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Lecture 1A – Electrostatics 
Introduction. A brief history of electrostatics. Vectors. The vector dot product. 
The vector cross product. Area vectors. Coulomb's Law. The electric field. 
Potential difference. Current density and Ohm's law. Surface integrals. Flux 
and flux density. Gauss' Law for electrostatics. 

Introduction 

Electrodynamics – the behaviour of moving “charges” – forms the fundamental 

basis of electrical engineering. We see the effects of electrodynamics daily: 

lightning and static electricity; magnets and compasses; all the benefits of 

power systems including domestic, commercial and industrial lighting, heating 

and the running of motors; telecommunications networks such as radio, 

television, telephones and the Internet; and the now ubiquitous computer 

technology. The applications of electrodynamics are diverse (some are simple 

devices, others are complex systems), but all are described by a few basic 

principles – it is these fundamentals laws that we will study. 

Historically, electric and magnetic phenomena were studied separately. It was 

only during the 19th century, through the work of several great physicists such 

as Oersted and Faraday, that a link was found between the two phenomena. 

Faraday was the consummate experimentalist with a visionary’s sense of the 

unity of nature. He was the first to conceptualize the “electromagnetic field” – 

a force field that permeates all of space and which gives rise to both electric 

and magnetic phenomena. 

It then took the genius of James Maxwell to formulate a set of consistent and 

harmonious mathematical relations between electric and magnetic fields – a 

unified field theory – which predicted electromagnetic waves and led to the 

formulation of relativity in the early 20th century by Einstein. 

These mathematical relations, now called “Maxwell’s equations”, successfully 

describe all large-scale electromagnetic phenomena – charged rods, currents in 

circuits, rotating machines, the way that light propagates through a vacuum, 

etc. Maxwell’s equations are the second most successful equations discovered 

so far (after the equations of quantum mechanics) in terms of experimental 
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verification. The equations are used all around us. We live in a world 

dominated by them – from power generation and the machines that drive 

industry, to the miniature electronics that has spawned the communication and 

computing revolution – and so the study of electric and magnetic “fields” is 

essential for electrical engineers. 

Before we embark on a study of electrodynamics, we will firstly consider the 

much simpler case of electrostatics, i.e. the study of electric fields due to static 

(non-moving) charges. 

In retrospect, it is interesting to note that the mathematical equations of static 

electric fields, placed in the framework of the Special Theory of Relativity, 

also lead to Maxwell’s equations. In this subject, we will follow the historical 

approach and become familiar with the laws which were postulated based on 

experimental evidence. The laws in this form are still of great practical use. 

A Brief History of Electrostatics 

By 600 BCE the ancient Greeks knew that amber (Greek: elektron), when 

rubbed, would attract small quantities of straw, silk, and other light objects. 

Nothing further was done with this knowledge. Nothing further was learned 

about electricity for 2200 years. 

During the 17th century, there was a lot of attention paid to terrestrial 

magnetism – because of navigation – and very little to electricity. Scientists 

were too preoccupied with mechanics and optics (e.g. Newton). 

In the 18th century, experiments on frictional electricity became numerous, and 

the art of performing electrical demonstrations developed rapidly. What was 

still lacking however, was quantitative knowledge of the forces acting between 

charged bodies. Coulomb provided this in 1785. 

A brief history of 
electrostatics 
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Vectors 

The description of electric (and magnetic) phenomena using mathematical 

equations requires the use of vectors. Vectors portray both the magnitude and 

direction of a quantity, and are mathematical entities that possess several very 

important properties. We will revise some of these properties, and introduce 

new ones as the need arises. 

The Vector Dot Product 

The "dot" product of two vectors is defined by: 

a b⋅ = abcosθ  (1A.1) 

For example,  when a force moves an object through a small distance dl it does 

a small amount of mechanical work dW which is given by: 

lF ddW ⋅=  (1A.2) 

We define the dot product of two vectors this way because the "cos" factor 

occurs numerous times in the mathematical expressions that describe nature. 

For example, consider moving a box along the floor: 

 

θ
dl

F

F cosθ

 
 

Figure 1A.1 

To obtain the work done in moving the box, we first have to figure out the 

component of the applied force that actually does something useful. That is, we 

have to find the force that acts in the direction of movement. This "useful" 

force is shown in the diagram, and you can see that it involves a "cos" term. 

