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Introduction 

Potential difference is a fundamental concept to the electrical engineer. From a 

field perspective, a knowledge of the “potential” V at every point in space is 

enough to deduce the electric field E at every point in space. From a circuit 

perspective, it is necessary to understand potential difference, electric fields, 

and flux densities in order to understand and characterise the behaviour of a 

new circuit element called the capacitor. 

We will formulate the concept of potential difference from the basic definition 

of work done per unit charge. This will lead to new insights into the E field, 

such as discovering that it is a conservative field, and potential difference is 

independent of the path taken in order to arrive at a different potential. 

The concept of absolute potential will be introduced, and then the concept of an 

equipotential surface. This gives rise to field plots that include equipotential 

“contour lines (or surfaces)” that can aid in understanding the pattern of 

electric flux lines. 

Next we introduce the key concept of potential gradient. For simple 2D 

geometries, this gives rise to a picture of potential as a surface, and provides a 

new perspective on how charges move in an E field. 

Lastly, we will consider how we can produce an electrostatic field plot, 

complete with flux lines and equipotentials, from just a few simple rules. 
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11.1 Potential Difference 

Electric potential difference between two points A and B involves a calculation 

of the amount of work done in moving a test charge between the points A and 

B. We have just seen that an electric charge situated in an electric field will 

experience a force which is electrical in origin (Coulomb's Law). If the charge 

is allowed to move under the influence of this force, the field may be seen to be 

doing work. Likewise, if we as an observer cause the charge to move against 

the electric force we must supply a mechanical force which opposes and 

overcomes the electric Coulomb force. If our mechanical force is just equal to 

the electric force then the charge will move without acceleration, that is with 

infinitesimally small velocity, and none of the work which we have supplied in 

order to move the charge will appear as kinetic energy. Also, if the motion 

occurs without friction, the mechanical work done by us in moving the charge 

with infinitesimally small velocity may be recovered from the system by 

allowing the field to do work on the charge. In other words we have increased 

the potential energy of the charge. This increase (or decrease) in potential 

energy is measured in terms of a quantity called electric potential difference. 

Formally the definition of electric potential difference is as follows: 

Electric potential difference between two points A and B 

is defined as the mechanical work done per unit charge 

in moving a test charge from point A to point B. 

(11.1) 

From our foregoing discussion we might also define the electric potential 

difference in terms of the electrical work done per unit charge performed by 

the field in moving the test charge from point B to point A. 
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Assume that we have two points A and B located in an electric field as shown 

below: 
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Figure 11.1 – Illustrating a path of integration between two points 

In this figure, the electric field E (shown as red vectors) is a function of 

position. It changes both its magnitude and direction from place to place. An 

arbitrary path from A to B is shown – it need not be a straight line. Only the 

value of E along the path is important, since that is what determines the electric 

force on the test charge. We need to apply a mechanical force to either push or 

pull the charge along its journey from A to B. Sometimes the electric field will 

be aiding us, sometimes it will be resisting us. 

Four points along the path are shown. At point 1, the electric field is almost at 

right angles to the direction of our path, so the mechanical work required here 

will be small. At point 2 the electric field will be trying to push our test charge 

back as we move along the path – we will have to put in mechanical work to 

get past this point. At  point 3 the electric field is almost in alignment with our 

path and will be aiding us. At point 4 the electric field is at a perfect right angle 

to our path, and we don’t need to provide any mechanical force to move. 

Note that we have broken the path l up into infinitesimally small directed 

pieces (vectors) represented by dl. At all points along the path, dl is tangential 

(points in the direction of the tangent to the curve). 
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Remember that to move a charge infinitesimally slowly in an electric field, we 

apply a mechanical force that exactly counteracts the Coulomb force. A larger 

force than the Coulomb force will accelerate the charge. To overcome the 

electric force, we just need to supply a mechanical force given by: 

EM FF   (11.2) 

The amount of mechanical work we have to do to move a test charge along the 

infinitesimally small dl is then given by: 

dlFdlF  EMdW  (11.3) 

Noting that Coulomb’s Law can be written: 

EF qE   (11.4) 

we get: 

dlE  qdW  (11.5) 

The above equation gives the work done when moving an infinitesimal 

displacement dl. To find the work done in moving the charge along the entire 

path from A to B, we perform what is known as a line integral: 

J   
 

  
B

A
BA qW dlE  

(11.6) 

Potential difference is the mechanical work done per unit charge, so the 

potential difference between two points A and B in an electric field is: 

V   
 

  
B

A
BAV dlE  

(11.7) 

It is interesting that this integral is independent of path l taken from A to B. (A 

formal proof of this statement is beyond the scope of this topic. However, a 

reference to the mechanical inclined plane may make you happier to accept it 

unproven). Therefore, in determining BAV  it is usual to choose the 

mathematically simplest path available for l. 

