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Preface 

These topic notes comprise part of the learning material for 48xxx Fields and 

Waves. They are not a complete set of notes. Extra material and examples may 

also be presented in the face-to-face activities. 

 

Using the electronic version of these notes 

These notes are hyperlinked. All green text is a link to somewhere else within 

this document. For example, the contents page links to the appropriate page in 

the text, and the page numbers in the header on each page link back to the 

contents page. There are also some internal linked words that take you to the 

relevant text.  

Links to external web pages are red in colour. Provided your PDF reader (e.g. 

Adobe Acrobat Reader) is set up correctly these links should open the 

appropriate page in your web browser. 

 

Contact 

If you discover any errors or feel that some sections need clarifying, please do 

not hesitate in contacting me: 

Peter McLean 

School of Electrical and Data Engineering 

Faculty of Engineering and Information Technology 

University of Technology Sydney 

 

Office: CB11.11.405 - Building 11 (Broadway), Level 11, Room 11.405 

Voice : +61-2-9514-2339 

Email : peter.mclean@uts.edu.au 

Web : http://www.uts.edu.au/staff/peter.mclean 

http://get.adobe.com/reader/
mailto:peter.mclean@uts.edu.au
mailto:peter.mclean@uts.edu.au
http://www.uts.edu.au/staff/peter.mclean
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Introduction 

Electric circuit theory and electromagnetic theory are the two fundamental 

theories upon which all branches of electrical engineering are built. Many 

branches of electrical engineering, such as power, electric machines,  high 

speed digital circuits, electronics and communications are based on 

electromagnetic theory. Electromagnetic theory is also valuable to students 

specializing in other branches of the physical sciences because of the applied 

mathematics and physics involved. 

At the undergraduate level, it is important to impose a particularly disciplined 

approach to electromagnetic theory that emphasises the conceptual meanings, 

rather than the mathematical rigour, in the study of fields. 

Electromagnetic theory has traditionally appeared to practically-oriented 

prospective engineers as an academic luxury. Nevertheless, field theory studies 

have stood the test of time as a portion of virtually all electrical engineering 

degree courses, because it forms the basis of nearly all the macroscopic 

equations and concepts employed in electrical engineering. This subject 

addresses the following areas, in a manner that may help students appreciate 

that the 'luxury' is worthwhile: 

a) An elaboration on the foundation that supports much of circuit theory, 

machine theory and high-frequency behaviour of electrical systems. The 

weaknesses and strengths of this foundation tend to produce surprises to 

accepted notions held by thinking students. 

b) The use of this foundation to derive many of the common equations 

already used by students, pointing out their range of applications as 

defined by their derivation. 

c) The consequent development of new notions for energy flow and current 

patterns that may assist in a more mature appreciation of high-frequency 

behaviour, interference and capacitive effects, machine and transmission 

line modelling. 
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d) Providing a 'window' to look into some special areas of electrical 

engineering where field concepts must be used explicitly. Optical and 

metal waveguides, radiating antennae and receivers, and effective 

resistances of transmission lines are chosen as the most common 

examples of these areas. 

e) Providing better facility in many mathematical techniques necessary for 

the aims above, with the hope that this facility permeates to other 

subjects (particularly in Circuits, Signals and Control strands) using 

similar techniques. For effective mathematical teaching to engineers, the 

stress should continually be placed on the physical concepts behind the 

symbols and operators. 

f) The application of some of the electrical system models to other areas of 

engineering, particularly mechanical, and to familiar everyday systems, 

to illustrate the wider basis of the mathematical tools. 

In human terms, the subject aims to create engineers of a more 'professional' 

character than would otherwise be the case. Their conceptual knowledge of 

electromagnetic theory will provide a broader horizon for problem-solving 

thinking patterns, perhaps making specific techniques a little more enjoyable 

and meaningful. They may have more confidence (and a little more 

competence) in assessing an unfamiliar problem, or a problem that apparently 

contradicts normal circuit behaviour. They may recognise where broader-based 

field notions must be applied, even if in many cases their experience is not 

sufficient to develop solutions. 

In essence, electromagnetic field theory can be one sma1l tool applied to 

developing a flexible, analytic and critical mind in a technologically-changing 

world that needs all the flexible minds it can muster. 
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Supporting References 

There are a vast variety of teaching methods employed in electromagnetic field 

theory, reflected in the character of texts available. A subset of the volumes 

that are roughly similar in nature to this subject are listed below: 

1. Plonus, M.: Applied Electromagnetics, McGraw-Hill, 1978. 

An excellent book that provides a wealth of examples and applications, 

and doesn’t compromise on theoretical and mathematical rigor. 

2. Ramo, S., Whinnery, J.R. and Duzer, J.V.: Fields and Wave in 

Communications Electronics, 2nd Ed., John Wiley & Sons, 1984. 

An intermediate-level text which has a strong focus on communications 

(waveguides, microwave networks, antennas and optics). 

3. Magid, L.: Electromagnetic Fields, Energy and Waves, Robert Krieger, 

1982. 

