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Introduction 

A sinusoidal voltage or current at a given frequency is characterized by only 

two parameters, an amplitude and a phase.  

A complex number “carries” two pieces of information – a magnitude and an 

angle. 

If we make the claim that there is a correspondence between sinusoids and 

complex numbers such that: 

amplitude  magnitude 

phase   angle 

then we can formalise AC circuit analysis by operating with complex numbers 

instead of sinusoids. 

Thus, we will need to represent voltages and currents in an AC circuit with a 

complex representation characterized by a magnitude and an angle. We will 

also need to represent resistors, capacitors and inductors as complex numbers 

in order for the usual voltage-current relationships to hold. 



20.3 

PMcL The Sinusoidal Steady-State Response Index     

2019  20 - The Phasor Concept 

20.1 The Sinusoidal Steady-State Response 

Let’s firstly consider what seems to be a simple problem, but one which turns 

out to be cumbersome to solve. If we apply a sinusoidal voltage to a circuit, we 

obtain (after a time1) a “steady-state” condition in which all voltages and 

currents are sinusoids, equal in frequency to the source, but differing in both 

amplitude and phase. 

In an AC circuit we therefore expect that all voltages and currents will be 

sinusoidal eventually. The term steady-state is used synonymously with the 

“response” of a circuit after a transient period. The circuits we are about to 

analyse are commonly said to be in the “sinusoidal steady-state”. 

Unfortunately, steady-state implies “not changing with time”, but this is not 

correct – the sinusoidal forced response definitely changes with time. The 

steady-state simply refers to the condition which is reached after the transient 

response has died out. 

Consider the series RL circuit below: 

 

L

R i  t(  )

cos(    )6 t2

v  t(  )s =

1

H
1

2

 

 

Figure 20.1 – A series RL circuit with a sinusoidal source 

                                                 

1 “after a time” means the circuit will need to change from its current state (perhaps all zero 

voltages and currents) to its final state – when it does this, all voltages and currents will 

experience what is termed a transient. However, the circuit will eventually “settle down” such 

that all voltages and currents are sinusoids. Transients will be explored in future study. 

The sinusoidal 
steady-state 
response defined 
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The sinusoidal source voltage tvs 2cos6  has been switched into the circuit at 

some remote time in the past, and any transient response has died out 

completely. 

We seek the sinusoidal steady-state response. Applying KVL around the loop, 

and using the fundamental branch relationships for the elements, we get: 

svRi
dt

di
L 

 
(20.1) 

Making the equation “monic” (coefficient of the derivative is one), we get: 

L

v
i

L

R

dt

di s
 

(20.2) 

Substituting values: 

ti
dt

di
2cos122 

 
(20.3) 

This equation is quite difficult to solve with our current mathematical tools, so 

we will take a more “intuitive” approach to the problem. We assumed that all 

voltages and currents (in the steady-state) are sinusoids, so we should be able 

to express the current as a single sinusoid with an unknown amplitude and 

phase angle. We will therefore let: 

    tAti 2cos  (20.4) 

In order to avoid using the trigonometric identity for the cosine of the sum of 

two angles, we will use the alternative form: 

  tAtAti 2sin2cos 21   (20.5) 
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Substituting this into Eq. (20.3) results in: 

     ttAtAtAtA 2cos122sin2cos22cos22sin2 2121 

 
(20.6) 

or, upon grouping cos and sin terms: 

     ttAAtAA 2cos122cos222sin22 2121 
 

(20.7) 

Equating like coefficients of t2cos  and t2sin , we get the simultaneous 

equations: 

1222

022

21

21





AA

AA

 
(20.8) 

The solution to these equations is 31 A  and 32 A . Hence, the steady-state 

current is: 

  ttti 2sin32cos3   (20.9) 

or: 

  









4
2cos23


tti

 
(20.10) 

 

The steady-state 
current for the series 
RL circuit to a 
sinusoidal voltage 
source 
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A plot of the functions  tvs  and  ti  versus t is shown below: 

 


t


i  t(  )

v, i

0

v   t(  )
s

2

 

 

Figure 20.2 – Voltage and current for a series RL circuit 

Since  tvs  reaches its peak before  ti , we can say that  tvs  leads  ti  by 4  

radians (or 45 ) or that  ti  lags  tvs  by 4  radians (or 45 ).  

