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Introduction 

When a charge is at rest, it gives rise to an electric field. When a charge moves 

at a uniform velocity, it gives rise to a magnetic field. Since a current, by 

definition, is the movement of charge, a current has an associated magnetic field. 

We will formulate the concept of a magnetic field, and quantify some of the 

terms used in dealing with magnetic fields, in a manner similar to that for 

electrostatics. We will extend the model of “flux” to the magnetic realm, and use 

the same concepts as flux density, flux tubes, Gauss’ Law, etc. – however, the 

flux is now a magnetic flux instead of an electric flux, and it obeys slightly 

different properties. 

Analysis of the magnetic field will lead us, eventually, to the creation of a new 

circuit element – the inductor. This is a device whose geometry, by design, fully 

exploits the properties of magnetic fields. 

In future study we will see that the magnetic field is fundamental to modern 

civilisation. The magnetic field is a strong field compared to other forces of 

nature. It is used to generate power (turbine generators), it does useful work in 

industry (electric motors), commercial premises (air conditioning) the common 

household (refrigerators, vacuum cleaners, etc.), transportation (vehicles such as 

cars, trains, etc.) and, increasingly, robotics. 
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13.1 Background 

The study of magnetic fields involves the study of phenomena which are in many 

ways similar to phenomena associated with the presence of electric fields. The 

concepts of action-at-a-distance, flux, flux density, field intensity etc. are 

important field-describing quantities in both cases. The nature and origins of the 

two types of field are, however, substantially different. Electrostatic fields have 

been seen to be associated with individual or groups of electric charges. The field 

is assumed to originate on positive charge and terminate on negative charge with 

the region in the neighbourhood of these charges becoming a region in which 

other introduced electric charges experience attractions or repulsions according 

to rules derived using Coulomb's Law and/or Gauss' Law. 

Magnetic fields on the other hand originate whenever a charge experiences 

motion. Experiments show there to be a magnetic field surrounding any 

conductor (wire) carrying an electric current. (There must also be an electric field 

associated with these moving charges since moving charge implies that a force 

is causing the motion. This force is often referred to as the electromotive force, 

or “emf” for short). The magnetic field of a permanent magnet is the result of 

unpaired spin in some of the electrons of certain ferromagnetic materials – 

electron spin is charge motion. If a majority of the atoms of the ferromagnetic 

material can be made to align such that the direction of this unpaired spin is non-

random, there will be a resultant magnetic field which will appear as permanent 

magnetism. 

A fundamental law of magnetism, called Ampère's Law, will be used to derive 

expressions for the magnetic field as a function of position for several relatively 

simple and symmetrical arrangements of current-carrying conductors. An 

extension of Ampère's Law to cases involving wound magnetic cores will enable 

us to investigate the properties of a practical circuit device called the inductor. 
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We have seen that in electrostatics the cause of any electric field is the existence 

of an excess or deficiency of fundamental charge (electrons) in a particular 

region. Magnetic fields are produced wherever charge is in motion. The most 

common situation of charge motion that we shall encounter will be that involved 

in the movement of charge (current) along a conductor in response to the 

establishment of an electromotive force (voltage) across the conductor. 

13.1.1 Experimental Results 

On 21 April 1820, the Danish scientist Ørsted noticed a compass needle 

deflected from magnetic north when an electric current from a battery was 

switched on and off, confirming a direct relationship between electricity and 

magnetism. Three months later he began more intensive investigations and soon 

thereafter published his findings1, showing that an electric current produces a 

circular magnetic field. 

The French experimentalist André-Marie Ampère began to work intensely on 

this new subject. He interpreted Ørsted’s experiment and all magnetic 

phenomena already known for a long time as being due to an interaction between 

current elements2. To this end it was necessary to suppose the existence of 

electric currents inside the Earth and inside magnets. According to Ampère, 

these electric currents would be responsible for the so-called magnetic properties 

of these bodies. All these phenomena would be then due to a single principle, 

namely, the force between current-carrying conductors. With this new 

hypothesis, Ampère expected to explain and unify not only the magnetic 

phenomena known for a long time as the interaction between two magnets or the 

interaction between the Earth and a magnetic needle, but also the phenomenon 

discovered by Ørsted of a torque produced by a current-carrying wire and acting 

upon a magnetic needle. Moreover, from this hypothesis Ampère was able to 

                                                 