We can therefore use the shorthand notation of the dot product when writing 

the expression for the work. 

Dot product defined
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Why did we use differentials in Eq. (1A.2)? When something moves, it 

generally does not follow a straight line. But if we consider very small 

displacements, (so small that each displacement is a straight line), then Eq. 

(1A.2) applies. For example, consider pushing an object through an unusual 

path: 

 

F
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Figure 1A.2 

An object, when acted upon by a force, is not obliged to move in that direction, 

as shown in the diagram. We use Eq. (1A.2) to calculate, for each small 

displacement dl, the small amount of work done in moving the object, dW.  

To calculate the total work done, in moving the object from point a to point b, 

we perform what is known as a "line" integral (we add up the differentials 

along a certain curve – in this case the curve ab): 

∫∫ ⋅==
b

a

b

a
ddWW

 

 

 

 
lF  (1A.3)
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The Vector Cross Product 

The "cross" product of two vectors is defined as: 

cba ˆ sinθab=×  
(1A.4) 

where the unit vector $c  has a direction perpendicular to both a and b. Once 

again, the definition of the cross product is based upon its utility and frequency 

in describing natural phenomena. 

To determine the direction of $c , we use the Right Hand Screw Rule. To apply 

this rule, you imagine the vectors a and b positioned on a plane. Then "grab 

hold of" vector a and rotate it into vector b so that you mimic screwing a lid on 

a jar, or tightening a right hand screw. The direction of advance of the lid or 

screw gives the direction of $c . This should all happen in your mind, do not use 

your hands to perform this mental operation. 

The cross product defines a Cartesian coordinate system: 
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Figure 1A.3 

$ $ $ $ $ $ $ $ $ $ $ $x y z z x y y z x y x z× = × = × = × = −, , ,  (1A.5) 
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Area Vectors 

An area vector has the job of specifying the size and direction of an area. 

Direction of an area? Yes, by convention, the direction of an area is defined to 

be the direction perpendicular to the plane of the area. Of course, this implies 

that the area is flat, but it also applies to curved surfaces that are infinitesimally 

small. 

For example, the area vector for a rectangle would look like: 

 

A

 
 

Figure 1A.4 

where the magnitude of A would equal the area of the rectangle. An 

infinitesimally small area, such as part of a sphere would be represented by: 

 

Ad

 
 

Figure 1A.5 
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Coulomb's Law 

Demo 

Rub acrylic on rabbits fur. Use long pith ball. Show attraction, then 

repulsion. Explain in terms of the transfer of "charge". Talk about action-at-

a-distance. Rub ebonite. Show attraction and repulsion. Use short pith ball. 

Show attraction and no repulsion. Postulate the existence of two types of 

charge. This is exactly what Benjamin Franklin did, and he labelled them as 

positive and negative. 

We can "measure" how much charge there is by using an electroscope. 

Describe the operation of the electroscope. Demonstrate the effect of 

induction of static charges, and how we can deposit either type of charge on 

the electroscope – touch the electroscope with the acrylic rod. Touching with 

ebonite rod should neutralize it. Induce a charge with the ebonite rod, earth 

electroscope, and remove rod. Introduce ebonite rod. 

Theory 

Charles-Augustin de Coulomb won a prize in 1784 by providing the best 

method of constructing a ship's compass to the French Academy of Sciences. It 

was while investigating this problem that Coulomb invented his torsion 

balance. He showed that charge was distributed on the surface of a conductor, 

and recognized this as a consequence of the mutual repulsion of like charges 

according to an inverse square law. 

Coulomb’s 
apparatus 
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In 1785, Coulomb used an apparatus based upon his torsion balance to measure 

the tiny electrostatic forces caused by two charged spheres. The quantitative 

results are embodied in Coulomb's Law: 

N   ˆ
4 2

0

21
1 RF

R
qq

πε
=  (1A.6)

The quantities expressed in this law are shown below: 

 

q1 q2

F1 R R

R  
 

Figure 1A.6 

The subscript 1 on the force means this is the force on charge q1 due to charge 

q2. Therefore, the unit vector $R  points in a direction that goes from q2 to q1. 