The fact that current lags the voltage in this simple RL circuit is now visually 

apparent. Note also that the frequency of the response is the same as the source. 

The steady-state 
response graphed, 
showing only an 
amplitude and 
phase change 
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The voltage across the inductor is: 

 

















4
2cos23

2cos32sin3

2cos62sin6
2

1

2

1


t

tt

tt

dt

di

dt

di
LvL

 

(20.11) 

Thus, the voltage  tvL  leads the voltage  tvs  by 45  and  ti  lags  tvL  by 

90 .  

The method by which we found the sinusoidal steady-state response for the 

simple RL circuit is quite intricate. It would be impractical to analyse every 

circuit by this method. We shall see in the next section that there is a way to 

simplify the analysis. It involves the formulation of complex algebraic 

equations instead of differential equations, but the advantage is that we can 

produce a set of complex algebraic equations for a circuit of any complexity. 

Sinusoidal steady-state analysis becomes almost as easy as the analysis of 

resistive circuits. 
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20.2 The Complex Forcing Function 

It seems strange at first, but the use of complex quantities in sinusoidal steady-

state analysis leads to methods which are simpler than those involving only real 

quantities. 

Consider a sinusoidal source: 

  tVm cos  (20.12) 

which is connected to a general, passive, linear, time-invariant (LTI) circuit as 

shown below: 

 

(         )cosVm t+  Im (         )cos t+ 

passive

LTI

circuit

 

 

Figure 20.3 – A real source produces a real response 

A current response in some other branch of the circuit is to be determined, and 

we know for a sinusoidal voltage source that the current is sinusoidal. Let the 

sinusoidal current be represented by: 

  tIm cos  (20.13) 

Note that the frequency stays the same – only the amplitude and phase are 

unknown. 

Excitation of a 
passive LTI circuit 
by a real sinusoid 
produces a real 
sinusoidal response 
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If we delay the forcing function by 90 , then since the system is time-

invariant, the corresponding forced response must be delayed by 90  also 

(because the frequencies are the same). Thus, the voltage source: 

     tVtV mm sin90cos  (20.14) 

will produce a current: 

     tItI mm sin90cos  (20.15) 

Since the circuit is linear, if we double the source, we double the response. In 

fact, if we multiply the source by any constant k, we achieve a response which 

is k times bigger. We now construct an imaginary source – we multiply the 

source by 1j . We thus apply: 

  tjVm sin  (20.16) 

and the response is: 

  tjIm sin  (20.17) 

The imaginary source and response are shown below: 

 

passive

LTI

circuit
(         )sinVm t+ j Im (         )sin t+ j

 

 

Figure 20.4 – An imaginary source produces an imaginary response 

Excitation of a 
passive LTI circuit 
by an imaginary  
sinusoid produces 
an imaginary 
sinusoidal response 
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We have applied a real source and obtained a real response, and we have 

applied an imaginary source and obtained an imaginary response. We can now 

use the superposition theorem (the circuit is linear) to find the response to a 

complex forcing function which is the sum of the real and imaginary voltage 

sources. Thus, the sum of the voltage sources of Eqs. (20.12) and (20.16) is: 

     tjVtV mm sincos  (20.18) 

and it produces a response which is the sum of Eqs. (20.13) and (20.17): 

     tjItI mm sincos  (20.19) 

The complex source and response may be represented more simply by applying 

Euler’s identity: 

 sincos je j   (20.20) 

Thus, the complex forcing function which is equivalent to Eq. (20.18) is: 

  tj

meV  (20.21) 

and it produces a response which is equivalent to Eq. (20.19): 

  tj

meI  (20.22) 

 

Euler’s identity 
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The complex source and response are illustrated below: 

 

passive

LTI

circuit
eVm

(         )t+ j
eIm

(         )t+ j

 

 

Figure 20.5 – A complex source produces a complex response 

We are now ready to see how this helps with sinusoidal analysis. We first note 

that the real part of the complex response is produced by the real part of the 

complex forcing function, and the imaginary part of the complex response is 

produced by the imaginary part of the complex forcing function. 

