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Lecture 10B – Bridges and Measurements 
General bridge equations. Measurement of resistance, inductance and 
capacitance. Average and RMS values of periodic waveforms. 

General Bridge Equations 

The general bridge is constructed as follows: 
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Figure 10B.1 

The circuit is easy to analyze once there is no deflection in the detector D. 

When the circuit is in this state, it is said to be balanced, and: 

4231 ,, IIIIVV === CDAD  
(10B.1) 

Therefore: 

24132211 and IZIZIZIZ ==  
(10B.2) 

giving: 
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Measurement of Resistance 

Wheatstone bridge 

The Wheatstone bridge (invented by Samuel Hunter Christie but popularized 

by Charles Wheatstone) is the simplest of all bridges, and is the most widely 

used method for the precision measurement of resistance. The Wheatstone 

bridge consists of four resistance arms, together with a source of current (a 

battery) and a detector (a galvanometer). The circuit is shown below: 
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Figure 10B.2 

It is used to measure resistance from 1 Ω to 10 MΩ. It has a low sensitivity for 

low values of resistance. 

All the impedances of the general bridge are resistors, with R2 being variable. 

R1 and R3 are at a fixed ratio. At balance: 
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Kelvin bridge 

The Kelvin bridge may be regarded as a modification of the Wheatstone bridge 

to secure increased accuracy in the measurement of low resistance. It is used to 

measure resistance from 100 nΩ to 1 Ω. 

An understanding of the Kelvin arrangement may be obtained by a study of the 

difficulties that arise in a Wheatstone bridge in the measurement of resistances 

that are low enough for the resistance of leads and contacts to be appreciable in 

comparison. Consider the bridge shown below, where P represents the 

resistance of the lead that connects from 2R  to xR : 
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Figure 10B.3 

Two possible connections for the galvanometer are indicated by the dotted 

lines. With connection to m, P is added to xR , so that the computed value of 

the unknown is higher than xR  alone, if P  is appreciable in comparison with 

xR . On the other hand, if connection is made to n, xR  is in fact computed from 

the known value of 2R  only, and is accordingly lower than it should be. 
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Suppose  that instead of using point m, which gives a high result, or n, which 

makes the result low, we can slide the galvanometer connection along to any 

desired intermediate point, as shown below: 
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Figure 10B.4 

From the usual balance relationship, we can write: 
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(10B.5)

If the resistance of P is divided into two parts such that 
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then the presence of P causes no error in the result, since substituting 

Eq. (10B.6) into Eq. (10B.5) gives: 
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(10B.7) 

The final balanced condition has the same formula as the Wheatstone bridge. 

The process described here is obviously not a practical way of achieving the 

desired result, as we would have trouble in determining the correct point for the 

galvanometer connection. It does, however, suggest the simple modification 

that we connect two actual resistance units of the correct ratio between points 

m and n, and connect the galvanometer to their junction. This is the Kelvin 

bridge arrangement, shown below: 
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Figure 10B.5 

To operate the bridge, a balance is performed in the normal way. Then the link 

P is removed to see whether the detector still indicates balance. If it is out of 

balance then resistor BR  is varied to balance the resulting Wheatstone bridge 

( 2R  and xR  are negligible in comparison to AR  and BR  in this case). 
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With the link P in place, the balance condition gives BmCBA VV = . The voltage 

BAV  is given by: 
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(10B.8)

since no current exists in the galvanometer branch. Similarly, using the current 

divider rule, we get: 
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If these two values are equated and xR  made the subject, the result is: 
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Now, if BA RRRR =13 , the equation becomes: 
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3 R
R
RRx =  (10B.11)

This indicates that the resistance of the connection P (which carries most of the 

current) has no effect, provided that the two sets of ratio arms have equal 

ratios. 
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Four-Terminal Resistor 

One complication in the construction of the Kelvin bridge is the fact that in 

actual practice the resistance P includes not only the ohmic resistance of the 

connecting wire, but also the contact resistance between wire and binding post. 

Contact resistance is a variable and uncertain element, as it depends on such 

things as the cleanness of the surfaces and the amount of pressure between 

them. This uncertainty can be removed by using a four-terminal resistor: 
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Figure 10B.6 

One pair of terminals, AA ′ ,  is used to lead the current to and from the resistor. 

The voltage drop is measured between the other pair of terminals, BB ′ . The 

voltage V is thus I times the resistance from B  to B′ , and does not include any 

contact drop that may be present at terminals A  and A′ .  

Resistors of low values are measured in terms of the resistance between the 

potential terminals, which thus becomes perfectly definite in value and 

independent of contact drop at the current terminals. (Contact drop at the 

potential terminals need not be a source of error, as the current crossing these 

contacts is usually extremely small – or even zero for null methods.) 
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Measurement of Inductance 

There are a few different bridges to measure inductance. The bridges not only 

measure the inductance of a real inductor, they also measure the resistance 

associated with a real inductor. 

Maxwell bridge 

The Maxwell bridge consists of the following arrangement: 
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Figure 10B.7 

At balance, xR  and xL  do not depend upon the frequency of the AC supply, 

thus eliminating a possible source of error. Another advantage is that it permits 

measurement of inductance in terms of capacitance. A capacitor can be made 

to have a more precise value than an inductor, since they effectively have no 

external field, are more compact, and are easier to shield. 

A disadvantage is that it requires inconvenient large resistors to measure high 

Q coils, and balancing xR  and xL  is iterative. 
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Hay bridge 

The Hay bridge is similar to the Maxwell bridge, except the capacitor has a 

series resistance, instead of a parallel resistance: 
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Figure 10B.8 

This gives more convenient values of resistance and better balancing for high 

Q coils. For high Q coils, the frequency dependence is not a serious concern, 

because the terms involving frequency are small. For low Q coils, the 

frequency is important, and it is better to use the Maxwell bridge. 
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Measurement of Capacitance 

The measurement of capacitance is carried out by a comparison bridge. This 

means we compare the value of the unknown capacitance with a known 

capacitance: 
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Figure 10B.9 
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Average and RMS Values of Periodic Waveforms 

Consider a current waveform i(t) of period T. We define: 

•  Average or mean: 
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(10B.12) 

•  RMS (root of mean of squares) or effective value (DC value producing 

same energy in time T): 
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•  Form factor and crest factor: 
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(10B.14a) 

 

(10B.6b) 

Any periodic wave can be decomposed into a sum of sine waves, with different 

amplitude and phase. This is a Fourier series: 
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Examples 

(i) 
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(iii) 
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(v) 
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(vii) 
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Problems 

1. 

Derive the equation for the Kelvin bridge given by Eq. (10B.10). 

2. 

Derive equations for xR  and xL  in the Maxwell bridge. 

3. 

Derive equations for xR  and xL  in the Hay bridge. 

 