1 He wrote it in Latin, over four pages, sending it as a brochure to several scientists on 21 July 

1820. It caused a sensation, being translated and published in several scientific journals. 

2 A current element is defined as a current over an infinitesimally small directed distance, dlI . 

An electric current 
produces a 
magnetic field 
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predict a new phenomenon, not yet observed by anyone before him. This new 

phenomenon was the interaction between two current-carrying wires. He soon 

performed experiments showing the existence of this new interaction. 

In 1822 Ampère arrived at his final mathematical expression describing the 

interaction between two current-carrying elements. With this expression he 

could explain the magnetic phenomena, Ørsted’s discovery and all of his own 

experiments describing the torque and force which he observed between current-

carrying wires. In November 1826 he published his main work on this subject: 

Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience. 

Interestingly, Ampère was the first person to conclude that current always exists 

in a closed loop – he observed the deflection of a magnetized needle when placed 

next to a battery, and was able to deduce the sense of the current inside the 

battery by the direction of the deflection of the magnetic needle. 

13.1.2 Theoretical Results 

It was the great James Clerk Maxwell that eventually reconciled electric and 

magnetic phenomena into one entity called electromagnetism in 1855. In doing 

so, he clearly had in mind a picture of force fields and lines of force as espoused 

by Michael Faraday. The mathematics relies on advanced vector calculus. 

Nevertheless, for simple geometries and static charges or steady currents, the 

equations of electromagnetism reduce to fairly simple practical formula that we 

can apply in everyday situations. 

Since a current is charge in motion, it should come as no surprise that when 

Einstein’s special theory of relativity came along in 1904, it was realised that 

Coulomb’s Law, if modified to include charges in motion, will give terms which 

can be identified with a magnetic field. Since motion is relative, a given physical 

experiment which is purely electrostatic in one coordinate system can appear as 

electromagnetic in another coordinate system that is moving with respect to the 

first. Magnetic fields seem to appear and vanish merely by a change in the 

motion of the observer. Hence the subject of relativity plays a fundamental role 

in electromagnetics. It can be shown that all the laws of electromagnetic fields 

can be derived by applying the relativistic transformation to Coulomb’s Law. 
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13.2 The Magnetic Field 

Experimental results (such as detecting the magnetic field with a compass) show 

us that the magnetic field around a long straight conductor is circular, i.e. “lines 

of force”, such as those exposed by iron filings sprinkled on a perpendicular 

surface to the wire, form circles. The magnetic field intensity is denoted by H. 

The direction of the magnetic field is the direction in which the north pole of a 

compass points. For a long straight conductor, the direction of the field is 

suitably described by the “right hand grip rule”: 

 

i

H

 

 

Figure 13.1 – The Right Hand Grip Rule for Magnetic Field Direction 
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13.3 Ampère's Law 

In classical electromagnetism, Ampère's Law relates magnetic fields to electric 

currents that produce them: 

enclosedI dlH  (13.1) 

The great Scottish physicist James Clerk Maxwell (not Ampère) derived it in his 

1855 paper On Faraday's Lines of Force, based on an analogy to 

hydrodynamics. 

The integration is a line integral around a closed path, l, which “encloses” the 

current I. To understand what this means, it is best to illustrate with examples. 

13.3.1 The Magnetic Field Around an Infinitely Long Wire 

Consider the magnetic field produced by current I in an infinitely long wire. 