Our strategy for sinusoidal analysis will be to apply a complex forcing function 

whose real part is the given real forcing function – we should then obtain a 

complex response whose real part is the desired real response. 

We will try this strategy on the previous RL circuit: 

 

L

R i  t(  )

cos(    )6 t2

v  t(  )s =

1

H
1

2

 

 

Figure 20.6 – A series RL circuit with a sinusoidal source 

Excitation of a 
passive LTI circuit 
by a complex source 
produces a complex 
response 

We analyse circuits 
in the sinusoidal 
steady-state by 
using a complex 
forcing function 
whose real part is 
the given real 
forcing function 
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The real source tvs 2cos6  is applied, and the real response  ti  is desired. 

We first construct the complex forcing function by adding an appropriate 

imaginary component to the given real forcing function. The necessary 

complex source is: 

tjetjt 262sin62cos6   (20.23) 

The complex response which results is expressed in terms of an unknown 

amplitude mI  and an unknown phase angle  : 

 tj

meI 2
 (20.24) 

Writing the differential equation for this circuit: 

svi
dt

di
22 

 
(20.25) 

we insert our complex expressions for sv  and i : 

     tjtj

m

tj

m eeIeI
dt

d 222 122   

 
(20.26) 

Taking the indicated derivative gives: 

    tjtj

m

tj

m eeIeIj 222 1222   
 (20.27) 

which is a complex algebraic equation. This is a considerable advantage – we 

have turned a differential equation into an algebraic equation. The only 

“penalty” is that the algebraic equation uses complex numbers. It will be seen 

later that this is not a significant disadvantage. 

Using complex 
sources and 
responses reduces 
the original 
differential equation 
to a complex 
algebraic equation 
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In order to determine the value of mI  and  , we divide through by the common 

factor 
tje 2
, and we’ll place the imaginary part after the real part on the left-

hand side so that it looks more like a complex number in rectangular notation: 

1222   j

m

j

m eIjeI  (20.28) 

Removing the common factor of 2 and factoring the left side gives: 

  61  j
meIj  (20.29) 

Rearranging, we have: 

11

6

j
eI j

m




 

 

(20.30) 

This is the complex response, and it was obtained in a few easy steps. If we 

express the response in exponential or polar form, we have: 

423  jj

m eeI   (20.31) 

Thus, by comparison: 

23mI  (20.32) 

and: 

4   (20.33) 

We said that the complex response was: 

 
  tjj

m

tj

m eeIeI 22  
 (20.34) 

The complex 
response expressed 
in rectangular form 

The complex 
response expressed 
in polar form 
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and that the real response was just the real part of the complex response. 

Therefore, the real response  ti  is obtained by multiplying both sides of 

Eq. (20.31) by 
tje 2
 and taking the real part. Thus: 

   













4
2cos23

cos





t

tIti m

 
(20.35) 

This agrees with the response derived before. 

Although the analysis was straightforward, we have not yet taken advantage of 

the full power of the complex representation. At the moment, we still have to 

determine the appropriate differential equation. By introducing the concept of 

the phasor, however, we are able to eliminate this requirement, and the result is 

the simplification of sinusoidal analysis. 

The real sinusoidal 
steady-state 
response 
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20.3 The Phasor 

A sinusoidal voltage or current at a given frequency is characterized by only 

two parameters, an amplitude and a phase. The complex representation of the 

voltage or current is characterized by a magnitude and an angle. For example, 

the assumed sinusoidal form of the current response in the previous example 

was: 

  tIm cos  (20.36) 

and the corresponding representation of this current in complex form is: 

  tj

meI  (20.37) 

Once mI  and   are specified, the current is exactly defined. Throughout any 

linear circuit operating in the sinusoidal steady-state at a single frequency  , 

every voltage and current may be characterized completely by a knowledge of 

its amplitude and phase angle. 

All sinusoidal responses in a linear circuit have a frequency of  . 

Therefore, instead of writing   tIm cos , we could just say “amplitude mI ” 

and “phase  ”. 

All complex responses in a linear circuit have the factor 
tje 
. 

Therefore,  instead of writing 
  tj

meI , we could just say “magnitude mI ” 

and “angle  ”. 