This reference is the best overall choice for its exhaustive attempts to 

provide physical meaning by way of discussion and example. 

4. Solymar, L.: Lectures on Electromagnetic Theory, Oxford 1976. 

The concise descriptions of selected parts of electromagnetism make this 

volume good introductory 'light reading' to provide a feel for the subject. 

5. Rao, N.: Elements of Engineering Electromagnetics, Prentice Hal1, l977. 

The notation used by Rao (and by Magid) appears simpler to students 

than some other alternatives, and the book covers the later parts of the 

subject with some distinction. 

6. Johnk, C.: Engineering Electromagnetic Fields and Waves, Wiley, 1975. 

This book is reasonably comprehensive, and particular topics are easy to 

locate. The treatment is fairly lucid, but suffers from a notation that is not 

universally clear to new students. 

7. Skitek, G. and Marshall, S.: Electromagnetic Concepts and Applications, 

Prentice-Hall, 1982. 

A clear treatment with worked examples, this book should serve well as a 

support for study with the exception of some gaps in its coverage. 

8. Cheng, D.K.: Field and Wave Electromagnetics, Addison-Wiley, 1983. 

Presents the material with lucidity, unity and smooth logical flow of 

ideas. Many worked out examples are included to emphasize 

fundamental concepts. 

9. Griffith, D.: Introduction to Electrodynamics, 4th Ed., Pearson, 2013. 

A ‘standard’ physics textbook that presents the concepts in a less formal 

tone, but it lacks engineering context and applications. 

10. Pipes, L. and Harvill, L.: Applied Mathematics for Engineers and 

Scientists, 3rd Ed., McGraw-Hill, 1971. 

A book that covers all the fundamental mathematical techniques used by 

engineers, although the terminology is inconsistent and a little dated. 
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Synopsis 

Topics 2 and 4 lay the basis of the macroscopic field concept. The electrostatic 

field is considered due to an isotropic emission of 'fluid' from every source 

point. The motion of such sources causes relativistic distortions of spatial 

dimensions, and in turn distorts the density of field lines. This distortion of the 

electric field is known as the magnetic field. 

Topics 3 and 5 develop these concepts using vector calculus, to provide a 

summary of the basic equations encompassing electrostatics and 

magnetostatics. 

Topics 6 and 7 develop methods of solving static problems, particularly 

involving Laplace's equation. Many non-electrical systems also satisfy 

Laplace's equation, and these are mentioned in Topic 7. A variety of 

mechanical, hydraulic and thermal systems are modelled by Poisson's equation, 

Laplace's equation and the diffusion equation. 

Topic 8 extends the methods of solution of differential equations, and discusses 

the particularly important geometry of the twin-cable, two-line-charges or 

long-dipole problem. 

The notion of energy residing in a field, discussed in Topic 9 extends the 

audacity of fluid concepts (of Topic 2) to their logical limit, and the remaining 

topics develop the notions to time-varying cases. 
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Introduction 

The study of fields is concerned with predicting interactions between things 

that are not apparently touching . There are a wide variety of events that cannot 

be explained by mechanical contact forces, and the problem of adequately 

visualising such 'actions at a distance' has been with us for several hundred 

years. 

Prehistoric man could presumably understand that a spear or boomerang would 

affect an animal if contact could be made, but may have puzzled over the effect 

that a fire could have on his body when placed several feet away. 'Mechanical' 

models were eventually used to explain thermal effects in terms of a heat fluid 

(‘therma') that seeped from 'hot' bodies. (It is only relatively recently that such 

a model has lost favour. Perhaps you can explain why it is considered an 

unrealistic model?). 

The oral communication practiced between prehistoric people is another 

action-at-a-distance phenomena. Recorded propositions to explain the transport 

of sound information, or sound energy, included of course another fluid 

mechanical explanation; a wave motion model of stress-strain effects in the 

medium is a relatively recent innovation. 

If we study matter itself much more closely, using an atomic or nuclear 

'microscope', we find more actions-at-a-distance. Entities within the nucleus 

(nucleons) include many with positive charge as well as neutral ones. How 

does the nucleus stay together? Current models have two nucleons held 

together by a third particle that continually links them. The mutual influence of 

attraction is transmitted from one nucleon to the other by this 'muon'. Chemical 

compounds often stay together because the attractive interaction between the 

two elements is carried by a third, shared particle known as a valence electron. 