Work done depends 
on the electric field 

Work done for an 
arbitrary path in an 
electric field 

Potential difference 
defined 
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EXAMPLE 11.1 Potential Difference in a Field Due to a Point Charge 

As an example of the calculation of the electrical potential difference between 

two points in an electric field, using an electric field that we are able to 

calculate, assume that an isolated point charge of +q coulombs is located in 

free space, as shown in the figure below: 
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We know that the electric field at any point C distance r from the point charge 

is given by: 

rE ˆ
4 2

0r

q


  

Interpreting this equation, we see that E is directed radially away from the 

point charge q throughout the whole of space (3-dimensional). Assume for 

simplicity that all points of interest in our example are in the same plane as 

shown in the figure. 

To determine the potential difference between the points B and A in the field, 

we must firstly choose a path l along which to integrate so that BAV  may be 

determined reasonably simply. If we choose a path directly AB it is possible 
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to deduce the integral, but it involves an interpretation of the scalar product 

(dot product) of two vectors which will include the cosine of the angle between 

them. A simpler approach would be to realise that the integral is path 

independent and that we may choose any path for the integration that suits us. 

One such path would be the path ADB in the figure. 

Along the portion of the path AD, the angle between E and dl will be 90°. 

Therefore: 

090cos
A




Edl
D

dlE  

We conclude that it takes no work to move in a circle around a point charge (it 

takes no work to walk around the side of a hill at a constant height). 

Along the portion of the path DB, the angle between E and dl will be 180°. 

Therefore: 

EdlEdl
BD




180cosdlE  

The potential difference between A and B is then given by: 
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Now, along the path DB, “a little bit of path length, dl” has the same 

magnitude but the opposite sign as “a little bit of radius, dr”. Thus we have: 

drdl   
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This is because dr is defined to point radially outward (similar to dx being a 

small increment to the right on an x-axis), but our path dl points radially 

inward. 

The potential difference between A and B is then given by: 

 
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This tells us that the potential difference is positive if AB rr  , i.e. the potential 

closer to the charge (at radius Br ) is higher than the potential further away from 

the charge (at Ar ). 
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11.2 Conservative Fields 

It is apparent from the definition of potential difference that if we start at a 

point A in an E field, and follow an arbitrary path through the E field back to 

the starting point A, then there is no potential difference. In other words, it 

takes no net energy to return to a starting position. We may be required to 

supply energy at some point in our journey (to increase our potential), but 

when we return to our starting point we will recover the energy. The same is 

true for the gravitational field, if we neglect friction. If you walk up a hill and 

return to your starting position, there is no net energy expended. For such 

fields, we say the field is conservative. Expressing this mathematically for the 

E field: 

0
 

l
dlE  (11.8) 

The circle on the integral means “a closed path”, and the subscript l on the 

integral denotes that the path is called l. 

As you will discover in further study, conservative vector fields can be 

expressed entirely by a scalar potential field. This makes solving problems in 

electrostatics much easier, since we can transform all problems into finding a 

scalar field (such as electric potential) instead of trying to find a vector field 

(such as E). 

The electrostatic E 
field is conservative 
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11.3 Absolute Potential 

If, in the preceding example, the radius vector Ar  is assumed to stretch to 

infinity such that Ar  then the potential difference BAV  is associated with 

the amount of energy  per unit charge involved in bringing a test charge from 

infinity to the point B. It represents the absolute electric potential at B in the 

field and it is written simply as: 

B

B
r

q
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04
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(11.9) 

If Br  approaches infinity, the absolute potential BV  will approach zero. Hence 

points at an infinite distance from an isolated electrostatic charge will be 

located in a region of zero electrostatic potential (by definition). 

The potential difference between two points in a field is given by the difference 

between their absolute potentials: 
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(11.10) 
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11.4 Equipotentials 

An equipotential surface is defined as being a surface which joins places of 

equal electrostatic potential. 

By inspection of Eq. (11.9), every point at a distance Br  from the isolated point 

charge +q in the example will be at the same potential. That is, all points 

distance Br  from the charge will lie on an equipotential surface which in this 

case will be spherical. 