Here we should clarify some notation. The vector R points from the source of 

the force (q2) to the point where the force is felt (q1). This will always be the 

case throughout this subject. R points from the source to the effect. The 

magnitude of the vector R is just R. The unit vector $R  has the same properties 

as R except its magnitude is one. 

The Electric Field 

The charge q1 will feel a force even though nothing is touching it! We know 

that it is caused by q2. We can now imagine some sort of field of influence 

radiating out from charge q2 into all of space (3 dimensions). As far as q1 is 

concerned, it just finds itself immersed in some sort of space where a force is 

felt (think of a rocket in deep space and gravity). We can then imagine that 

something permeates the space even before we place our charge q1 in it. We 

Coulomb’s  Law 

Mathematical 
notation 

Concept of a “field” 
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call this a field. When we place the charge q1 in the field, we see a reaction – in 

this case a force. 

With this thinking, it appears that a field exists due solely to q2. We call this 

field the electric field, and for a point charge it is defined as: 

1-
2

0

2
1 Vm   ˆ

4
RE

R
q

πε
=  

 

(1A.7) 

Now consider an isolated point charge. The electric field must exist all around 

it, but lets examine what happens in a two dimensional cross section. We can 

take a very small positive test charge and place it in the field near the point 

charge. We will constrain the test charge to move infinitesimally slowly away 

from the point charge. The path the test charge traces out is called a line of 

force. 

For an isolated positive point charge, the lines of force radiate from the charge 

in all directions: 

 

test charge
force

 
 

Figure 1A.7 

The lines of force drawn in this manner create a picture of the electric field. 

The direction of the electric field at any point is given by the direction of the 

force on the positive test charge.  

Electric field of a 
point charge 

Electric lines of 
force 

Lines of force give a 
“picture” of the field 
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Using these ideas, we can calculate the force on a charge using Coulomb's law: 

REF ˆ
4 2

0

2
1111 R

qqq
πε

==  (1A.8)

Computer Demo 

Demonstrate field around single isolated charge. It is 3D. The direction at 

any point is given by the tangent to the line of force if more than one charge 

is involved. Demonstrate  with a +ve and -ve charge. 

Demonstrate the effect of not having a small test charge - it distorts the field. 

Superposition 

In mechanics we often split up a total force on an object into a number of 

components. Conversely, we can add up a number of components to get the 

total force. We can do the same with the electrostatic force. Consider the 

following arrangement: 

 

(test charge)

q1

q2

q3

F1

F2
F3

F1 F2+

F1 F2+ + F3FT =

q'

 
 

Figure 1A.8 
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The resultant force on the test charge is given by: 

F F E ET i
i

i
i

q q= = ′ = ′
= =
∑ ∑

1

3

1

3

 

 

(1A.9) 

The constant of proportionality in Coulomb’s Law, namely 1 4 0πε , is only true 

for a vacuum. In any other medium, we generalise Coulomb’s Law by 

replacing ε 0 by ε : 

ε = permitttivity (or dielectric constant) of the medium 

ε 0
-1permittivity of free space  Fm= = × −885419 10 12.  

(1A.10a) 

(1A.10b) 

For media other than free space, we define relative permittivity: 

ε ε εr = 0  (1A.11) 

 

Using superposition 
to calculate the field 
due to more than 
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Potential Difference 

Potential difference involves calculating the work done in moving a test charge 

between two points. Consider the field from a single isolated charge: 
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Figure 1A.9 

The amount of work we have to do to move a charge by a small increment is 

given by: 

lE
lF

lF

dq
d

ddW

E

M

⋅−=
⋅−=

⋅=

 
(1A.12)

To move a charge infinitesimally slowly in an electric field, we apply a force 

that exactly counteracts the Coulomb force. A larger force than the Coulomb 

force will accelerate the charge. The above equation gives the work done when 

moving an infinitesimal displacement dl. To find the work done in moving a 

charge from A to B, just integrate: 

J   
 

 ∫ ⋅−=
B

ABA dqW lE  
(1A.13)

Potential difference 
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Potential difference is the mechanical work done per unit charge. 