The following figure summarises the distance force types based on 

contemporary quantum models, each considered to convey their influence via a 

third connecting particle. 
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FORCE RANGE STRENGTH AT 

10-15 METERS IN 

COMPARISON 

WITH STRONG 

FORCE 

CARRIER 

 

MASS 

AT 

REST 

(GeV) 

SPIN ELECTRIC 

CHARGE 

REMARKS 

GRAVITY INFINITE 10-38 GRAVITON 0 2 0 CONJECTURED 

ELECTRO-

MAGNETISM 

INFINITE 10-2 PHOTON 0 1 0 OBSERVED 

DIRECTLY 

WEAK LESS 

THAN 10-18 

METERS 

10-13 WEAK 

SECTOR 

BOSONS: 

W+ 

W- 

Z0 

 

 

 

81 

81 

93 

 

 

 

1 

1 

1 

 

 

 

+1 

-1 

0 

OBSERVED 

DIRECTLY 

OBSERVED 

DIRECTLY 

OBSERVED 

DIRECTLY 

STRONG LESS 

THAN 10-15 

METERS 

1 GLUONS 0 1 0 PERMANENTLY 

CONFINED 

Table 1.1 – The 4 Fundamental Forces and Their Conveying Particles1 

We are concerned with a particular subset of these forces, namely those where 

the interactions between neighbouring points decrease with distance according 

to a square law. There are three traditional areas of observation where the 

square law appears quite clearly; gravitational attraction between masses, 

electrostatic and magnetostatic influences between charges and currents, and 

thermal radiation. We will presently find that the model we use to explain these 

will naturally extend to a variety of other uses, particular in electrodynamics, 

(electro) magnetic machines, power transmission, electrical communications, 

high-frequency interference in circuits and high-voltage corona. 

                                                 

1 Refer to the article The Higgs Boson, by Martinus Veltman in Scientific American, Nov 1986. 

The Higgs force is a fifth one, which is mediated by the Higgs boson. The Higgs boson was 

discovered in 2012 by the LHC at CERN. 
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In addition, the model will provide valuable insight into familiar equations 

used in electrical engineering that are not normally considered as field-related. 

Given a certain faith in the model, we can answer some basic questions about 

electrical behaviour that are normally 'glossed over' or ignored. For example, 

how is it that a resistor can be influenced (getting hot) by an AC signal 

generator some distance away. After all, there is no nett transport of electrons 

from one to the other. 

In summary, we need to develop a consistent model for events where no 

mechanical explanation is apparent. The model should give the right answers in 

all macroscopic interactions (or at least those obeying inverse-square laws) but 

also should alleviate our psychological hang-ups regarding action-at-a-

distance. The model we use can be vastly simpler than the particle model used 

in quantum electrodynamics, since we will never attempt to explain sub-atomic 

effects. 
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1.1 Experimental Landmarks 

Let us quickly review some basic observations that beg an explanation: 

1.1.1 Newton’s Law of Gravitation (1665) 

In 1665, Newton proposes a gravitational law for attraction at a distance 

between point masses: 

122

12

21
12 r̂F

r

mGm


 
(1.1) 

12F  is the force experienced by point mass 
1m  due to the influence of 

2m , at a 

separation of 
12r  from 1m . 

The quantities expressed in this law are shown below: 

 

m1 m2

F12

r12

r12r12

 

 

Figure 1.1 – Vectors in Newton’s Law of Gravitation 

The unit vector 12r̂ , which points from 1m  to the origin of the force, i.e. from 

measuring point to source, is defined by: 

12

12
12
ˆ

r

r
r 

 
(1.2) 

Later knowledge of the Calculus allowed this law to be proved for spheres of 

uniform density, as well as being applied (by summation) to bodies of any 

finite shape and density distribution. 

Newton’s Law of 
Gravitation 
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1.1.2 Priestley’s Electrostatic Investigations (1767) 

In 1767 Priestley deduced a similar 21 r  distance dependence for separated 

electrostatic charges. The literature describes European experiments with 

suspended point charges enclosed by hollow charged conductor spheres. No  

force was experienced on such an enclosed charge irrespective of its position 

within the sphere: 

 

small
charge

charged hollow
conducting 
sphere

fine suspension wire
(insulated)

 

 

Figure 1.2 - The experimental arrangement that led Priestley to conclude 

an inverse square law (the charge experienced no motion) 

This fact led Priestley to conclude that: 

2rqF   (1.3) 

where q is the magnitude of the source charge, and r the separation of this 

charge from the suspended test charge. Why? 

This 
21 r  electrostatic law was verified by direct experiments of Coulomb, 

although the first reasonably precise measurements were performed by 

Cavendish, in which: 

05.02 where1̂2

12

21
12  n

r

qq
n

rF
 

(1.4) 

Priestley’s 
electrostatic 
experiment 
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For the SI system of units we define the proportionality constant such that we 

get the “modern” form of Coulomb’s Law: 

N   ˆ
4 2

0

21
12 RF

R

qq




 
(1.5) 

The quantities expressed in this law are shown below: 

 

q1 q2

F12 R R

R  

 

Figure 1.3 – Illustration of terms involved in Coulomb’s Law 

The subscript ‘12’ on the force means this is the force on charge 
1q  due to 

charge 
2q . Therefore, the unit vector R  points in a direction that goes from a 

positive 2q  to positive 1q  (or from a negative 2q  to negative 1q ), i.e. the unit 

vector aligns with the direction of repulsion. Attractive forces will therefore be 

negative, and are taken care of by the negative sign of either 1q  or 2q . 

Here we should clarify some notation. The vector R points from the source of 

the force (
2q ) to the point where the force is felt (

1q ). This will always be the 

case throughout these notes. R points from the source to the effect. The 

magnitude of the vector R is just R. The unit vector R  has the same properties 

as R except its magnitude is one. 