Thus, we can simplify the voltage source and current response of the example 

by representing them concisely as complex numbers: 

0j

meV   and  
j

meI  (20.38) 

 

A sinusoid of a 
given frequency is 
specified by an 
amplitude and 
phase 

A complex response 
of a given frequency 
is specified by a 
magnitude and 
angle 
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We usually write the complex representation in polar form. Thus, the source 

voltage: 

   tVtv m cos  (20.39) 

is represented in complex form as: 

 0mVV  (20.40) 

and the current response: 

     tIti m cos  (20.41) 

as: 

 mII  (20.42) 

The abbreviated complex representation is called a phasor. Phasors are printed 

in boldface because they are effectively like a vector, they have a magnitude 

and direction (angle). In hand writing, we normally place a tilde underneath: 

  0
~

mVV  and  mII
~

 (20.43) 

Capital letters are used to represent phasors because they are constants – they 

are not functions of time. 

In general, we refer to  tx  as a time-domain representation and the 

corresponding phasor X  as a frequency-domain representation. 

A general 
sinusoid… 

…and its phasor 
representation 

Introducing the 
“frequency-domain” 
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We can see that the magnitude of the complex representation is the amplitude 

of the sinusoid and the angle of the complex representation is the phase of the 

sinusoid. 

It is a simple matter to convert a signal from the time-domain to the frequency-

domain – it is achieved by inspection: 

     jAetAtx  Xcos  

magnitudeamplitude   

anglephase   

(20.44) 

EXAMPLE 20.1 Phasor Representation 

If    x t t  3 30sin   then we have to convert to our cos notation: 

   x t t  3 120cos  . Therefore  1203X . 

Note carefully that   120cos3 tX . All we can say is that 

   x t t  3 120cos   is represented by  1203X . 

The convenience of complex numbers extends beyond their compact 

representation of the amplitude and phase. The sum of two phasors corresponds 

to the sinusoid which is the sum of the two component sinusoids represented 

by the phasors. That is, if      x t x t x t3 1 2   where  x t1 ,  x t2  and  x t3  are 

sinusoids with the same frequency, then 213 XXX  . 

EXAMPLE 20.2 Phasor Representation 

If  x t t t3 2sin cos   then  6324.221902013 jX  which 

corresponds to    x t t3 2 24cos 63  .  . 

The time-domain 
and frequency-
domain relationships 
for a sinusoid 

Phasors make 
manipulating 
sinusoids of the 
same frequency 
easy 
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20.3.1 Formalisation of the Relationship between Phasor and Sinusoid 

Using Euler’s identity: 

 sincos je j   (20.45) 

we have: 

        tjtAAeeAe tjtjj sincos

 
(20.46) 

We can see that the sinusoid   tAcos  represented by the phasor 

jAeX is equal to the real part of 
tje 

X . Therefore: 

   tjetx XRe  (20.47) 

This can be visualised as: 

 



complex plane

Re

Im

X
j t

e
A

j t
eA

j
e=

x  t(  )

 

 

Figure 20.7 – Graphical interpretation of a phasor 

Run the Phasor simulation program to see this view of phasors in action! 

The phasor / time-
domain relationship 

Graphical 
interpretation of 
rotating phasor / 
time-domain 
relationship 

http://pmcl.net.au/ec/Downloads/Phasors.exe
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20.3.2 Graphical Illustration of the Relationship between a Phasor 
and its Corresponding Sinusoid 

Consider the representation of a sinusoid by its phasor:    tjetx XRe . 

Graphically,  x t  can be “generated” by taking the projection of the rotating 

phasor formed by multiplying X  by e j t , onto the real axis: 

 

X

complex plane time-domain

 

 

Figure 20.8 – Graphical illustration of a phasor generating a sinusoid 

Phasor Representations 

Phasors can be represented in four different ways: 

 mXX  
polar form 

j
meXX  

exponential form 

  sincos jXm X  
trigonometric form 

jba X  
rectangular form 

A sinusoid can be 
generated by taking 
the real part of a 
rotating complex 
number 
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20.4 Phasor Relationships for R, L and C 

Now that we can transform into and out of the frequency-domain, we can 

derive the phasor relationships for each of the three passive circuit elements. 