V   
 

 ∫ ⋅−=
B

ABA dV lE  
 

(1A.14) 

For the case of a single isolated charge, we calculate the integral as follows: 
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(1A.15) 

For an isolated point charge, we define “absolute potential” at any point to be: 

R
qV

πε4
=  

 

(1A.16) 

To find the potential difference at two points, we can subtract the absolute 

potential of one point with the other. Compare this with Eq. (1A.15). 

The electrostatic E field is a conservative field. This means that no work is 

done in moving a charge around a path and back to its starting position – 

energy is conserved. In Figure 1A.9, along APBP’A we have: 

0
 

=⋅∫l
dlE  

 

(1A.17) 
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Current Density and Ohm’s Law 

Consider a conducting sheet, conductivity σ , resistivity ρ , cross-sectional 

area A: 
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Figure 1A.10 

The battery E sets up an E field, which in turn causes the free charges in the 

metal sheet to flow along the lines of E (lines of force). The current density in 

the metal sheet is defined as: 

J E=
→

=
lim

δ
δ
δA

I
A

dI
dA0

  and tangent to the  lines (1A.18)

Since J and E point in the same direction, they must differ in magnitude only: 

J E=σ  (1A.19)

Show that this is Ohm’s Law. 

The equipotentials on the metal sheet are determined using the 

 galvanometer G. How? They are always perpendicular to the lines of J. 

Current density 
defined 

Field version of 
Ohm’s Law 
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Surface Integrals 

Consider a uniform current in a conductor. J and A are both vectors, and: 

AJ ⋅=I  (1A.20) 

Does A have to be the cross section of the conductor for this expression to be 

true? Test this out by drawing an area that is not perpendicular to the 

conductor cross section. 

What do we do if the current density is not uniform? We divide the area up into 

regions where the current density is uniform and summate over the whole area. 

Eventually we come to the surface integral: 

∫ ⋅=
A

dI
 

AJ  
 

(1A.21) 

Getting current from 
a uniform current 
density 

Getting current from 
a current density 
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Flux and Flux Density 

The action-at-a-distance that we see with electrostatics can be explained by 

postulating a flux, ψ , that exerts influence over objects nearby. It does not 

flow, but emanates, or streams, from the source (an electric charge). It 

permeates all of space. How do we measure the flux that is streaming through 

space? 

Think back to how we measured the current going through a conductor. There 

we defined a current density at each point in the conductor. For electrostatics, 

if we define an electric flux density at each point in space, and call it D, then: 

D =
→

=
lim

δ
δψ
δ

ψ
A A

d
dA0

  (1A.22)

When D is not uniform, to find the electric flux ψ  streaming through an 

area A, we have to perform the integral: 

∫ ⋅=
A

d
 

ADψ  (1A.23)

Show that this integral has the same value in free space for all surfaces A 

having the same perimeter. 

Lets make the area a closed area and surround some charge. This gives the 

closed surface integral: 

∫ ⋅=
A

d
 

ADψ  (1A.24)

Show this pictorially for a single charge and a sphere. Obviously, if the 

charges are the source of flux, then we should get more flux if there is more 

charge – in our model the amount of flux must be proportional to the amount of 

charge. This leads to Gauss' Law. 

Flux as a tool for 
describing action-at-
a-distance 

Electric flux density 
defined 

Getting flux from flux 
density 

Getting the flux 
streaming out of a 
closed surface 
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Gauss' Law for Electrostatics 

Gauss' Law can be derived from Coulomb's Law, but it is very complicated. It 

is simpler to give an intuitive definition: 

qd
A

=⋅= ∫ ADψ  
(1A.25) 

where q is the charge enclosed by the area A. In words, it says that the total 

flux streaming through a closed surface is equal to the amount of charge 

enclosed by that surface. It does not say that no flux can stream out of the 

enclosing surface – it just means that if some does, then it inevitably must 

stream back into some other part of the surface. 

Apply Gauss’ Law to the point charge and show that: 

D E= ε  (1A.26) 

This is true in general and relates electric flux density to electric field intensity. 