Equipotential lines drawn on a field map resemble elevation lines on a 

topographic map. Equipotential lines, by definition, must always be 

perpendicular to field lines. An example of equipotentials drawn on a field map 

is shown below: 

 

equipotentials

 

 

Figure 11.2 – Equipotentials and field lines of an electric dipole 
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11.5 Potential Gradient 

Consider a uniform E field in a region between two infinite conducting plates 

(equipotentials), separated by a distance l, with a voltage  BAV  across them: 

 

E

B

A

V
BA

l

x

y

 

 

Figure 11.3 – A uniform E field 

Since: 

 
B

A
BAV

 

 
dlE  

(11.11) 

then in a uniform field (E is constant) in which the path from A to B follows 

the opposite direction to one of the straight electric field lines (dl is constant), 

the integral evaluates to a simple multiplication: 

ElVBA   (11.12) 

Note that in evaluating the dot product, we used Eld ˆˆ   (we move from A to 

B in the opposite direction to E) – hence the dot product will be negative, and 

this will cancel the negative sign out the front of the integral. For a uniform 

field, the magnitude of the electric field is then just: 

1-Vm
l

V
E 

 
(11.13) 

Therefore, the electric field has units of volts/metre, and this is the unit used 

most commonly in practice rather than newtons/coulomb. 



11.13 

PMcL Potential Gradient Index    

2019  11 - Potential Difference 

Now if we are to generalise Eq. (11.13) to E fields that are not uniform (i.e. 

vary from point to point), then we convert the formula to a differential form: 

dl

dV
E 

 
(11.14) 

This equation is for the magnitude of E, but Eq. (11.11) is an equation 

involving vectors. These are directed quantities and it might therefore be 

expected that when reorganising Eq. (11.11) into a differential form, we will 

have to provide some direction information. 

Let us denote the direction at which the rate of change of voltage is a 

maximum as n̂ . Then at any point in an electric field, the direction of n̂  

changes and points in the direction at which the voltage is rising fastest with 

increasing distance. The E field must then point in the opposite direction to n̂ , 

since E points from a higher potential to a lower potential (a test charge in an E 

field will be accelerated to a lower potential). 

Therefore, the differential form of  
B

A
BAV

 

 
dlE  is: 

nE ˆ
dl

dV


 
(11.15) 

where the derivative 
dl

dV
 must be taken in the direction of n̂ , i.e. in the 

direction which gives the maximum rate of change. 
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The figure below represents a map of the electrostatic potential of the field 

considered in Figure 11.3, where V is graphed as a 2-dimensional function of 

position in the x-y plane: 
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Figure 11.4 – A uniform E field 

As shown, it appears that V increases uniformly in the x-direction. We can find 

the rate of increase of potential with position in a given direction by taking the 

slope of the plane 
dl

dV
 in the direction under consideration. The figure shows 

constructions for determining the rate of change of potential with position in 

three different directions. You will notice that the maximum rate of change of 

potential with position will be obtained when we choose a direction 1l  which 

moves us directly up the potential 'hill'. The other two rates of change shown in 

directions 2l  and 
3l  give us rates of change which are less than the maximum. 
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By definition, the gradient of the potential is defined by the rate of increase of 

potential with position obtained when we move in the direction of maximum 

rate of increase – that is, we move directly up the potential hill. You might like 

to compare this definition with that relating to the gradient of a roadway 

moving directly up a hill. 

If a positive test charge is released from rest on the potential hill, it will move 

towards a position of lower potential – that is, it will move directly down the 

hill. The direction of the electric field represented by the potential distribution 

shown in Figure 11.4 will be directly down the potential hill. The direction of 

the electric field is therefore directly opposite the direction of the gradient of 

the field – hence the negative sign in Eq. (11.15). In the example shown in 

Figure 11.4: 

dx

dV

dl

dV
E 

max
 

(11.16) 

Since the direction of maximum rate of change of voltage with position is in 

the x̂  direction, this must be the direction of n̂ . Therefore, in the example, we 

have: 

xE ˆ
dx

dV


 
(11.17) 
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11.6 Plots of Potential Difference 

If we restrict our considerations to a 2D x-y plane, we can plot potential 

difference as a surface above the plane where the height of the surface is equal 

to the potential difference. A plot of this type for an electric dipole looks like: 

 

 
 

Figure 11.5 – A plot of potential difference for an electric dipole 

In this plot, we have arbitrarily set 0 V midway between the two charges. The 

charge on the left is positive, and the potential hill rises up to infinity as we 

approach the point charge. The charge on the right is negative, and the 

potential valley falls to negative infinity as we approach the point charge. 

Below the surface we have drawn a “contour plot”, which shows equipotential 

lines. Compare the contour plot with that shown in Figure 11.2. 