This will lead to a great simplification of sinusoidal steady-state analysis. 

We will begin with the defining time-domain equation for each of the 

elements, and then let both the voltage and current become complex quantities. 

After dividing throughout the equation by e j t , the desired relationship 

between the phasor voltage and phasor current will become apparent. 

20.4.1 Phasor Relationships for a Resistor 

The resistor provides the simplest case. The defining time-domain equation is: 

   tRitv   (20.48) 

If we apply a complex voltage   tj

meV  and assume a complex current 

  tj

meI , we obtain: 

      tj

m

tj

m eRIeV  (20.49) 

By dividing throughout by e j t , we find: 

 j

m

j

m eRIeV   (20.50) 

or in polar form: 

  mm RIV  (20.51) 

But mV  and mI  are just the voltage and current phasors V  and I . Thus: 

IV R  (20.52) 

Phasor relationships 
for the passive 
elements 

Phasor V-I 
relationship for a 
resistor 
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Equality of the angles   and   is apparent, and the current and voltage are 

thus in phase. 

The voltage-current relationship in phasor form for a resistor has the same form 

as the relationship between the time-domain voltage and current as illustrated 

below: 

 

R

i

v=Ri R

I

time-domain frequency-domain

=RV I

 

 

Figure 20.9 – Resistor relationships in the time- and frequency-domain 

EXAMPLE 20.3 Phasor Analysis with a Resistor 

Assume a voltage of  50100cos8 t  across a  4  resistor. Working in the 

time-domain, the current is: 

 
 

  50100cos2 t
R

tv
ti  

The phasor form of the same voltage is  508 , and therefore: 

 502
R

V
I  

If we transform back to the time-domain, we get the same expression for the 

current. 

No work is saved for a resistor by analysing in the frequency-domain – because 

the resistor has a linear relationship between voltage and current. 
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20.4.2 Phasor Relationships for an Inductor 

The defining time-domain equation is: 

 
 

dt

tdi
Ltv 

 
(20.53) 

After applying the complex voltage and current equations, we obtain: 

       tj

m

tj

m eI
dt

d
LeV

 
(20.54) 

Taking the indicated derivative: 

       tj

m

tj

m eLIjeV  (20.55) 

By dividing throughout by e j t , we find: 

  j

m

j

m eLIjeV   (20.56) 

Thus the desired phasor relationship is: 

IV Lj  (20.57) 

The time-domain equation Eq. (20.53) has become an algebraic equation in the 

frequency-domain. The angle of Lj  is exactly 90  and you can see from 

Eq. (20.56) that   90 . I  must therefore lag V  by 90  in an inductor. 

Phasor V-I 
relationship for an 
inductor 
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The phasor relationship for an inductor is indicated below: 

 

V

i

v=L

I

time-domain frequency-domain

=j   LIL di
dt

L

 

 

Figure 20.10 – Inductor relationships in the time- and frequency-domain 

EXAMPLE 20.4 Phasor Analysis with an Inductor 

Assume a voltage of  50100cos8 t  across a H 4  inductor. Working in the 

time-domain, the current is: 

 
 

 

 
 











140100cos02.0

50100sin02.0

50100cos2

t

t

dtt

dt
L

tv
ti

 

The phasor form of the same voltage is  508 , and therefore: 

 





 14002.0

904100

508

Lj

V
I  

If we transform back to the time-domain, we get the same expression for the 

current. 
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20.4.3 Phasor Relationships for a Capacitor 

The defining time-domain equation is: 

 
 

dt

tdv
Cti 

 
(20.58) 

After applying the complex voltage and current equations, we obtain: 

       tj

m

tj

m eV
dt

d
CeI

 
(20.59) 

Taking the indicated derivative: 

       tj

m

tj

m eCVjeI  (20.60) 

By dividing throughout by e j t , we find: 

  j

m

j

m eCVjeI   (20.61) 

Thus the desired phasor relationship is: 

VI Cj  (20.62) 

Thus I  leads V  by 90  in a capacitor. 