Coulomb’s  Law 

Mathematical 
notation 
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1.1.3 Magnetostatics (early 20th century) 

A similar action-at-distance law has been found useful in describing the 

interaction of magnetic "poles": 

rF ˆ
2

21
12

r

qq mm
 

(1.6) 

where mq  represents a magnetic moment. 

Each of the above phenomena have prompted an inverse square law between 

neighbouring points. Of course, the use of calculus enables these point-

interactions to be used for other shapes. However, the empirically-based 

formulae do not provide us with a picture of the interaction phenomena. 

Without such a model, the equations remain as simply tools for prediction of 

events within their separate domains. A conceptual model allows possibilities 

for extension to other seemingly-unrelated effects and the predicting of new 

areas for discovery, or for clearer understanding of related events. It is an 

avenue worth pursuing. 

1.2 Models for Action-at-a-Distance 

Since no mechanical contact is apparent in each of these three forms of 

interaction, a multitude of models has been proposed in order to visualise the 

mechanisms of action-at-a-distance. The main hypotheses that have been in 

vogue from time to time are summarised below. 

1.2.1 Stress-Through-the-Medium 

Stress waves may be transmitted through an intermediary medium by the 

source particle and picked up by the other particle as a force. 

This concept was particularly in vogue in the nineteenth century, when it was 

generally considered that even outer space was not empty. A substance of zero 

mass-density pervaded all space, and carried stress-strain waves from sources 

such as electrical charges, masses or light-emitters. This substance, known as 

the ether, provided a means for effects to be transmitted across space, and these 
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effects could be quantified using methods already developed for mechanical 

elasticity studies. 

In 1881 Michelson devised an experiment to measure the velocity of the ether 

with respect to the Earth's surface. He, assisted later by Morley, found that 

waves of light travelled at exactly the same speed irrespective of the direction 

they propagated in the moving ether. If the ether was supporting the light 

waves, their velocity would surely be relative to this medium. This was not so. 

The demise of the ether model can be dated from these measurements, 

constituting one of the most important negative results in experimental physics. 

A conceptual model stands to a large extent on its simplicity, and its straight-

forward application. The stress-through-the-medium ether model had also 

become quite complicated. The ether was attributed with several strange 

properties, in addition to its zero mass, in order to explain experimental 

observations in wave optics. 

Its lack of simplicity, combined with Michelson and Morley's demonstration of 

its lack of reality, put an end to the ether concept. 

1.2.2 Particle Emission 

The interaction of bodies at a distance may be via the exchange of particles. 

Each body may emit particles which by "collision" transfer a force to the other. 

This is indeed the current thinking to describe several forms of particle 

interaction, in chemical bonding and nuclear physics. 

For gravitational or electromagnetic interactions, the particle-emission model 

suffers on both of the main requirements of a model. Firstly, there has been no 

associated particle yet found that is associated with the gravitational field. The 

electromagnetic force can be described by the exchange of virtual photons, but 

the model is not simple to use (nor mentally-satisfying); its complications in 

explaining attraction as well as repulsion and even simple dielectric properties 

can be imagined. 

1.2.3 Fluid Emission 

Interaction at a distance may be via a fluid, independent of any medium. Each 

body may emit the fluid, in order to transmit forces to neighbouring bodies. 
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1.3 The Fluid Emission Model 

The idea of an all pervading 'ether' must have seemed quite plausible before 

Michelson and Morley, despite being far-fatched when viewed by hindsight. 

The notion of fluid emission seems just as absurd, in an experimental sense. 

However, to explain all the macroscopic properties observed in the 

gravitational and electromagnetic world, the fluid needs just three simple 

properties (the combination of these properties can be observed): 

All force-producing points (or particles) emit fluid 

ISOTROPICALLY. 
(1.7) 

The points may be the things we commonly term 'charges' or 'masses'. The 

'fluid' differs from usual fluids according to this postulate, because we would 

expect most other fluids to show anisotropy when the source moves. For 

example, water would perhaps emit more volume backwards than forwards 

when a tap is moved at high speed. 

Accordingly, we normally call this special fluid a special name, flux, 

symbolised by Ψ . It is a scalar, just like the volume (and flow rate) of any 

fluid. 

The density of flux Ψ  (per unit cross-sectional area) found at 

any point in space is proportional to the force transmitted to 

that point. 

(1.8) 

That is, Ψ  is a scalar, indicating the volume of 'fluid' emitted, but the density 

of Ψ  must be a vector. 

The density D, in units of flux per unit area, tells us the magnitude and 

direction of the force potentially experienced (by another charge or mass) at 

each point. 

