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Introduction 

Electric circuit theory is one of the fundamental theories upon which all 

branches of electrical engineering are built. Many branches of electrical 

engineering, such as power, electric machines, control, electronics, 

communications, and instrumentation, are based on electric circuit theory. 

Circuit theory is also valuable to students specializing in other branches of the 

physical sciences because circuits are a good model for the study of energy 

systems in general, and because of the applied mathematics, physics, and 

topology involved. 



2.3 

PMcL Kirchhoff’s Current Law Index     

2019  2 - Circuit Laws 

2.1 Kirchhoff’s Current Law 

A connection of two or more elements is called a node. An example of a node 

is depicted in the partial circuit shown below:   

 

R1
R2

R4

v R3

i  

 

Figure 2.1 

Even if the figure is redrawn to make it appear that there may be more than one 

node, as in the figure below, the connection of the six elements actually 

constitutes only one node. 

 

R3

R2

R1

R4

node

v

i  

 

Figure 2.2 
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Kirchhoff’s Current Law (KCL) is essentially the law of conservation of 

electric charge. If currents directed out of a node are positive in sense, and 

currents directed into a node are negative in sense (or vice versa), then KCL 

can be stated as follows: 

KCL: At any node of a circuit, the 

currents algebraically sum to zero.  
(2.1) 

If there are n elements attached to a node then, in symbols, KCL is: 

0
1




n

k

ki  (2.2) 

KCL can also be stated as: The sum of the currents entering a node is equal to 

the sum of the currents leaving a node. 

EXAMPLE 2.1 Kirchhoff’s Current Law for a Node 

As an example of KCL, consider a portion of some circuit, shown below: 

R3

i4

i5

i6

i3

i2

i1

 

Choosing the positive sense to be leaving, we apply KCL at the node and 

obtain the equation: 

0654321  iiiiii  

Note that even if one of the elements – the one which carries 3i  – is a short-

circuit, KCL holds. In other words, KCL applies regardless of the nature of the 

elements in the circuit. 

KCL defined 
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EXAMPLE 2.2 Kirchhoff’s Current Law for a Two-Node Circuit 

We want to find the voltage v, in the two-node circuit shown below: 

i1

1 3

i2

2 2 A

i3

13 A v

 

The directions of 1i , 2i , 3i  and the polarity of v were chosen arbitrarily (the 

directions of the 13 A and 2 A sources are given). By KCL (at either of the two 

nodes), we have: 

0213 321  iii  

From this we can write: 

11321  iii  

By Ohm’s Law: 

1
1

v
i    

2
2

v
i


   

3
3

v
i   

Substituting these into the previous equation yields: 

V 6

11
6

11

11
6

236

11
32

11
321


























 










v

v

vvv

vv
v

vvv

 

Having solved for v, we can now find that: 

A 6
1

6

1
1 

v
i   A 3

2

6

2
i2 

v
  A 2

3

6

3
i3 

v
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Just as KCL applies to any node of a circuit, so must KCL hold for any closed 

region, i.e. to satisfy the physical law of conservation of charge, the total 

current leaving (or entering) a region must be zero. 

EXAMPLE 2.3 Kirchhoff’s Current Law for a Closed Region 

In the circuit shown below, three regions have been identified: 

i1 i2

i3

ia b

i4

i5

Region 1 Region 2

Region 3

 

Applying KCL to Region 1, we get: 

0i  

For Region 2: 

2431 iiii   

For Region 3: 

452 iii   

You may now ask, “Since there is no current from point a to point b (or vice 

versa) why is the connection (a short-circuit) between the points there?” If the 

connection between the two points is removed, two separate circuits result. The 

voltages and currents within each individual circuit remain the same as before. 

Having the connection present constrains points a and b to be the same node, 

and hence be at the same voltage. It also indicates that the two separate 

portions are physically connected (even though there is no current between 

them). 
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2.2 Kirchhoff’s Voltage Law 

Starting at any node in a circuit, we form a loop by traversing through elements 

(open-circuits included!) and returning to the starting node, never encountering 

any other node more than once. 