Phasor V-I 
relationship for a 
capacitor 
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The time-domain and frequency-domain representations are compared below: 

 

v

time-domain frequency-domain

V

C C

i=C
dv
dt I=j   CV

 

 

Figure 20.11 – Capacitor relationships in the time- and frequency-domain 

EXAMPLE 20.5 Phasor Analysis with a Capacitor 

Assume a voltage of  50100cos8 t  across a F 4  capacitor. Working in the 

time-domain, the current is: 

 
 

 

 
 







40100cos3200

50100sin3200

50100cos84

t

t

t
dt

d

dt

tdv
Cti

 

The phasor form of the same voltage is  508 , and therefore: 

   403200508904100VI Cj  

If we transform back to the time-domain, we get the same expression for the 

current. 
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20.4.4 Summary of Phasor Relationships for R, L and C 

We have now obtained the phasor IV   relationships for the three passive 

elements. These results are summarized in the table below: 

Time-domain Frequency-domain 

v
i

R  

 

Riv   

 

IV R  

V
I

R  

v
i

L  

 

dt

di
Lv   

 

IV Lj  

V
I

j   L  

i
v

C  

 

 idt
C

v
1

 

 

IV
Cj

1
  

I
V

j   C1  

All the phasor equations are algebraic. Each is also linear, and the equations 

relating to inductance and capacitance bear a great similarity to Ohm’s Law. 

Before we embark on using the phasor relationships in circuit analysis, we 

need to verify that KVL and KCL work for phasors. KVL in the time-domain 

is: 

      021  tvtvtv n  (20.63) 

If all voltages are sinusoidal, we can now use Euler’s identity to replace each 

real sinusoidal voltage by the complex voltage having the same real part, 

divide by e j t
 throughout, and obtain: 

021  nVVV   (20.64) 

Thus KVL holds. KCL also holds by a similar argument. 

Summary of phasor 
V-I relationships for 
the passive 
elements 

KVL and KCL are 
obeyed by phasors 
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20.4.5 Analysis Using Phasor Relationships 

We now return to the series RL circuit that we considered several times before, 

shown as (a) in the figure below. We draw the circuit in the frequency-domain, 

as shown in (b): 

 

L

R i  t(  )

cos(    )6 t2

v  t(  )s =

1

H
1

2

(a)

1 I

Vs

(b)

VR

VL j1





 

 

Figure 20.12 – Analysis of the RL circuit in the frequency-domain 

Note that all passive elements in the frequency-domain have the units of ohms. 

From KVL in the frequency-domain: 

sLR VVV   (20.65) 

We now insert the recently obtained IV   relationships for the elements: 

s

s

j

LjR

VII

VII



 
 

(20.66) 

The phasor current is then found: 

j

s




1

V
I

 
(20.67) 

 

A circuit and its 
frequency-domain 
equivalent 
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The source has a magnitude of 6 and a phase of 0  (it is the reference by which 

all other phase angles are measured). Thus: 

j




1

06
I

 
(20.68) 

The current may be transformed to the time-domain by first writing it in polar 

form: 









mI

423I
 

(20.69) 

Transforming back to the time-domain we get: 

   













4
2cos23

2cos





t

tIti m

 
(20.70) 

which is the same result as we obtained before the “hard way”. 

The response of the 
circuit in the 
frequency-domain 

The response of the 
circuit in the time-
domain 
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20.5 Impedance 

The voltage-current relationships for the three passive elements in the 

frequency-domain are: 

Cj
LjR




I
VIVIV 

 
(20.71) 

If these equations are written as phasor-voltage phasor-current ratios, we get: 

Cj
LjR




1


I

V

I

V

I

V
 

(20.72) 

These ratios are simple functions of the element values, and in the case of the 

inductor and capacitor, frequency. We treat these ratios in the same manner we 

treat resistances, with the exception that they are complex quantities and all 

algebraic manipulations must be those appropriate for complex numbers. 

We define the ratio of the phasor voltage to the phasor current as impedance, 

symbolized by the letter Z : 

I

V
Z 

 
(20.73) 

The impedance is a complex quantity having the dimensions of ohms. 

Impedance is not a phasor and cannot be transformed to the time-domain by 

multiplying by 
tje 
 and taking the real part. 

