10.1) 

10.7.2 Interrupt Response   

Interrupt response is defined as the time between the reception of the interrupt 

and the start of the user code that handles the interrupt. The interrupt response 

time accounts for all the overhead involved in handling an interrupt. 

For a foreground / background system, the user ISR code is executed 

immediately. The response time is given by Eq. (10.2).   

Interrupt response time  

= Interrupt latency 
(10.2) 

For a preemptive kernel, a special function provided by the kernel needs to be 

called. This function notifies the kernel that an ISR is in progress and allows the 

kernel to keep track of interrupt nesting. This function is called OS_ISREnter(). 

The response time to an interrupt for a preemptive kernel is given by Eq. (10.3).   

Interrupt response time 

= Interrupt latency 

+ Execution time of the kernel ISR entry function 

(10.3) 

A system's worst case interrupt response time is its only response time. Your 

system may respond to interrupts in 50ms 99 percent of the time, but if it 

responds to interrupts in 250ms the other 1 percent, you must assume a 250ms 

interrupt response time. 
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10.7.3 Interrupt Recovery   

Interrupt recovery is defined as the time required for the processor to return to 

the interrupted code. Interrupt recovery in a foreground / background system 

simply involves restoring the processor's context and returning to the interrupted 

thread. Interrupt recovery is given by Eq. (10.4).   

Interrupt recovery time 

= Time to execute the return from interrupt instruction 

(10.4) 

For a preemptive kernel, interrupt recovery is more complex. Typically, a 

function provided by the kernel is called at the end of the ISR. This function is 

called OS_ISRExit() and allows the kernel to determine if all interrupts have 

nested. If they have nested (i.e., a return from interrupt would return to thread-

level code), the kernel determines if a higher priority thread has been made ready 

to run as a result of the ISR. If a higher priority thread is ready to run as a result 

of the ISR, this thread is resumed. Note that, in this case, the interrupted thread 

will resume only when it again becomes the highest priority thread ready to run. 

For a preemptive kernel, interrupt recovery is given by 

Eq. (10.5). 

Interrupt recovery time 

= Time to determine if a higher priority thread is ready 

+ Time to restore the CPU's context of the highest priority 

thread 

+ Time to execute the return from interrupt instruction 

(10.5) 
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10.7.4 Interrupt Latency, Response, and Recovery 

Figure 10.11 and Figure 10.12 show the interrupt latency, response, and recovery 

for a foreground / background system and a preemptive kernel, respectively.   
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Figure 10.11 – Interrupt latency, response, and recovery (foreground / 

background) 
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You should note that for a preemptive kernel, the exit function either decides to 

return to the interrupted thread (A) or to a higher priority thread that the ISR has 

made ready to run (B). In the latter case, the execution time is slightly longer 

because the kernel has to perform a context switch. 
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Figure 10.12 – Interrupt latency, response, and recovery (preemptive 

kernel) 

10.7.5 ISR Processing Time   

Although ISRs should be as short as possible, there are no absolute limits on the 

amount of time for an ISR. One cannot say that an ISR must always be less than 

100 ms, 500 ms, or l ms. If the ISR code is the most important code that needs 

to run at any given time, it could be as long as it needs to be. In most cases, 

however, the ISR should recognize the interrupt, obtain data or a status from the 

interrupting device, and signal a thread to perform the actual processing. You 

should also consider whether the overhead involved in signalling a thread is 

more than the processing of the interrupt. Signalling a thread from an ISR (i.e., 

through a semaphore, a mailbox, or a queue) requires some processing time. If 

processing your interrupt requires less than the time required to signal a thread, 

you should consider processing the interrupt in the ISR itself and allowing higher 

priority interrupts to be recognized and serviced. 
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10.7.6 Clock Tick   

A clock tick is a special interrupt that occurs periodically. This interrupt can be 

viewed as the system's heartbeat. The time between interrupts is application 

specific and is generally between 1 and 200 ms. The clock tick interrupt allows 

a kernel to delay threads for an integral number of clock ticks and to provide 

timeouts when threads are waiting for events to occur. The faster the tick rate, 

the higher the overhead imposed on the system.   

All kernels allow threads to be delayed for a certain number of clock ticks. The 

resolution of delayed threads is one clock tick; however, this does not mean that 

its accuracy is one clock tick. 