With this pictorial view of potential difference, we can now imagine how a test 

charge moves in an electric field – place your test charge anywhere on the 

surface, and then watch it “roll away” – it will follow the path which has the 

maximum downhill gradient, just like a ball rolling down a hill in a 

gravitational field. The E field in this pictorial view will be vectors at each 

point on the surface, with magnitude equal to the slope of the surface, and with 

a direction pointing “downhill”. 
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11.7 Electrostatic Field Plotting 

In order to plot electrostatic fields it is important to consider some of their 

properties. If electric charges of the same sign are placed onto a conductor they 

will initially move and re-arrange themselves on the surface of the conductor 

until each charge is situated such that the component of the electric field 

intensity which is tangential to the surface of the conductor in the vicinity of 

each charge has been reduced to zero. This is necessary if the charge is to be 

static (stationary). 

Likewise the charges will reside on the surface of a conductor since it is the 

surface location which gives the charges maximum physical separation. 

Electrostatic fields will be non-existent within conductors for this reason. To 

prove this use Gauss' Law and take your surface of integration just under the 

surface of the conductor. Since there is no charge enclosed,   and therefore D 

must be zero and hence 0E : 

 

solid conductor
positively charged

Gaussian surface

(charge enclosed = 0)

= 0E

 

 

Figure 11.6 – Diagram showing the location of the Gaussian surface used 

to show that E = 0 within a solid conductor 

It has been stated previously by way of definition that the electric field 

intensity is related to the negative of the gradient of the electrostatic potential. 

The gradient of the electrostatic potential is defined as being the rate of change 

of potential with distance where the rate at any point is taken in the direction 

where the rate is of maximum value. If you picture an arrangement of 
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equipotential surfaces, the direction of maximum rate of change of potential 

with distance at a given point will be that direction perpendicular to the 

equipotential surface through the point. Hence the direction of the electric field 

intensity vector at the point will be perpendicular to the equipotential surface 

through the point.  

The major points relating to field plotting are as follows: 

1. Free electrostatic charges reside on the surface of conductors (the outside 

surface of ho1low conductors). 

2. Electric flux lines leave the surface of conductors perpendicularly (no 

tangential component of D or E). 

3. Electric flux lines and equipotential surfaces cross at right angles. 

4. Lines of flux do not cross. 

It is important to realise that lines of electric flux commence on positive 

charges and terminate on negative charges, even if it is necessary that some of 

these charges must reside at infinity. 

Also, the assumption is made that matter is initially neutral, thus in order to 

create a negatively charged body, electrons must be removed from a second 

body and deposited on the first. The second body will therefore become 

positively charged in the process (excess protons). If the second body is then 

physically removed, we may consider it to be located at infinity. 
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11.8 Summary 

 Potential difference is defined as the work done per unit charge in moving 

from A to B in an electric field: 

V   
 

  
B

A
BAV dlE  

 The E field is conservative, which means no work is done in moving a 

charge through an E field and returning to the starting point: 

0
 

l
dlE  

 The absolute potential at a point a distance r away from a point charge is 

given by: 

r

q
V

04
  

 An equipotential surface is defined as being a surface which joins places of 

equal electrostatic potential. In A 2D field plot, we have equipotential 

curves, which are similar to contour lines on a topographic map. 

 The electric field E can be derived from the potential field as the negative 

of the gradient: 

nE ˆ
dl

dV
  

where the derivative 
dl

dV
 must be taken in the direction of n̂  (which points 

in the direction which gives the maximum rate of change of potential). 

 Electrostatic field plots can be sketched by following just a few simple 

rules. 
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Exercises 

1. 

Point charges of C 102 19  are situated at each of three corners of a square 

whose sides are 0.2 m. Calculate the electrostatic potential at the centre and 

vacant corner of the square. 

2. 

Calculate the voltage at a point (P), 30 mm from a positive charge of C 108 6  

when this point (P) is also 60 mm away from a negative charge of C 108 6 . 

The two charges are separated by a distance of 90 mm. 

3. 

Derive expressions for the potential at a distance r, in a vacuum, from: 

(a) the centre of a uniformly charged sphere, with radius a, and a total charge 

q, when ar  . 

(b) an infinite line charge with uniform charge density   Cm-1 . 

(c) an infinite plane with uniform charge density   Cm-2 . 

In each case, sketch the field patterns with a constant potential difference 

between equipotentials. 

4. 

An insulated conductor is charged positively. How does the conductor potential 

vary when an earthed conducting plane is brought near it? 

5. 

How can an insulated charged conductor be shielded from the effects of 

neighbouring earthed or charged conductors? 

 