 

H

H

I

(line of     )
path

H
l

H

r

dl

dl
dl

 

 

Figure 13.2 

As shown in the figure (and which is experimentally verified), the H field forms 

concentric circles about the current-carrying wire. In applying Ampère's Law to 

this situation, we will choose an arbitrary path l which happens to coincide with 

Ampère's Law 
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a magnetic field line H at a radius r from the wire, and “integrate around the 

loop”. We choose this arbitrary path to make the integration easier – at all points 

around the circular path, the direction of the magnetic field is tangential to the 

circumference of the circle, as is the differential path length vector, dl. Since the 

H vector and the dl vector always point in the same direction at any point on the 

path l, the dot product dlH   will reduce to Hdl . Ampère's Law then becomes: 

IHdl   (13.2) 

where the current I is the current in the infinitely long wire, which has been 

“enclosed” by our path l. Now we again invoke symmetry arguments (similar to 

Gauss’ Law) – there is no special orientation of a wire, or of a circle around the 

wire, and so we would expect the magnitude of the magnetic field to be constant 

at any point around a circular path l of fixed radius r. Then H is a constant in the 

integral, and it can be “brought out the front”: 

IdlH   (13.3) 

Now the integral of dl is just l, the length of our path around the circle. Therefore: 

IrHHl  2  (13.4) 

We can now express the magnitude of the magnetic field as: 

r

I
H

2


 
(13.5) 

Finally, defining the unit vector ĥ  as always pointing tangentially to the 

circumference of a circle of radius r centred on the wire, in the direction of the 

right-hand grip rule, we have a formula for the magnetic field around an infinite 

current-carrying conductor: 

1-Amˆ
2

hH
r

I




 
(13.6) 
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13.3.2 The Contour Integral 

Integration around the path l is known as a contour integral. In more advanced 

electromagnetic analysis, which invokes the branch of mathematics known as 

vector calculus, the contour integral is shown to be related to a surface integral. 

At this introductory stage of electromagnetism, it is worthwhile just to take a 

glimpse at the concept. 

You can think of the path l as a child’s soap bubble blower, and imagine a thin 

sheet of detergent across the circle. The current (in the wire) then pierces the thin 

sheet of detergent. In fact, you can distort the soap bubble into any shape you 

want – the current will still pierce the soap bubble and it is only the periphery of 

the soap bubble (the sturdy plastic ring) which is important in performing 

Ampère's Law: 

 

= path

I

arbitrary "open" surface

periphery of "open" surface

l

l

 

 

Figure 13.3 

So we can imagine “enclosing the current by path l” as “choosing an open surface 

so that current comes out of the open part of the surface”. The periphery of the 

open surface then forms the closed path in Ampère's Law. In other words, once 

current pierces and enters the soap bubble, it has to exit through the sturdy plastic 

ring. This kind of thinking will help later with more intricate geometries, where 

you may be need to imagine a current “piercing” the soap bubble multiple times, 

and therefore contributing to the right-hand side of Ampère's Law more than 

once. 
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13.3.3 Arbitrary Paths 

Ampère's Law for the infinitely long wire is valid not only for a simple circular 

path which coincides with the circular H field of the infinite wire but also for 

arbitrarily shaped closed loops about the current I. To demonstrate this, consider 

the figure below which shows a current I inside a noncircular closed path: 

 

I

H

integration  path

a

b dl=bd

 
I dlH

d

 

 

Figure 13.4 

In this figure, the “dot” in the centre of the wire represents current “out of the 

page”, and the wire is perpendicular to the surface of the page. Integrating the H 

field around the path, we obtain: 
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(13.7) 
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Note that the radial segments of the path do not contribute to the integral because 

there the H field is normal (perpendicular) to the path and the dot product is zero. 

Hence the line integral of H around any closed path is equal to I, because a closed 

path of arbitrary shape can always be replaced by many small arcs and radial 

segments. 

What if the integration path does not enclose current, as for example, the path 

shown below? 

 

I
H

 
0 dlH

 

 

Figure 13.5 

The right-hand side of Ampère's Law is then zero, because the contribution to 

the integral along the outer arc cancels that of the inner arc. That is, the outer arc 

gives a value of 4I , whereas the inner one yields 4I . The signs are different 

because along the outer arc the H field is along the direction of integration, 

whereas along the inner arc H and dl are opposite in direction. 

Ampère's Law is valid for any magnetic field and steady 

current (not just for fields produced by a current in an 

infinitely long wire). 