The total flux emitted from a point source is not changed if the 

source is at rest or in motion. 
(1.9) 

Postulate 1 

Postulate 2 

Postulate 3 
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We will find these three simple notions adequate to explain all our 

(macroscopic) Electrical Engineering Laws, and many more phenomena in 

engineering. We cannot explain observations on an atomic or nuclear scale, 

where quantum electrodynamic field theory must be used. The wave-particle 

duality employed in the latter theory can be used to explain the macroscopic 

observations of engineering as well, but it is exceedingly cumbersome. Given 

the hindsight of quantum mechanics, it is possible to gain a better picture of why 

the above flux picture works, but in practice it is a luxury not worth our time 

pursuing. Suffice it to say that 'flux’ has never been observed as a physical fluid 

(apart from its three postulated behaviours above) and no doubt never will be. 

Despite these comments, the model of flux emission amply satisfies the second 

property of a good model; it is exceedingly simple. For this reason alone, it has 

stood the test of time as a very useful mathematical model in those disciplines 

where a fundamental inverse square-law has been observed. Consider the three 

postulates again, and take them as an article of faith. You will not need to call on 

your imagination again, given that these postulates are accepted. 

Finally, we finish this outline of a model for action-at-a-distance by a definition. 

Every particle, or point source, does not produce the same effect on its 

neighbours. There must be a quantity defined to express this variable influence: 

Definition: The 'strength' of a source of flux is the total flux emitted from the 

source. The magnitude of this 'source strength' is called the charge (if the flux 

transmits electric forces) or the mass (for gravitational interactions). 

The total Ψ  being 

emitted from a source  

= Charge q at the source 

 

(1.10) 

Since Ψ  is a scalar, so is charge q. In SI units q is in Coulombs. Accordingly, 

from this definition, Ψ  is also in Coulombs. 

These 'everyday' quantities of charge and mass have never been observed. The 

presence of flux Ψ  can at least be seen by its influence (transmitted forces), and 

can therefore be indirectly observed. If you are happy with 'charge' and 'mass', 

then is it not reasonable to expect that we henceforth take for granted that 'flux' 

exists? 

Total flux = charge 
at the source 
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There are three basic equations used in electrostatics. They can be readily seen 

as a consequence of the properties of flux (as listed above). Gauss' Law is simply 

an expression of the meaning of charge. Coulomb's Law must follow for a flux 

emission that is isotropic. The final equation, Poisson's equation, is a statement 

that follows from Coulomb's Law and a minor facility with vector calculus. 

Firstly, we consider Gauss' Law. 

1.4 Gauss’ Law 

Consider a situation where we have a source of flux (a 'charge', or set of 

charges) in some volume. We wish to know how much flux is being emitted. 

We may not be able to see the flux coming out, but we can detect it by its 

property as defined by Postulate 2. We can measure its influence through the 

force that it transmits. 

So we put a force-measuring instrument, say a 'test' charge attached to a spring 

balance that responds to the repulsive force, at points just outside the volume. 

Then, at each point: 

The measured force D  (1.11) 

Given that our measuring spring balance subtends a small area dA, a small 

amount of fluid will be intercepted by the area. The fluid detected will increase 

as the area of the instrument's face increases, but will also change with the 

orientation of the face; see the figure below: 

 

instrument of area dA

dA

+

 

 

Figure 1.4 – Measuring force due to a flux 
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The maximum amount of flux will be detected when the face is a plane directly 

across the flow; that is when dA is parallel to D. In general, only the 

component of dA that is parallel to D will be effective in intersecting flux 

lines. Thus the instrument accounts for a flux of: 

dAD dΨ  (1.12) 

To detect all the flux emitted from the volume, we need to move the detector 

around the periphery of the volume, to gather the effect of the other flow lines. 

We must put the detector at points close enough to one another so as not to 

miss any of the flow, and the positions must extend around the full periphery, 

without any gaps. Then the sum of all the measured fluxes, over the completely 

enclosing surface periphery is: 

Ψ total dAD  (1.13) 

By definition (1.10), this total flux emitted is equal to the total source strength 

within the volume: 

enclosedq dAD  (1.14) 

This is Gauss’ Law. 

Note that if negative charge exists in the volume, there will be negative source 

strength at such points. That is, the flux emission will be a negative flow rate, 

and the points then represent 'sinks' of flux. Flux is absorbed in such cases. It 

could be, then, that fluid may be flowing into the volume through some parts of 

the enclosing surface, and the detecting spring balance will in fact be stretched 

rather than compressed. Influences from sinks of fluid will then appear in the 

integration sum of Gauss' Law as negative terms. The full summation thus 

gives a nett outward flux. 

 Nett outward flux 

from a volume   dAD  

Nett source 

strength in the 

volume 
(1.15) 

Gauss’ Law 
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This notion, called Gauss' Law by Electrical Engineers, is true in many other 

fields. For other cases, read D as the flux density of interest. For example, the 

magnetic flux emerging from a volume enclosed by A is: 

Weber  dAB  (1.16) 

where B is the flux density in Webers/m2 or Teslas. In fluid mechanics, similar 

formulae become useful. 

1.5 Coulomb’s Law 

Direct measurement of point charge interaction is extremely difficult (cf. the 

error estimate in Cavendish's experiment), and even more so for point mass 

interaction. 