Figure 10.13 through Figure 10.15 are timing diagrams showing a thread 

delaying itself for one clock tick. The shaded areas indicate the execution time 

for each operation being performed. Note that the time for each operation varies 

to reflect typical processing, which would include loops and conditional 

statements (i.e., if/else, switch, and ?:). The processing time of the Tick ISR 

has been exaggerated to show that it too is subject to varying execution times.   
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Figure 10.13 – Delaying a thread for one tick (Case 1) 

Case 1 (Figure 10.13) shows a situation where higher priority threads and ISRs 

execute prior to the thread, which needs to delay for one tick. The thread attempts 

to delay for 20ms but because of its priority, it actually executes at varying 

intervals. This causes the execution of the thread to jitter. 
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Figure 10.14 – Delaying a thread for one tick (Case 2) 

Case 2 (Figure 10.14) shows a situation where the execution times of all higher 

priority threads and ISRs are slightly less than one tick. If the thread delays itself 

just before a clock tick, the thread will execute again almost immediately! 

Because of this, if you need to delay a thread at least one clock tick, you must 

specify one extra tick. In other words, if you need to delay a thread for at least 

five ticks, you must specify six ticks! 
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Figure 10.15 – Delaying a thread for one tick (Case 3) 

Case 3 (Figure 10.15) shows a situation in which the execution times of all higher 

priority threads and ISRs extend beyond one clock tick. In this case, the thread 

that tries to delay for one tick actually executes two ticks later and misses its 

deadline. This might be acceptable in some applications, but in most cases it 

isn't.   
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These situations exist with all real-time kernels. They are related to CPU 

processing load and possibly incorrect system design. Here are some possible 

solutions to these problems:   

 Increase the clock rate of your microprocessor.   

 Increase the time between tick interrupts.   

 Rearrange thread priorities.   

 Avoid using floating-point maths (if you must, use single precision).   

 Get a compiler that performs better code optimization.   

 Write time-critical code in assembly language.   

 If possible, upgrade to a faster microprocessor in the same family; that 

is, Cortex®-M0+ to Cortex®-M3, etc. 

Regardless of what you do, jitter will always occur. 

10.8 Memory Requirements 

If you are designing a foreground / background system, the amount of memory 

required depends solely on your application code. With a multithreading kernel, 

things are quite different. To begin with, a kernel requires extra code space 

(Flash). The size of the kernel depends on many factors. Depending on the 

features provided by the kernel, you can expect anywhere from 1 to 

100 KiB. A minimal kernel for a 32-bit CPU that provides only scheduling, 

context switching, semaphore management, delays, and timeouts should require 

about 1 to 3 KiB of code space. 

Because each thread runs independently of the others, it must be provided with 

its own stack area (RAM). As a designer, you must determine the stack 

requirement of each thread as closely as possible (this is sometimes a difficult 

undertaking). The stack size must not only account for the thread requirements 

(local variables, function calls, etc.), it must also account for maximum interrupt 

nesting (saved registers, local storage in ISRs, etc.). Depending on the target 

processor and the kernel used, a separate stack can be used to handle all interrupt-

level code. This is a desirable feature because the stack requirement for each 
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thread can be substantially reduced. Another desirable feature is the ability to 

specify the stack size of each thread on an individual basis. Conversely, some 

kernels require that all thread stacks be the same size. All kernels require extra 

RAM to maintain internal variables, data structures, queues, etc. The total RAM 

required if the kernel does not support a separate interrupt stack is given by Eq. 

(10.6). 

Total RAM requirements 

= Application code requirements 

+ Data space (i.e., RAM) needed by the kernel 

+ SUM(thread stacks + MAX(ISR nesting)) 

(10.6) 

Unless you have large amounts of RAM to work with, you need to be careful 

how you use the stack space. To reduce the amount of RAM needed in an 

application, you must be careful how you use each thread's stack for: 

 large arrays and structures declared locally to functions and ISRs,   

 function (i.e., subroutine) nesting,   

 interrupt nesting,   

 library functions stack usage, and   

 function calls with many arguments.  

To summarize, a multithreading system requires more code space (Flash) and 

data space (RAM) than a foreground / background system. The amount of extra 

Flash depends only on the size of the kernel, and the amount of RAM depends 

on the number of threads in your system.   
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10.9 Advantages and Disadvantages of Real-Time 
Operating Systems 

An RTOS allows real-time applications to be designed and expanded easily; 

functions can be added without requiring major changes to the software. The use 

of an RTOS simplifies the design process by splitting the application code into 

separate threads. With a preemptive RTOS, all time-critical events are handled 

as quickly and as efficiently as possible. An RTOS allows you to make better 

use of your resources by providing you with valuable services, such as 

semaphores, mailboxes, queues, time delays, timeouts, etc.   

You should consider using a real-time kernel if your application can afford the 

extra requirements: extra cost of the kernel, more ROM/RAM, and 2 to 4 percent 

additional CPU overhead.  
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