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Lecture 7B – The Transformer 

Magnetising branch. Voltage, flux and current waveforms. Phasor diagram. 
Losses and efficiency. Measurement of transformer parameters. Current and 
voltage excitation. 3rd harmonics. 

Magnetising Branch 

Our electrical equivalent circuit for a transformer derived previously was: 
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Figure 7B.1 

This model assumed that the magnetizing inductance mL  was linear. If we do 

not put a load on the secondary of the transformer, then 2i  will be zero. From 

the mmf balance equation, this also means that 2i  will be zero – equivalent to 

an open circuit. 

Therefore, on open circuit, our model reduces to that of an iron cored inductor: 
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Figure 7B.2 
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We now want to take into account the B-H loop of the ferromagnetic core, 

instead of assuming that it is linear: 
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Figure 7B.3 

We have seen that in traversing the B-H loop, we lose energy. To electrically 

model the B-H loop, we first reduce the area of the loop to zero, so that it has 

no losses. The B-H "loop" then reduces to the normal magnetization 

characteristic. Since the core is iron, eddy currents will be induced that will 

also contribute to the loss. To take into account all the losses, which we call 

core losses, we add a resistor in parallel to the magnetizing inductance. The 

total current, termed the exciting current, ei , is therefore composed of a core 

loss component, ci , and a magnetizing current, mi : 
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Figure 7B.4 



7B.3 

Fundamentals of Electrical Engineering 2011 

If the transformer is operated over the linear region of the normal 

magnetization characteristic, then our equivalent circuit is all linear and 

represented by: 
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Figure 7B.5 

Voltage, Flux and Current Waveforms 

Assume that the winding resistance and leakage inductance are small enough to 

be ignored. Then the source appears directly across the ideal transformer and 

magnetizing branch. Also, ignore the core loss. If we assume AC sinusoidal 

excitation, then we can use impedances and phasors in our electrical frequency-

domain model of the transformer: 
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Figure 7B.6 
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The source is assumed to be sinusoidal. The flux in the core is given by 

Faraday’s Law: 
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(7B.1)

The flux therefore lags the voltage by 90º. 

KCL at the input also gives: 
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mi  

The corresponding waveforms for the voltage, flux and current are: 
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Figure 7B.7 
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Phasor Diagram 

Under sinusoidal excitation in the linear region of operation, the equivalent 

circuit of the transformer with all quantities referred to the primary side can be 

represented with phasor voltages and currents and impedances: 
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Figure 7B.8 

Note that the variables and parameters on the secondary side of the transformer 

have been “referred” to the primary side of the transformer by using the 

relations derived earlier for the ideal transformer: 
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(7B.3)

The phasor diagram for the transformer is developed as follows. Draw 2V  as 

the reference. The current 2I  will be at some angle to this, depending upon the 

type of load. Assume a load circuit which possesses both resistance and 

inductance, and therefore operates at a lagging power factor. 
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Then KVL applied around the right-hand mesh of the transformer equivalent 

circuit gives: 

  222221 IVEE  lXjR  
(7B.4) 

Now we know 1E , the exciting current can be determined by: 
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(7B.5) 

Note that cI  is in phase with the voltage  1E , and mI  lags 1E  by 90º. The total 

primary current 1I  can now be found from KCL: 

eIII  21  
(7B.6) 

Finally, KVL around the left-hand mesh gives: 

  11111 IEV ljXR   
(7B.7) 

The complete phasor diagram showing all voltages and currents is: 
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Figure 7B.9 
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Example 

A 20-kVA, 2200:220-V, 50 Hz, single-phase transformer has the following 

equivalent-circuit parameters referred to the high-voltage side of the 

transformer: 
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The transformer is supplying 15 kVA at 220 volts and a lagging power factor 

of 0.85. We would like to determine the required voltage at the primary of the 

transformer. 

The equivalent circuit of Figure 7B.8 and phasor diagram of Figure 7B.9 are 

applicable, if we assume 0cR . Note that the transformer is not supplying its 

rated power. Also note that the rating gives the nominal ratio of terminal 

voltages – that is, it gives the turns ratio of the ideal transformer. 

We proceed with the analysis as follows: 
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We now have all the secondary variables and parameters referred to the 

primary side. From Figure 7B.8, we have: 
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Note that mI  is very small compared with 2I . We now find the total primary 

current and voltage: 

    V 6.223113.3287.69.1051.23.12260
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Thus V 23111 V , as compared with the rated or nameplate value of 2200 V. 

The additional voltage of 111 V is needed to “overcome” the impedance of the 

transformer. 