However, just as the fluid emission postulates lead simply and directly to 

Gauss' Law, a concise and general argument can be used to predict a 

(Coulomb) Law. In the accompanying figure: 

 

(test charge)

q
2

q
1 (source)

 

 

Figure 1.5 – Flux streaming from a point charge 

(i) D,  Ψ , have isotropic distributions from the point source 1q  as 

represented by the (arrowed) flux lines. 

Lines of flux 
streaming from a 
source 
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(ii) Flux density D at any point is proportional to the force transmitted to that 

point. 

(iii) The force at any point is proportional to the source strength responsible 

for producing D. 

Hence the force on 
2q  due to 

1q  has the following properties: 

 
221 DF   (i.e. density at 2 due to 1, from (ii) above), and 

 
121 qF   (from (iii)) 

Thus, 1221 qDF  . Now using (i) above, the first postulate of the fluid model, 

we know that D is a purely radial vector. In a three-dimensional universe 

21 rD  . Check this for yourself by simple geometry. Combining these 

results together yields: 

2

12
21

r

qk
F 

 
(1.17) 

where 
2k  is a proportionality constant that is independent of distance r 

between the source 1q  and test charge 2q . 

We could equally well re-draw the figure to envisage 2q  as a source and 1q  the 

charge experiencing 2q 's flux. In this case: 

2

21
12

r

qk
F 

 
(1.18) 

describes the force on 1q , where 1k  is again independent of r. 
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The value of the constant is by no means arbitrary. If we are to satisfy 

Newton's Third Law of classical mechanics (action = reaction), then 
2112 FF   

and: 

2

21

2

12

r

qk

r

qk


 
(1.19) 

This result must be true for any values of 
1q  and 

2q . We have not specified 

these values, nor restricted them in any way. The values of 
1k  and 

2k  must 

therefore follow some functional expression (independent of r of course) that 

ensures the result will work for any values of 
1q  and 

2q . (If 
21 qq   then the 

k's can be simply equal and constant, but this is not the general case). The only 

functional dependence that will satisfy Newton's Third Law has k proportional 

to the test charge. That is: 

1122 ; CqkCqk   (1.20) 

Here C is a universal constant independent of both charges and their 

separation. We now have: 

2

21
2112

r

qq
CFF 

 
(1.21) 

In the SI system of units, we write: 

2

0

21

4 r

qq
F




 
(1.22) 

There is no need for the two subscripts on the force symbol F, now that both 

action and reaction produce the same result. We should also note that Newton's 

Third Law is really a vector statement. Action and reaction cancel each other, 

being equal in magnitude and opposite in sense. The sum of these vectors can 
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only come to zero if they are directed along the line of centres, where no nett 

cross components can occur. We can now state this directional information as: 

rF ˆ
4 2

0

21

r

qq




 
(1.23) 

where r̂  is the position vector directed from the source (as origin) to the test 

charge. 

This result, Coulomb's Law, followed directly from: 

a) the fluid postulates of Section 1.3, and 

b) the classical mechanics embodied in Newton's 3rd Law. 

It is therefore not surprising that Coulomb's Law is useless in the atomic and 

nuclear world described by (non-classical) quantum mechanics. Closer to 

home, we will shortly find it sadly wanting for any charges in motion, a world 

more familiarly described as magnetic field situations. 

1.6 A Recipe for Solving Gauss’ Law Problems 

The main reason for the presence of Gauss' Law in Field Theory courses lies in 

its utility for understanding and deriving other formulae. However, there are 

cases with sufficient geometrical symmetry, as exemplified in the Exercises, in 

which Gauss' Law can be used directly, and are well worth the practice of 

solving for two reasons. Firstly, a facility with these geometries makes 

memorizing of results superfluous and allows other cases (given reasonable 

symmetry) to be quickly figured out. Secondly, an understanding of the Law 

itself will be much enhanced with practice in its use. Principally with the latter 

aim in mind, it is imperative that each step involved in solving such 

problems be carefully understood and justified. 

The recipe below is a well-proven method to guide you in considering each 

step. Practice with this recipe should leave you almost immune to failure with 

unseen Gaussian problems. 

Coulomb’s Law 
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A Recipe for Solutions in Guass' Law (integral form) 

(Determining flux densities due to symmetrical charge distributions) 

1. Draw a picture of the charge (source) geometry. Sketch in D flux lines. 

You can justify your D lines from the first postulate of our fluid model 

(Section 1.3). 

2. Choose a Gaussian surface that: 

(i) intersects the field point at which D is required. (If this condition is 

not met, the solution for D will not be relevant at this required 

point). 

(ii) possesses the same symmetry as the charge geometry. If a point 

source, then spherical symmetry; if a line, then cylindrical; if a 

sheet, then flat faces are required. 

(iii) is closed. Gauss' Law is not valid for open surfaces. Hence ends 

and side faces should be added to the surfaces where necessary. 

These should be chosen with (iv) in mind. 

(iv) has each face either parallel or perpendicular to the sketched D 

lines. Sketch in the Gaussian surface. 