(13.8) 
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13.3.1 The Magnetic Field Around a Toroid 

Consider a toroidal coil of N turns carrying a current I: 
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Figure 13.6 

The geometry of this example is shown below: 
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Figure 13.7 

A toroidal coil 
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In the figure below, we show a cross section of the toroid with current I in the N 

turns of the winding: 

 

I

a

r

b

H

lpath

 

 

Figure 13.8 

To analyse this arrangement using simple mathematics, we have to assume that 

the winding is distributed uniformly around the toroid, and there are no gaps 

(unlike in the figure) – i.e. the loops of wire are infinitesimally close together 

with the effect that the windings form a uniform “current sheet” on the interior 

and exterior of the core. If we make this assumption, then the H field is uniform 

within the interior of the core (if we did not make this assumption, the field 

would be “bumpy” due to the windings). In practice, this assumption gives 

reasonably accurate values for the magnetic field (less than 10% error for tight 

windings). 

We can now evaluate the left-hand side of Ampère's Law around a closed path l 

at a radius r from the centre of the toroid: 

rHHldlHHdl 2  dlH  (13.9) 
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The right-hand side of Ampère's Law is the current “enclosed” by the closed 

path. In this case, we “enclose” a current equal to N times the current in an 

individual winding, since there are N turns. We therefore have: 

NIrH 2  (13.10) 

and so the magnetic field intensity in the interior of a toroid is: 

braˆ
2

 hH
r

NI

  
(13.11) 

This is the same as the infinite wire, just increased N times. 

If we choose a circular path with ar   then 0 dlH  because no current is 

enclosed. 

If we choose a circular path with br   then Ampère's Law tells us that: 

 

0

02

0







H

rH

IIN



dlH

 

(13.12) 

that is, the field outside a toroid is zero (ideally) because no net current is 

enclosed. 
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Thus, Ampère's Law tells us that the H field is confined to the interior of the 

toroid where it varies inversely with distance r from the centre: 

 

a b
r
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a2

 

 

Figure 13.9 

13.3.2 The Magnetic Field of a Solenoid 

A configuration used to produce strong magnetic fields is a helical coil called a 

solenoid: 

 

N turns

North
pole

South
pole

 

 

Figure 13.10 

The solenoid is useful because the magnetic field “comes out the ends” and is 

basically an electromagnet with a N and S pole. 

To analyse the solenoid using Ampère's Law, we assume that the solenoid is a 

tightly wound helix of conducting wire – so tight that the individual turns are 
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infinitesimally close to one another, and we have in effect a “current sheet” that 

circulates around the diameter of the solenoid (no bumps in the field!). We also 

assume an infinite length so there are no “end effects”. 

The analysis will reveal the magnetic field inside the solenoid: 

 

d

l
turnsN

I in each turn

H

ab

c

c' d'

 

 

Figure 13.11 

For an infinite solenoid the magnetic field everywhere inside must be parallel to 

the axis of the solenoid – otherwise the magnetic field would “come out” 

somewhere, and the solenoid is not infinite in length. We also claim that the 

magnetic field outside the solenoid is zero; therefore along path cd the line 

integral  
d

c
dlH  is zero. If it is not, and a finite value along cd is obtained, then 

this would imply that the same value along c’d’ must be obtained. This in turn 

implies that a constant field exists everywhere outside the coil which is contrary 

to experimental observation. 
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Ampère's Law gives us: 

NI

a

d

d

c

c

b

b

a



  dlHdlHdlHdlHdlH
 (13.13) 

Since the field along cd is zero, and along bc and da the H field is at right angles 

to the path, we are left with: 

l

NI
H

NI
b

a



 dlH

 
(13.14) 

This infinite solenoid result is an excellent approximation for the field of long 

solenoids. It shows that H is independent of the solenoid diameter, and that H is 

constant over the cross section of the solenoid. 

It is easy to show that the magnetic field intensity at either end of a long solenoid 

must be half that at its centre. To see this, cut an infinite solenoid in two. If the 

current in the two parts is maintained at the same value, the H field at the newly 

created ends must drop to one-half its original value, otherwise the H field would 

not have its original value when the two ends are reconnected. This implies that 

half the field lines that exist at the centre of a long solenoid leak out through the 

solenoid turns somewhere between the centre and one end, as shown in Figure 

13.10. 
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13.4 Magnetic Flux and Flux Density 

To explain magnetic phenomena, 19th century scientists invoked an analogy with 

fluids and postulated the existence of a magnetic fluid, known as magnetic 

“flux”,  , which streamed throughout space and manifested itself as 

magnetism. Magnetic flux always streams out of north poles and into south 

poles, and forms a closed loop. We still use this concept of flux today, as the 

theory has been spectacularly successful. 