For example, the paths fabef and fdcef are loops: 

 

v8

3 V

2 A

1 

v1 v2

v5

v4

v6

v3

v7

2 

3 

4 

5 

6 

a b c

def

 

 

Figure 2.3 

whereas the paths becba and fde are not: 

 

v8

3 V

2 A

1 

v1 v2

v5

v4

v6

v3

v7

2 

3 

4 

5 

6 

a b c

def

 

 

Figure 2.4 

Loop defined 
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Kirchhoff’s Voltage Law (KVL) is essentially the law of conservation of 

energy. If voltage drops across elements traversed from + to – are positive in 

sense, and voltage drops across elements that are traversed from – to + are 

negative in sense (or vice versa), then KVL can be stated as follows: 

KVL: Around any loop in a circuit, the 

voltages algebraically sum to zero.  
(2.3) 

If there are n elements in the loop then, in symbols, KVL is: 

0
1




n

k

kv  (2.4) 

KVL can also be stated as: In traversing a loop, the sum of the voltage rises 

equals the sum of the voltage drops. 

EXAMPLE 2.4 Kirchhoff’s Voltage Law Around a Loop 

In the circuit shown in Figure 2.3, we select a traversal from + to – to be 

positive in sense. Then KVL around the loop abcefa gives: 

068321  vvvvv  

and around loop bcdeb, we have: 

03 742  vvv  

In this last loop, one of the elements traversed (the element between nodes b 

and e) is an open-circuit; however, KVL holds regardless of the nature of the 

elements in the circuit. 

Although arbitrary, it will be seen later that we get simpler equations if we 

choose the algebraic “sense” when applying KVL so that we “add voltage 

drops”. To do this, follow the simple rule: write down the algebraic sign of 

the branch voltage that you first meet in traversing the loop. 

KVL defined 
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EXAMPLE 2.5 Kirchhoff’s Voltage Law Around a Circuit 

We want to find the current i, in the one-loop circuit shown below: 

34 Vv1

v2

2

10 V 4

v3

6

i

 

The polarities of 1v , 2v , 3v  and the direction of i were chosen arbitrarily (the 

polarities of the 10 V and 34 V sources are given). Applying KVL we get: 

03410 321  vvv  

Thus: 

24321  vvv  

From Ohm’s Law: 

iv 21    iv 42    iv 63   

Substituting these into the previous equation yields: 

     

A 2

2412

24642

24642









i

i

iii

iii

 

Having solved for i, we now find that: 

 

 

   V 12266

V 8244

V 4222

3

2

1







iv

iv

iv
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2.3 Combining Resistors 

Relatively complicated resistor combinations can be replaced by a single 

equivalent resistor whenever we are not specifically interested in the current, 

voltage or power associated with any of the individual resistors. 

2.3.1 Series Resistors 

Consider the series combination of N resistors shown in (a) below: 

 

v1arbitrary

circuit

R1

v

i
R2 RN

v2 vN arbitrary

circuit Reqv

i

(a) (b)  

 

Figure 2.5 

We apply KVL: 

Nvvvv  21  (2.5) 

and Ohm’s Law: 

 iRRR

iRiRiRv

N

N









21

21

 
(2.6) 

and then compare this result with the simple equation applying to the 

equivalent circuit shown in Figure 2.5b: 

iRv eq  (2.7) 

Thus, the value of the equivalent resistance for N series resistances is: 

Neq RRRR  21   (series) (2.8) 

Combining series 
resistors 
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2.3.2 Parallel Resistors 

A similar simplification can be applied to parallel resistors. Consider the 

parallel combination of N conductances shown in (a) below: 

 

i1 i2 iN

i

arbitrary

circuit G1
v G2 GN

arbitrary

circuit Geqv

i

(a) (b)  

 

Figure 2.6 

We apply KCL: 

Niiii  21  (2.9) 

and Ohm’s Law: 

 vGGG

vGvGvGi

N

N









21

21

 
(2.10) 

whereas the equivalent circuit shown in Figure 2.6b gives: 

vGi eq  (2.11) 

and thus the value of the equivalent conductance for N parallel conductances is: 

Neq GGGG  21  (parallel) (2.12) 

 

Combining parallel 
conductances 
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In terms of resistance instead of conductance: 

Neq RRRR

1111

21

 
 (parallel) (2.13) 

The special case of only two parallel resistors is needed often: 

21

21

RR

RR
Req




 (parallel) (2.14) 

Note that since 21 GGGeq   then we may deduce that: 

1GGeq    and  2GGeq   (2.15) 

Hence: 

1

11

RReq


  and  

2

11

RReq


 (2.16) 

or: 

1RReq    and  2RReq   (2.17) 

Thus the equivalent resistance of two resistors in parallel is less than the value 

of either of the two resistors. 