3. Write Gauss' Law enclosedq dAD . 

4. Evaluate the LHS as follows: 

a) Since integration of a vector is not possible, the dot product must be 

reduced to a scalar first. Hence separate the integral into a sum of 

integrals over surfaces that have, according to 2. (iv): 

 dA parallel to D lines: DdAdAD  

 dA perpendicular to D lines: 0dAD  

b) With the Gaussian surface chosen as in 2 (ii), the value of D should be 

constant over the remaining surface where DdAdAD . If it is not, 
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then a more general method (Laplace's or Poisson's equation) should 

be chosen for the problem. Justify why D is constant in your case. 

Hence   dADDdAdAD  since D is a constant. 

Sum the area  dA . Arbitrary dimensions for the Gaussian surface can 

be chosen, since the final answer will necessarily involve their 

cancellation. The surface is simply a mathematical figment, and its 

dimensions cannot influence the physical properties. 

5. Evaluate the RHS: Sum the charge enclosed within the arbitrary 

dimensions of the Gaussian surface. If the charge is not uniform, this 

may involve an integration. 

6. Hence now solve the simple linear equation in D. 

7. By reference to your sketch, state mathematically or in words the 

direction of the vector D. State the units (Cm-2). 

E and F can, if required, be now found from the expression for D. How? 
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1.7 Summary 

 Electrostatic forces were experimentally found to follow an inverse square 

law, known as Coulomb’s Law: 

N   ˆ
4 2

0

21
12 RF

R

qq




 

 To model action-at-a-distance we use a “fluid emission” model, which 

involves the concept of flux. 

 The fluid emission model leads directly to Gauss’ law: 

enclosedq dAD  

 Coulomb’s Law can be derived from Gauss’ Law and Newton’s 3rd Law. 

1.8 References 

http://www.ep.ph.bham.ac.uk/general/outreach/Priestley/ 

(Accessed 2019-02-28) 

Silvester, P.P.: Modern Electromagnetic Fields, Prentice Ha11, 1968. 
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Exercises 

1. 

(a) Find the force acting on a small charge q at a distance x along the axis of a 

circular charged wire ring, of charge density 
-1Cm λ  and radius r. 

(b) If the distance x is sufficiently large, show that the ring acts as a point 

charge. 

(c) If the ring is extended to a solid disc of radius R and charge density 

-2Cm  , determine the new force acting. 

2. 

The figure shows a cubic volume, with sides of 2 m length. 

x

y

z

2

2

2

 

Find the charge enclosed within the volume if the flux density D is: 

-22 Cmˆ2 xD x  
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3. 

Find the electric flux density D, and the electric field intensity E (assuming the 

medium is air), at a distance r from: 

(a) A point charge q. 

(b) A line charge of infinite length, with charge density 
-1Cm λ  (such as the 

inner conductor of a coaxial cable). 

(c) The axis of an infinitely long, hollow, cylindrical shell of radius R and 

uniform charge density 
-2Cm  . (Try both Rr   and Rr  ). 

(d) A uniform large plane surface charge of q Coulombs over the two faces of 

an area A of conductor. 

(e) Above the same conductor plate as (d) when a second plate is also 

positioned above it at a height rh  . 

4. 

A static electric charge is distributed in the form of a uniform spherical cloud 

of radius a. Find the electric field intensity at all points. Compare the results 

with that for a point charge field and explain similarities and differences. 

5. 

A positive charge q is distributed uniformly over a hollow spherical shell of 

radius a. A second shell of surface density 
-2Cm   surrounds it at radius 

ab  . 

(a) Find the value of  that produces zero E field at points br  . 

(b) What is E at points br   with this value of  ? 
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6. 

A spherical charge distribution is given by: 

3-2

2

0 Cm

0

1























ar

ar
a

r
K

  

where 0K  and a are constants. 

(a) Sketch the distribution, and a few representative field lines. 

(b) Determine the total charge. 

(c) Determine the electric field E at all points. (Justify each step in your 

calculations). 
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Exercises 

1. 

Verify mathematically: 

(a) 0   for any scalar field. 

(b) 0 F  for any vector field. 

(c) Show that F2  must in general be the sum of 9 terms. 

(d)     FFF 2  

(e)          BAABABBABA   

(f) CABBACCBA   (use determinants). 

(g) CBBCCB   

(h)     FFF    

(i)        

(j)    FFF    

(k)   2ˆ1 rrr   

(l)    2  

Do (a), (b), (h), (i) and (j) tally with your knowledge of fields, Helmholtz’ 

Theorem and operator behaviour? Why is (f) different from (g)? 

2. 

Derive the expression for A  in cylindrical coordinates. 

3. 

Derive the expression for A  in spherical coordinates. 
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4. 

Derive the expression for A  in cylindrical coordinates. 

5. 

Derive the expression for A  in spherical coordinates. 

6. 

A  -directed electric field in some region is given by: 

-12 VmzKrE   

where K is a constant. 

(a) Use cylindrical coordinates to find curl E at any point. Is E conservative? 

(b) Evaluate the line integral of dlE   taken about a closed path 

4321 lllll   on a circular cylinder of radius 2 and height 3 as 

illustrated: 

y

z

x

2

2

3

l1

l2

l3

l4
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7. 