Drawing on all the ideas used to explain electrostatics, we can now state: 

13.4.1 Flux Tubes 

Tubes of magnetic flux   stream through space using the H field lines as 

boundaries. 

13.4.2 Flux Density 

There must be a magnetic field that measures the density of the magnetic flux at 

each point. We define the magnetic flux density as the vector B. It’s relationship 

to H is given by: 

THB   (13.15) 

The units of magnetic flux density are the tesla, abbreviated T. 

13.4.3 Permeability 

The magnetic constant of the medium is the permeability: 

medium  theofty permeabili  

-1-7

0 Hm 104 sapce free ofty permeabili    

(13.16) 

(13.17) 

We also define the relative permeability of a material: 

0 r  
(13.18) 

Note that ferromagnetic materials have relative permeabilities in the thousands. 

Magnetic flux 
postulated 

Magnetic flux 
density is related to 
magnetic field 
intensity 

Permeability as a 
magnetic property of 
the medium 

Relative 
permeability defined 
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13.4.4 Flux 

The magnetic flux streaming through an area is given by:  

Wb  dAB  (13.19) 

The units of magnetic flux are the weber, abbreviated Wb. 

13.4.5 Gauss’ Law for Magnetism 

There are no sources or sinks of magnetic flux (no “magnetic monopoles”) since 

lines of H form closed paths. Gauss’ Law for magnetism is then: 

0 dAB  (13.20) 

where you should note that the integral is performed on a closed surface. This 

means that if flux enters your closed surface, it must exit. 

Gauss’ Law for 
magnetism 
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EXAMPLE 13.1 Magnetic Flux Density and Flux in a Toroid 

We return to the toroid: 

I

core

winding

h

I

sectional elevation
of core

plan

a

b

core material

 

for which we found: 

braˆ
2

 hH
r

NI


 

The magnetic flux density B within the toroidal coil will depend upon the 

material of the core. If the core is constructed from a magnetic material with a 

relative permeability r  then the flux density within the core is given by: 

braˆ
2

0  hHB
r

NIr




  

The flux density B therefore varies in the same manner as H with distance r from 

the centre of the toroid: 

a b
r

B

NI

a2


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The magnetic flux streaming around the interior of the toroid is given by: 

  dAB  

where we have to setup up an area A to intercept the entire flux stream. To 

evaluate this, consider the right-half cross-section of the core: 

flux (into page)

a

b

r

h

dr

core

dA =hdr into page

 

In this picture, the flux is directed into the page, as is the differential surface area 

dA used to “capture” the flux. The magnitude of the differential area is 

hdrdA  . The flux integral is now: 
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An approximate approach to this exact method for the determination of B and 

  will now be considered. The approximation hinges on the assumption that the 

flux density does not vary too much between the inner and outer radii of the 

toroid, so it can be assumed to be constant and equal to the flux density at the 

mid-radius: 

2
mid

ba
r


  

Thus: 
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With the approximation that the flux density is uniform across the core cross-

section, the flux is given simply by: 

 
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The proportional error resulting from this approach is found by subtracting one 

result from the other and dividing by the true result. You will observe that the 

factor 




2

0 NIhr  will cancel when this procedure is followed. Thus the 

proportional error becomes: 
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For a practical toroid the difference between the radii a and b will not be large. 

For the toroidal coil shown below: 
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mm 14

mm 6





b

a
 

which gives a proportional error of: 

%605582.0
4236.0

4236.04.0
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
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
















  

This gives us justification for the practical approach given in the next section. 
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13.5 Magnetic Circuits 

Consider an arrangement where a coil of wire is wound onto an iron core that 

has a small air gap cut into it: 

 

l

I

N
turns

i

air gaplg

iron

= cross-sectional areaA  

 

Figure 13.12 

We will make the following assumptions: 

1. Magnetic flux distributes itself evenly across the cross section of any 

magnetic core material through which it passes. 