The special case of N resistors of equal value R in parallel is: 

N

R
Req   (parallel) (2.18) 

 

Combining parallel 
resistors 

Combining two 
resistors in 
parallel… 

…results in an 
equivalent 
resistance smaller 
than either resistor 

Combining the same 
valued resistors in 
parallel 
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EXAMPLE 2.6 Series and Parallel Resistors 

We want to find the current i in the circuit below: 

5

28 V 4

1i

3 v

 

In order to find i, we can replace series and parallel connections of resistors by 

their equivalent resistances. We begin by noting that the  1  and  3  resistors 

are in series. Combining them we obtain: 

5

28 V 4

i

4

 

Note that it is not possible to display the original voltage v in this figure. Since 

the two  4  resistors are connected in parallel, we can further simplify the 

circuit as shown below: 

5

28 V 2

i

 

Here, the  5  and  2  resistors are in series, so we may combine them into 

one  7  resistor. Then, from Ohm’s Law, we have: 

A 4
7

28
i  
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2.4 Combining Independent Sources 

An inspection of the KVL equations for a series circuit shows that the order in 

which elements are placed in a series circuit makes no difference. An 

inspection of the KCL equations for a parallel circuit shows that the order in 

which elements are placed in a parallel circuit makes no difference. We can use 

these facts to simplify voltage sources in series and current sources in parallel. 

2.4.1 Combining Independent Voltage Sources in Series 

It is not possible to combine independent voltage sources in parallel, since this 

would violate KVL. However, consider the series connection of two ideal 

voltage sources shown in (a) below: 

 

arbitrary

circuit

(a)

v1

v2

arbitrary

circuit

(b)

veqv

a

b

v

a

b

 

 

Figure 2.7 

From KVL we know that 21 vvv  , and by the definition of an ideal voltage 

source, this must be the voltage between nodes a and b, regardless of what is 

connected to them. Thus, the series connection of two ideal voltage sources is 

equivalent to a single independent voltage source given by: 

21 vvveq   (series) (2.19) 

Clearly, the obvious generalization to N voltage sources in series holds. 

 

Combining 
independent voltage 
sources in series 
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EXAMPLE 2.7 Combining Independent Voltage Sources in Series 

In a previous example we determined the current i in the one-loop circuit 

shown below: 

34 Vv1

v2

2

10 V 4

v3

6

i

 

By rearranging the order in this one loop circuit (of course this does not 

affect i), we obtain the circuit shown below: 

v2

v1

2

10 V

34 V

4

v3

6

i

 

We can now combine the series independent voltage sources and the series 

resistors into single equivalent elements: 

-24 V 12

i

v

 

By Ohm’s Law: 

A 2
12

24



i  
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2.4.2 Combining Independent Current Sources in Parallel 

It is not possible to combine independent current sources in series, since this 

would violate KCL. However, consider the parallel connection of two ideal 

current sources shown in (a) below: 

 

(a)

i1

(b)

arbitrary

circuit
i2

a

b

i

arbitrary

circuit
ieq

a

b

i

 

 

Figure 2.8 

From KCL we find that 21 iii  , and by the definition of an ideal current 

source, this must always be the current into the arbitrary circuit. Thus, the 

parallel connection of two ideal current sources is equivalent to a single 

independent current source given by: 

21 iiieq    (parallel) (2.20) 

Clearly, the obvious generalization to N current sources in parallel holds. 