Gauss’ Law 
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Electric flux density 
is related to electric 
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Summary 

•  The electrostatic force between two infinitesimally small electric charges is 

given by Coulomb’s Law: N   ˆ
4 2

0

21
1 RF

R
qq

πε
= . 

•  An infinitesimally small electric charge produces an electric field given by: 

1-
2

0

2
1 Vm   ˆ

4
RE

R
q

πε
= . 

•  Permittivity, ε , is an electric property of a medium. 

•  The potential difference between two points A and B is given by: 

V   
 

 ∫ ⋅−=
B

ABA dV lE . 

•  The electrostatic E field is conservative: 0
 

=⋅∫l
dlE . 

•  Current density is defined as: 
dA
dI=J .  

•  Ohm’s Law is given by: J E=σ . 

•  Electric flux density is defined as: 
dA
dψ=D . 

•  Gauss’ Law for electrostatics is: qd
A

=⋅∫ AD . 

•  The electric flux density is related to the electric field intensity by: D E= ε . 
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Problems 

1. 

Use Gauss’ Law to obtain the electrostatic flux density D and hence the field 

intensity E, at a distance r, in a vacuum, from: 

(a) the centre of a uniformly charged spherical shell, with radius a, and a 

total charge q, when ar ≥ . 

(b) as (a) but with ar < . 

(c) a line charge with uniform charge density λ  Cm-1. 

(d) a plane with uniform charge density σ  Cm-2 . 

2. 

Use the above results to derive expressions for the potential difference between 

two points at radial distances ar  and br , if  ba rr > . Draw the field pattern for 

each case, i.e. lines of force and equipotentials. 

3. 

Derive an expression for the capacitance per unit length of a coaxial cable. The 

diameters of the inner and outer conductors are d1 and d2  respectively. The 

insulating material between the conductors has relative permittivity ε r . 

4. 

A spherical cloud of charge of radius R carries total charge Q. The charge is 

distributed so that its density is spherically symmetric, i.e. it is a function of the 

radial distance from the centre of the sphere. 

Explain why the “charge cloud” is equivalent to a point charge of Q Coulombs 

at the centre of the sphere. 

Determine the force experienced by an electron, charge -e, orbiting the sphere 

at distance d m ( d > R ) from its centre, with constant velocity v. 
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5. 

Explain the four diagrams of “Faraday’s ice pail experiment”. 

6.  

 

2 mm

20 mm

outer conductor

inner conductor

insulator
( )ρ = 1013  mΩ

coaxial cable

 

The voltage across the 

insulation layer is 100 kV. 

Determine the leakage 

current, for 1 km of cable 

length, flowing from the 

inner to the outer 

conductor. 

7. 

An earthing electrode consists of a metal hemisphere (radius a and zero 

resistivity) just below the surface of the earth (radius ∞, resistivity ρ ). 

Let a = 0.5 m, ρ = 100 mΩ , fault current through electrode = 1 kA. 

(a) Show that the resistance to earth (at ∞) is R a= ρ π2 . 

(b) Determine the resistance between two such electrodes very far apart (i.e. 

first electrode to ∞ then to second electrode). 

(c) Calculate the maximum potential difference between two probes driven 

into the ground, 0.5 m apart, when the mean distance between the probes 

and electrode is 100 m. 
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8. 

A straight rod AB lies along the x-axis and has a uniformly distributed  charge 

density λ  Cm-1. 

Show that the x and y components of the E field at point P are given by: 

( )xE ˆ sinsin
4 0

ABPx b
θθ

πε
λ −=  

( )yE ˆ coscos
4 0

BAPy b
θθ

πε
λ −=  

where: P is a point in the first quadrant, b = distance of P from x-axis. 

  θ θA B &   are the angles AP and BP make with the x-axis. 

Also show that for a semi-∞ line charge (A at origin, B at ∞, 2πθ =A ): 

b
qEE PxPy

04πε
=−=  

EP

q
b

= ∠ °
2 2

135
0πε

 

and for an ∞ line (A at -∞, B at ∞): 

yEE ˆ 
2 0b

PPy πε
λ==  

lcylindrica field ,0E =Px  

9. 

Derive an expression for the capacitance between two spherical, concentric, 

metal electrodes (radii R1 and R2 ). The dielectric medium is air. 