Note also that the phasor diagram of Figure 7B.9 has greatly exaggerated the 

typical losses in a transformer for the sake of clarity of the drawing. 

Also note that if we ignore the losses (resistances), and ignore the magnetizing 

current, we have a transformer model which looks like: 
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Analyzing, we get: 

  V 2.322827.3182.69.1020220022121  jXXj ll IVV  

This is not significantly different to the real voltage (a  1.3% error in terms of 

magnitude), which justifies modelling power transformers as just a leakage 

reactance under normal conditions of operation. 
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Losses and Efficiency 

Iron Loss 

This is the term used for any core loss – it includes hysteresis and eddy current 

losses. For most materials, the power loss is: 

6.1B̂fPi   
(7B.8)

It is independent of the load current. 

Copper Loss 

This is the term used for heating loss due to the resistance of the windings. 
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(7B.9)

It is dependent upon the load current. 

Efficiency 

Is a measure of how well a device converts its input to desired output. For a 

transformer, efficiency is defined as: 
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Measurement of Transformer Parameters 

Open-Circuit Test 

We leave the secondary of the transformer as on open circuit and apply the 

rated voltage on the primary side. With an open circuit on the secondary, we 

have already seen that the transformer is an iron-cored inductor: 
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Figure 7B.10 

The magnetizing branch has a higher impedance than the primary winding 

resistance and leakage inductance. They appear in series, so we can ignore the 

winding resistance and leakage inductance with a small error: 
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Figure 7B.11 
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The phasor diagram for this test is: 
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Figure 7B.12 

If we measure the average power P, RMS voltage magnitude ocV  and RMS 

current magnitude ocI  then: 
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(7B.11a)

(7B.11b)

(7B.11c)

This gives us the magnetizing branch at rated voltage. 
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Short-Circuit Test 

We apply a short circuit to the secondary of the transformer and increase the 

primary voltage until we achieve rated current in each winding. With a short on 

the secondary, we can reflect the secondary resistance and leakage inductance 

to the primary side: 
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Figure 7B.13 

The magnetizing branch has a higher impedance than the secondary impedance 

referred to the primary. They appear in parallel, so we can ignore the 

magnetizing branch with a small error: 
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Figure 7B.14 
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The equivalent circuit for this test is effectively that shown below: 
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Figure 7B.15 

where eqR  and eqX   are called the equivalent resistance and  equivalent leakage 

reactance and are defined by: 
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(7B.12a)

(7B.12b)

It is then usually assumed (because the paths for the leakage flux of both 

windings are approximately the same) that: 
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The phasor diagram for this test is: 
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Figure 7B.16 

If we measure the average power P, RMS voltage magnitude scV  and RMS 

current magnitude scI  then: 
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(7B.14a) 

 

(7B.14b) 

 

(7B.14c) 
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Winding-Resistance Measurements 

1R  and 2R  may be measured directly using a multimeter. Such measurements 

give the resistance of the windings to direct current, and it may be that these 

differ appreciably from the resistance to alternating current owing to non-

uniform distribution of alternating currents in the conductors. This may be 

checked by determining eqR  from the short-circuit test and comparing it with 

the equivalent DC winding resistance referred to the primary side of the 

transformer. If 1R  and 2R  are the measured DC values, then the equivalent DC 

resistance is: 
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 (7B.15)

Should DCR  differ appreciably from eqR , then the AC winding resistances 

referred to the primary side may be determined by dividing eqR  in the ratio of 

the two terms on the right-hand side of Eq. (7B.15). 
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Current and Voltage Excitation 

For any magnetic system with one electrical circuit (applies to transformer 

with open circuited secondary), KVL around the loop gives: 
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There are two extreme cases we consider. 

Case 1 - Current Excitation 

R is large so that 0e  (exact for DC). Then: 

v Ri  (7B.17) 

and the system is said to be current excited. That is, we vary the voltage source 

which directly varies the current according to the above relationship. The flux 

in the system will then be determined from the  ~ i  characteristic. 

Case 2 - Voltage Excitation 

R is small (applies to AC only) so that: 

v
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(7B.18) 

and the system is said to be voltage excited. That is, we vary the voltage source 

which directly varies the flux according to the above relationship. The current 

in the system will then be determined from the  ~ i  characteristic. 
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3rd Harmonics 

The non-linear  ~ i  characteristic gives rise to unusual waveforms. Since the 

waveforms are periodic, we can make these strange waveforms by summating 

sine waves of different frequency, amplitude and phase. This is known as 

Fourier synthesis. To a close approximation, the magnetizing currents in most 

iron cores can be considered to be made of a fundamental (50 Hz) and a 3rd 

harmonic (150 Hz). 
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