Combining 
independent current 
sources in parallel 
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EXAMPLE 2.8 Combining Independent Current Sources in Parallel 

In a previous example, we determined the voltage v in the two-node circuit 

shown below: 

1 32 2 A13 A v

 

Combining the parallel independent current sources into a single equivalent 

source, we obtain the circuit: 

1 2 311 A v

 

Since the equivalent resistance of the three resistors in parallel is given by:  

6

11

6

236

3

1

2

1

1

11





eqR
 

we obtain: 

  
11

6
eqR  

Then, from Ohm’s Law: 

  V 611
11

6
v  
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2.5 The Voltage Divider Rule 

It can be quite useful to determine how a voltage appearing across two series 

resistors “divides” between them. Consider the circuit shown below: 

 

arbitrary

circuit

R1

v1

v

i

R2 v2

 

 

Figure 2.9 

By Ohm’s Law, the current in the resistors is: 

21 RR

v
i




 
(2.21) 

By application of Ohm’s Law again, the voltage across 1R  is: 

iRv 11  (2.22) 

and therefore: 

v
RR

R
v

21

1
1


  (2.23) 

Similarly, the voltage across 2R  is: 

v
RR

R
v

21

2
2


  (2.24) 

These equations describe how the voltage is divided between the resistors. 

Because of this, a pair of resistors in series is often called a voltage divider. 

Voltage divider rule 
defined 
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EXAMPLE 2.9 Voltage Divider Rule 

We want to find the voltage v in the circuit below: 

5

28 V 4

1i

3 vv1

 

Combining the series connection of the  1  and  3  resistors, we obtain the 

circuit below: 

5

28 V 4

i

4v1

 

Now the pair of  4  resistors in parallel can be combined as shown below: 

5

28 V 2

i

v1

 

By voltage division: 

V 8
7

56
28

52

2
1 


v  

Returning to the original circuit and applying voltage division again yields: 

V 68
4

3

13

3
1 


 vv  
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2.6 The Current Divider Rule 

It can be quite useful to determine how a current entering two parallel resistors 

“divides” between them. Consider the circuit shown below: 

 

arbitrary

circuit
v

i

R2

i2

R1

i1

 

 

Figure 2.10 

We replace the parallel connection of 1R  and 2R  by its equivalent resistance. 

Thus, Ohm’s Law gives: 

i
RR

RR
iRv eq

21

21




 
(2.25) 

By application of Ohm’s Law again, the current in 1R  is 11 Rvi   and thus: 

i
RR

R
i

21

2
1


  (2.26) 

Similarly, the current in 2R  is: 

i
RR

R
i

21

1
2


  (2.27) 

These equations describe how the current is divided between the resistors. 

Because of this, a pair of resistors in parallel is often called a current divider. 

Note that a larger amount of current will exist in the smaller resistor – thus 

current tends to take the path of least resistance! 

Current divider rule 
defined 
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EXAMPLE 2.10 Current Divider Rule 

We want to find the current i in the circuit below: 

4

6 3

i1

sin(          )36 t100 V

i

 

The total current delivered by the source is: 

 
    
 A 100sin6

36364

100sin36
1

t

t
i










 

Therefore the desired current is: 

   A 100sin4100sin6
3

2

36

6
1 ttii  


  

The current divider rule can also be derived using conductances. Referring to 

Figure 2.10, the voltage across the parallel resistors is: 

21 GG

i

G

i
iRv

eq

eq



 

(2.28) 

The current in resistor 1R  is vGi 11   and thus: 

i
GG

G
i

21

1
1




 
(2.29) 

A similar result obviously holds for current 2i . The advantage of this form of 

the current divider rule is that it is the dual of the voltage divider rule – we 

replace voltages with currents, and resistors with conductances. 
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2.7 Power 

Power is the rate at which work is done or energy is expended. Taking the 

product of voltage (energy per unit charge) and current (charge per unit time) 

we get a quantity that measures energy per unit time. It’s for this reason that we 

define p , the instantaneous power absorbed by an electrical circuit element, to 

be the product of voltage and current: 

vip   (2.30) 

The fundamental unit of power is the watt (W) and is equivalent to 
-1Js . In 

using the formula for instantaneous power, we need to be careful in 

establishing the correct voltage polarity and current direction. Consider the 

circuit element: 

 

v

iA

B  

 

Figure 2.11 

If one terminal of the element (A) is v volts positive with respect to the other 

terminal (B), and if a current i is entering the element through terminal A, then 

a power vip   is being absorbed or delivered to the element. When the 

current arrow is directed into the element at the plus-marked terminal, we 

satisfy the passive sign convention. If the numerical value of the power using 

this convention is negative, then we say that the element is generating or 

delivering power. 