2. The mean path length of a flux path is assumed to be the median value. 

3. Magnetic flux will follow the path of maximum relative permeability. 

4. There is no “fringing” of the field at air gaps, i.e. the flux density of an 

air gap is the same as at the “poles” of the iron at either side of the air 

gap. 
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An illustration of a “fringing field” due to an air gap is shown below: 

 

B
large gap

fringing field

small gap

no fringingB

N

S

N

S

 

 

Figure 13.13 

Using these 4 assumptions, we can now write Ampère's Law by following the 

mean path length l around the magnetic circuit: 

ggii

l
gg

l
ii

lHlH

dlHdlH

NI

gi









 dlH

 

(13.21) 

The left hand-side just reflects the fact that the path of integration enclosed the 

N turns of the coil which carries current I. The right-hand side is just an 

expansion of  dlH  showing the individual contributions made by the path in 

iron and the path in air. 

The dot product reduced to a scalar product since the infinitesimally small path 

lengths dl follow the magnetic field H, so they both have the same direction. 

This is a direct result of having a ferromagnetic material to direct the flux through 

a well-defined path. 

The integral turned into a summation because we assume that H is uniform 

throughout the material. In all cases we will let the subscript i mean iron (or any 

ferromagnetic material) and subscript g mean gap (in air). 
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Substituting BH   we get: 

g

g

i

r

i l
B

l
B

NI
00 


 

(13.22) 

Note that the air gap has 1r . We now make use of our assumption that there 

is no fringing at the air gap, in other words, ABBB ig  : 


A

l

A

l
NI

g

r

i

00   
(13.23) 

As will be shown shortly, this looks like the magnetic analog of KVL, taken 

around a circuit consisting of a DC voltage source and two resistors. We will 

therefore exploit this analogy and develop the concept of reluctance and mmf. 

If we define magnetic reluctance as: 

A

l


R

 
(13.24) 

and magnetomotive force (mmf) as: 

NI=F  (13.25) 

then Ampère's Law, Eq. (13.23), gives: 





 T

gi

R

RRF

 
(13.26) 

This is analogous to Ohm's Law. It should be emphasised that this is only true 

where   is a constant. That is, it only applies when the material is linear or 

assumed to be linear (B is proportional to H). 

Reluctance defined 

Magnetomotive 
force (mmf) defined 

Ampère’s Law looks 
like a “magnetic 
Ohm’s Law” for this 
simple case 
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The magnetic analog to KVL is Ampère's Law. What is the magnetic analog to 

KCL? In simple systems where the flux path is known, all the magnetic flux 

streaming into some part of a structure must also stream out of another part of 

the structure. The analog to KCL for magnetic circuits is therefore Gauss' Law. 

The two laws we will use for magnetic circuits are: 

l
ll

 loop a around,   RF
 

node aat 0,  

(13.27) 

 

(13.28) 

Compare this with KVL and KCL for electric circuits: 

lRIV
ll

s  loop a around, 
 

node aat 0,I  

(13.29) 

 

(13.30) 

In KVL above, sV  represents DC voltage sources (emfs), and RI  are drops in 

potential due to resistive elements. 

To extend the above analogy with KVL even further, we introduce the concept 

of magnetic scalar potential, denoted by U, which is the magnetic analog of an 

electric potential difference: 

  RHlU  (13.31) 

Compare this with Ohm’s Law: 

RIV   (13.32) 

 

 

Gauss’ Law is the 
magnetic analog of 
KCL 

Ampère’s Law and 
Gauss’ Law are 
simple summations 
for magnetic circuits 

KVL and KCL 

Magnetic scalar 
potential defined 
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Thus, the original magnetic arrangement can be redrawn in schematic notation 

as a magnetic circuit: 

  

air gap

iron

F

Ui

R i

R g Ug



=NIF

R i

R g



 

 

Figure 13.14 
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EXAMPLE 13.2 A Magnetic Circuit with an Air Gap 

A magnetic circuit core, shown in the figure below, is constructed of commercial 

iron with a relative permeability of 3000. The cross section of the core is uniform 

and measures 40 mm x 40 mm. The mean path length in the iron is 

mm 600il . The air gap has a length μm 400gl . The winding has 500 turns. 