For the vector: 

yxA ˆˆ 2332 yxyx   

which exists in the following plane: 

3

2

1

x
0

y

21 3 4

a b

c
path 1

path 2

 

Evaluate: 

(a) The line integral of A along path 1 from point a to point c. 

Repeat for path 2 and compare the results. 

(b) The surface integral of A  over the shaded area enclosed by 

paths 1 and 2. 



2.63 

PMcL Exercises Index    

2019  2 - Vector Calculus 

8. 

A scalar line integral of a vector field of the type: 

 
2

1

P

P
dlF  

is of considerable importance in both physics and electromagnetics. (If F is a 

force, the integral is the work done by the force in moving from 
1P  to 

2P  along 

a specified path; if F is replaced by E, the electric field intensity, then the 

integral represents an electromotive force). 

Assume: 

 yxF ˆ3ˆ 2yxxy   

Evaluate the scalar line integral from  6,51P  to  3,32P  in the figure below 

along the direct path (1)  21PP , then along path (2)  21APP : 

6

4

2

x
0

y

42 6

(1)

(2)

P
1
(5,6)

P
2
(3,3)

A
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9. 

Given: 

zxF ˆˆ
2

1 zk
r

k


 

evaluate the scalar surface integral  dAF  over the surface of a closed 

cylinder about the z-axis specified by 3z  and 2r , as shown: 

y

z

x

2

2

3

-3
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10. 

Electrostatic fields are derivable as the (negative) gradient of a scalar potential 

function  : 

E  

(a) Find the electric field E associated with the following potentials: 

 101  xyV  



















b

y

a

x
V


 sincosh02  



















b

y

a

x
V


 sinsin03  

where 0V  is a constant voltage. 

(b) The electric charge density   (in 
-3Cm ) is found to be related to an 

electric field by: 

E 0  

where 0  is the permittivity of air. 

Determine   for each of the fields of part (a). 

(c) Show that 0 E  for each of the fields. 
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11. 

Given a vector function: 

     zyxF ˆˆ2ˆ3 321 zyczxczcy   

(a) Determine the constants 
1c , 

2c  and 3c  if F is irrotational. 

(b) Determine a scalar potential function V corresponding to F. 

12. 

For the vector field: 

      φθrF ˆcosˆsincosˆsinsin2
3

 
r

C
 

evaluate: 

(a)  dAF  over a spherical surface of radius R, centred at the origin. 

(b) Use the physical meaning of divergence;     dAFF dV , to check 

your answer to part (a) . 

(c) Can this field be represented by a scalar potential? 
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13. 

Given the vector field: 

   φrF ˆsinˆcos  rr   

in cylindrical polar coordinates, evaluate: 

 dAF  

over the quadrant-shaped surface defined by: 

ar  , 0  to 2  , 0z  to Lz   

Note: The differential area vectors in cylindrical polar coordinates can be 

expressed as: 

dzrddAr  , drdzdA  , drrddAz   

14. 

Helmholtz’ theory states that any vector field F can be imagined as the sum of 

two components: 

AF    

Show that the two components represent an orthogonal system, i.e. if 0A , 

show that F is irrotational. State one other property of the class of fields for 

which 0A . Prove your assertion. 
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Answers 

1.1 

(a) 

 
x̂

2 3

2
22

0 xr

qxr




 (b) 

 
xx ˆ

4
ˆ

4

2
2

0

2

0 r

Qq

r

qr




  (c) x̂

4 2

0

2

x

R




 

1.2 

32 C 

1.3 

(a) r̂
4 2r

q


  (b) r̂

2 r


  (c) r̂

r

R
, 0  (d) r̂

2

q
 (e) r̂q  

0

D
E   in all cases 

1.4 

ar
r

q

ar
a

qr





r

r

ˆ
4

0ˆ
4

2

0

3

0




 

1.5 

(a) 
24 b

q




  (b) r̂

2

0

2

r

b




 

1.6 

(b) 158 3 Ka   (b) 

ar
r

aK

ar
aK

ar
a

rrK















r

r

r

ˆ
15

2

ˆ
15

2

ˆ
5

3
1

3

2

0

3

0

0

0

2

2

0

0




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2.6 

(a) zr ˆ3ˆ2 KrzKr  , E is not conservative (b) K12  

2.7 

(a) 21 (b) 0 

2.8 

-10, -6  (E is not conservative) 

2.9 

(a)  21 212 kk   

2.10 

(a)  

 yx ˆˆ
0 xyV   










































 yx ˆcoscoshˆsinsinh0

b

y

a

x

b

y

a

x

a

V 
 










































 yx ˆsinsinˆcoscos0

b

y

a

x

b

y

a

x

a

V 
 

(b)  0, 0, 
















b

y

a

x

a

V 
cossin

2
2

2

00  

2.11 

(a) 0, 3, 2 (b) 
2

23
2z

yzxy   

2.12 

(a) 0  (c) Yes 

2.13 

22 La  
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