Instantaneous 
power defined 

Passive sign 
convention defined 
– it gives power 
absorbed by a 
circuit element 
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EXAMPLE 2.11 Power Absorbed 

Note the power in the circuit elements below: 

2 V

3 A

p = (2)(3) = 6 W absorbed   

-2 V

-3 A

p = (-2)(-3) = 6 W absorbed  

4 V

-5 A

p = (4)(-5) = -20 W

(20 W generated)

absorbed
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EXAMPLE 2.12 Power Absorbed by a Resistor 

Consider the circuit shown below: 

i  t(  )

100325cos(100    ) Vt

 

By Ohm’s Law: 

 
 

  A  100cos
100

325
t

R

tv
ti   

By definition, the power absorbed by the resistor is: 

     

 

   W100cos1056

100cos
100

325

2

2
2

t

t

titvtpR











 

In particular, at time 0t  the power absorbed by the resistor is: 

   

  W1056

0cos10560 2



Rp
 

At time ms 5t , however, since: 

  0
2

cos105100cos 3 







  

  

then the resistor absorbs 0 watts. 
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EXAMPLE 2.13 Power Absorbed by Circuit Elements 

Consider the circuit shown below: 

i1

5 V 1 9 A 3

i2

2

i3

i

 

We shall determine the power absorbed in each of the elements. 

Note that the voltage across each of the elements is 5 V since all the elements 

are in parallel. Therefore, by Ohm’s Law: 

A 5
1

5
1 i   A 

2

5
2 i   A 

3

5
3 i  

and the powers absorbed in the  1 ,  2  and  3  resistors are: 

   W25555 11  ip  

 W
2

25

2

5
55 22 








 ip  

 W
3

25

3

5
55 33 








 ip  

respectively, for a total of: 

 W
6

275

6

5075150

3

25

2

25
25 


  

absorbed by the resistors. 
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By KCL: 

3

5

2

5

1

5
9 321  iiii  

or: 

A 
6

1
9

6

101530



i  

Thus the power delivered by the voltage source is: 

 W
6

5
5  ipv  

Also, the power delivered by the current source is: 

   W4595 ip  

Hence the total power delivered by the sources is: 

 W
6

275

6

5270

6

5
45 


  

We see that the total power delivered by the sources is equal to the total power 

absorbed by the resistors. Since power delivered by a circuit element is equal to 

the negative of the power absorbed, this is equivalent to saying that the total 

power absorbed by all circuit elements is zero. Thus, the principle of 

conservation of energy (and therefore power) is satisfied in this circuit (as it is 

in any circuit). 
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EXAMPLE 2.14 Power Conservation 

Consider the circuit shown below, which is identical to the previous example 

except for the value of the current source: 

i1

5 V 1 10 A 3

i2

2

i3

i

 

In this case: 

 W251 p    W
2

25
2 p    W

3

25
3 p  

as before. By KCL, however: 

32110 iiii   

and thus: 

A 
6

5
10

6

55
i  

Therefore, the powers delivered by the sources are: 

 W
6

25

6

5
5 








vp      W50105 ip  

Hence the total power absorbed is: 

 W050
6

25

6

275
321  iv ppppp  

and again energy (power) is conserved. However, in this case not only do the 

resistors absorb power, but so does the voltage source. It is the current source 

that supplies all the power absorbed in the rest of the circuit. 
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2.7.1 Power Absorbed in a Resistor 

The power absorbed in every resistor is always a nonnegative number. 

Consider the resistor shown below: 

 

v

Ri

 

 

Figure 2.12 

By definition, the power absorbed in the resistor is vip  . But by Ohm’s Law, 

Riv  . Thus  iRip  , or: 

2Rip   (2.31) 

Also, Rvi  , so that  Rvvp  , or: 

R

v
p

2


 

(2.32) 

Both formulas for calculating power absorbed in a resistor R demonstrate that p 

is always a nonnegative number when R is positive. Therefore a resistor always 

absorbs power. 