We wish to compute the current required to produce a flux of 1.6 mWb. 

l

I

N
turns

i

air gaplg

iron

= cross-sectional areaA  

We draw the equivalent magnetic circuit: 

F

Ui

R i

R g Ug



 

We write Ampère's Law around the magnetic circuit: 







 T

gi

gi UU

R

RR

F
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The reluctances are: 

1-

27

4

0

1-

27

0

AWb 944,198
04.0104

104

AWb 472,99
04.01043000

6.0
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The total reluctance is: 

-1AWb 416,298 giT RRR  

The mmf is then: 

A 5.477106.1298416 3  

TNI RF  

Therefore the current required is: 

mA 9.954
500

5.477


N
I
F
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13.6 Summary 

 The magnetic field intensity is denoted by H. Magnetic field lines form 

closed loops. 

 The direction of the magnetic field around a current-carrying wire is 

determined by the right hand grip rule. 

 Ampère's Law is: 

enclosedI dlH  

 The magnetic field intensity at a perpendicular distance r from an infinitely 

long current-carrying conductor is: 

hH ˆ
2 r

I




 

 The magnetic field intensity in the core of a toroid at a distance r from the 

axis with N turns carrying current I is: 

hH ˆ
2 r

NI




 

 The fundamental relationship between magnetic flux density and magnetic 

field intensity is: 

HB   

where 
 
is the permeability of the material. 

 The magnetic flux streaming through an area is given by: 

  dAB
 

 Gauss’ Law for magnetism is: 

0 dAB
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 The magnetic reluctance of a structure is: 

A

l


R

 

 The magnetomotive force (mmf) is defined as: 

NI=F  

 The magnetic scalar potential is defined as: 

  RHlU  

 A magnetic circuit can be schematically represented in a manner similar to 

an electric circuit. 

 Analogous electric and magnetic circuit quantities are: 

Electric Magnetic 

Electric field intensity E Magnetic field intensity H 

Current density EJ   Flux density HB μ  

Conductivity   Permeability   

Current I Flux   

emf ElV   dlE  mmf Hl  dlHF  

Ohm’s Law RIV   RU  

Resistance 
A

l
R


  Reluctance 

A

l


R  

Kirchhoff’s Voltage Law Ampère's Law 

Kirchhoff’s Current Law Gauss’ Law 
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Exercises 

1. 

Calculate the magnetic field intensity H and magnetic flux density B at a distance 

of 1 m from a wire which carries a current of 1 A if: 

(a) The wire is immersed in free space. 

(b) The wire is immersed in a magnetic material with relative permeability 

100r . 

2. 

Determine the magnetic field due to a current I in the wall of a cylindrical tube, 

assuming the wall to have negligible thickness. Give the field both inside and 

outside the tube. 

3. 

Show that the  magnetic field intensity in a coaxial cable is given by: 

I

a

b

c

"return" current
r

 

(a) bra
r

I
H 

2
 

(b) crH  0  
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4. 

A long straight conductor carrying a current of 10 A lies along the axis of a thin 

hollow cylinder of sheet steel. The cylinder has a radius of 20 mm and the steel 

has a relative permeability of 2000.  

Determine the direction and magnitude of the magnetic field intensity, and the 

flux density, in the steel. 

5. 

A toroid of square cross-section is manufactured from a sheet steel with a relative 

permeability of 2000. The inner and outer radii of the toroid are 80 mm and 120 

mm respectively. A coil of 500 turns is wound uniformly around the ring and 

carries a current of 1 mA.  

Determine the total magnetic flux in the toroid. 
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6. 

A conducting loop abcd lies in a plane containing a long straight current-carrying 

conductor, as shown below: 

c

I

r

d

a

1 m

b

P

 

The current in the conductor is 10 A. The loop abcd is a plane square with sides 

of length 2 m. The whole system is in air. 

(a) Determine the magnetic flux density at a perpendicular distance r from the 

conductor (point P), and hence 

(b) Calculate the total magnetic flux streaming through the area bounded by 

the loop. 

 