In a physical resistor, this power is dissipated as radiation (light and/or heat). In 

some types of resistors (such as an incandescent bulb, a toaster, or an electric 

heater), this property is desirable in that the net result may be light or warmth. 

In other types of resistors, such as those found in electronic circuits, the heat 

dissipated in a resistor may be a problem that cannot be ignored. 

The physical size of a resistor determines the amount of power it can safely 

dissipate. A power dissipation that exceeds the rating of a resistor can 

physically damage the resistor. In many electronic applications, resistors need 

dissipate only small amounts of power, allowing their use in integrated circuits. 

A real resistor 
always absorbs 
power 

Real resistors have 
a power rating that 
must not be 
exceeded 
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2.8 Summary 

 Kirchhoff’s Current Law (KCL) states: “At any node of a circuit, the 

currents algebraically sum to zero”: 

0
1




n

k

ki  

 Kirchhoff’s Voltage Law (KVL) states: “Around any loop in a circuit, the 

voltages algebraically sum to zero”: 

0
1




n

k

kv
 

 Resistors in series can be combined into one equivalent resistor: 

Neq RRRR  21  

 Resistors in parallel can be combined into one equivalent resistor: 

Neq RRRR

1111

21

 
 

 Independent voltage sources in series can be added. Independent current 

sources in parallel can be added. 
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 Two resistors in series form a voltage divider: 

arbitrary

circuit

R1

v1

v

i

R2 v2

 

The voltage divider rule is:  
v

RR

R
v

21

2
2




 

 Two resistors in parallel form a current divider: 

arbitrary

circuit
v

i

R2

i2

R1

i1

 

The current divider rule is:  
i

RR

R
i

21

1
2




 

 The instantaneous power absorbed by an electrical circuit element is the 

product of voltage and current: 

vip   

The power absorbed in a resistor is: 

R

v
Rip

2
2 
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Exercises 

1. 

The voltage v has its positive reference at terminal A of a certain circuit 

element. The power absorbed by the circuit element is    W14
2

t  for 0t . 

If  V 22  tv  for 0t , how much charge enters terminal A between 0t  

and s 2t ? 

2. 

The resistance of 10 mm2 copper wire is 1.725 Ω/km, and, with a certain type 

of insulation, it can safely carry 70 A without overheating. With a one 

kilometre length of wire operating at maximum current: 

(a) What voltage exists between the ends of the wire? 

(b) How much power is dissipated in the conductor? 

(c) What is the power dissipation per square mm of surface area? 

3. 

For the circuit shown below: 

60 V

10

3 A

i
20 V

22 A

Loadv

 

find: 

(a) v   (b)  i  (c)  the power absorbed by the load. 
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4. 

With reference to the network shown below: 

8 V

5 V

ix

A

B

6 A

3 A vx

 

find: 

(a) xi  (b) xv  (c)  the power absorbed by the battery. 

5. 

By combining independent sources and resistances as appropriate, find: 

(a) The current i in the circuit below. 

20 V

8
30 V

10

2 i
 

(b) The voltage v  in the circuit below. 

30 mA 1 kv 10 mA 250
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6. 

Use the concepts of current division, voltage division, and resistance 

combination to write expressions (by inspection) for 3v  and 1i  in the circuit 

shown below: 

v3

i1

R2

R3R1
is

 

7. 

The circuit shown below exhibits several examples of independent current and 

voltage sources in series and in parallel. 

-5 V2 A

3 V

4 V

4 A

12 V -3 A

 

(a) Find the power supplied by the -5 V source. 

(b) To what value should the 4 A source be changed to reduce the power 

supplied by the -5 V source to zero? 



2.35 

PMcL Gustav Robert Kirchhoff (1824-1887) Index     

2019  2 - Circuit Laws 

Gustav Robert Kirchhoff (1824-1887) 

Kirchhoff was born in Russia, and showed an early interest in mathematics. He 

studied at the University of Königsberg, and in 1845, while still a student, he 

pronounced Kirchhoff’s Laws, which allow the calculation of current and 

voltage for any circuit. They are the Laws electrical engineers apply on a 

routine basis – they even apply to non-linear circuits such as those containing 

semiconductors, or distributed parameter circuits such as microwave striplines. 

He graduated from university in 1847 and received a scholarship to study in 

Paris, but the revolutions of 1848 intervened. Instead, he moved to Berlin 

where he met and formed a close friendship with Robert Bunsen, the inorganic 

chemist and physicist who popularized use of the “Bunsen burner”. 

In 1857 Kirchhoff extended the work done by the German physicist Georg 

Simon Ohm, by describing charge flow in three dimensions. He also analysed 

circuits using topology. In further studies, he offered a general theory of how 

electricity is conducted. He based his calculations on experimental results 

which determine a constant for the speed of the propagation of electric charge. 

Kirchhoff noted that this constant is approximately the speed of light – but the 

greater implications of this fact escaped him. It remained for James Clerk 

Maxwell to propose that light belongs to the electromagnetic spectrum. 

Kirchhoff’s most significant work, from 1859 to 1862, involved his close 

collaboration with Bunsen. Bunsen was in his laboratory, analysing various 

salts that impart specific colours to a flame when burned. Bunsen was using 

coloured glasses to view the flame. When Kirchhoff visited the laboratory, he 

suggested that a better analysis might be achieved by passing the light from the 

flame through a prism. The value of spectroscopy became immediately clear. 

Each element and compound showed a spectrum as unique as any fingerprint, 

which could be viewed, measured, recorded and compared. 

Spectral analysis, Kirchhoff and Bunsen wrote not long afterward, promises 

“the chemical exploration of a domain which up till now has been completely 

closed.” They not only analysed the known elements, they discovered new 
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ones. Analyzing salts from evaporated mineral water, Kirchhoff and Bunsen 

detected a blue spectral line – it belonged to an element they christened 

caesium (from the Latin caesius, sky blue). Studying lepidolite (a lithium-

based mica) in 1861, Bunsen found an alkali metal he called rubidium (from 

the Latin rubidius, deepest red). Both of these elements are used today in 

atomic clocks. Using spectroscopy, ten more new elements were discovered 

before the end of the century, and the field had expanded enormously – 

between 1900 and 1912 a “handbook” of spectroscopy was published by 

Kayser in six volumes comprising five thousand pages! 

Kirchhoff’s work on spectrum analysis led on to a study of the composition of 

light from the Sun. He was the first to explain the dark lines (Fraunhofer lines) 

in the Sun's spectrum as caused by absorption of particular wavelengths as the 

light passes through a gas. Kirchhoff wrote “It is plausible that spectroscopy is 

also applicable to the solar atmosphere and the brighter fixed stars.” We can 

now analyse the collective light of a hundred billion stars in a remote galaxy 

billions of light-years away – we can tell its composition, its age, and even how 

fast the galaxy is receding from us – simply by looking at its spectrum! 

As a consequence of his work with Fraunhofer’s lines, Kirchhoff developed a 

general theory of emission and radiation in terms of thermodynamics. It stated 

that a substance’s capacity to emit light is equivalent to its ability to absorb it at 

the same temperature. One of the problems that this new theory created was the 

“blackbody” problem, which was to plague physics for forty years. This 

fundamental quandary arose because heating a black body – such as a metal 

bar – causes it to give off heat and light. The spectral radiation, which depends 

only on the temperature and not on the material, could not be predicted by 

classical physics. In 1900 Max Planck solved the problem by discovering 

quanta, which had enormous implications for twentieth-century science. 

In 1875 he was appointed to the chair of mathematical physics at Berlin and he 

ceased his experimental work. An accident-related disability meant he had to 

spend much of his life on crutches or in a wheelchair. He remained at the 

University of Berlin until he retired in 1886, shortly before his death in 1887. 

“[Kirchhoff is] a 
perfect example of 
the true German 
investigator. To 
search after truth in 
its purest shape and 
to give utterance 
with almost an 
abstract self-
forgetfulness, was 
the religion and 
purpose of his life.” 
– Robert von 
Helmholtz, 1890. 