Phasor V-I 
relationships for the 
passive elements 

Impedance defined 
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In the table below, we show how we can represent a resistor, inductor or 

capacitor in the time-domain with its frequency-domain impedance: 

Time-domain Frequency-domain 

R
 

R
 

L

 

j   L

 

C

 

j   C1

 

Impedances may be combined in series and parallel by the same rules we use 

for resistances. 

In a circuit diagram, a general impedance is represented by a rectangle: 

 

I

V= ZI

Z

 

 

Figure 11.1 

Impedances of the 
three passive 
elements 
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EXAMPLE 20.6 Impedance of an Inductor and Capacitor in Series 

We have an inductor and capacitor in series: 

5 mH
100   F

 

At 
-14 rads 10 , the impedance of the inductor is   50jLjL Z  and the 

impedance of the capacitor is   11 jCjC Z . Thus the series 

combination is equivalent to   49150 jjjCLeq ZZZ : 

49 j

 

The impedance of inductors and capacitors is a function of frequency, and this 

equivalent impedance is only valid at 
-14 rads 10 . For example, if 

-1rads 5000 , then the impedance would be   23jeqZ . 

Impedance may be expressed in either polar or rectangular form. 

In polar form an impedance is represented by: 

 ZZ  (20.74) 

No special names or symbols are assigned to the magnitude and angle. For 

example, an impedance of   60100  is described as having an impedance 

magnitude of  100  and an angle of 60 . 



20.32 

Index Impedance PMcL   

20 - The Phasor Concept  2019 

In rectangular form an impedance is represented by: 

jXR Z  (20.75) 

The real part, R, is termed the resistive component, or resistance. The 

imaginary component, X, including sign, but excluding j, is termed the reactive 

component, or reactance. The impedance   60100  in rectangular form is 

  6.8650 j . Thus, its resistance is  50  and its reactance is   6.86 . 

It is important to note that the resistive component of the impedance is not 

necessarily equal to the resistance of the resistor which is present in the circuit. 

EXAMPLE 20.7 Impedance of a Resistor and Inductor in Series 

Consider a resistor and an inductor in series: 

5 H20

 

At 
-1rads 4 , the equivalent impedance is   2020 jeqZ . In this case the 

resistive component of the impedance is equal to the resistance of the resistor 

because the network is a simple series network. Now consider the same 

elements placed in parallel: 

5 H20

 

The equivalent impedance is: 

 



  j1010

2020

2020

j

j
eqZ  

The resistive component of the impedance is now  10 . 

 

Impedance is 
composed of a 
resistance (real part) 
and a reactance 
(imaginary part) 
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EXAMPLE 20.8 Circuit Analysis using Impedance 

We will use the impedance concept to analyse the RLC circuit shown below: 

sin(         )40 t3000 V

i  t(  ) 1.5 k

H
1
3

1 k

1
6 F

 

The circuit is shown in the time-domain, and a time-domain response is 

required. However, analysis should be carried out in the frequency-domain. We 

therefore begin by drawing the frequency-domain circuit – the source is 

transformed to the frequency-domain, becoming  9040 , the response is 

transformed to the frequency-domain, being represented as I , and the 

impedances of the inductor and capacitor, determined at 
-1rads 3000 , are 

k 1j  and  k 2j  respectively. The frequency-domain circuit is shown 

below: 

I 1.5 k 1 k

j1 k -j2 k40 -90° V

 

The equivalent impedance offered to the source is: 

  

























k   9.365.25.12

2

31
5.1

1

1

1

2
5.1

1

2
5.1

211

211
5.1

j

j

j

j

j

j

j

j

jj

jj
eqZ
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The phasor current is thus: 

mA   9.12616
9.365.2

9040







eq

s

Z

V
I  

Upon transforming the current to the time-domain, the desired response is 

obtained: 

    mA   9.1263000cos16  tti  

 

20.6 Admittance 

The reciprocal of impedance can offer some convenience in the sinusoidal 

steady-state analysis of circuits. We define admittance as the ratio of phasor 

current to phasor voltage: 

V

I
Y 

 
(20.76) 

and thus: 

Z
Y

1


 
(20.77) 

The real part of the admittance is the conductance G , and the imaginary part 

of the admittance is the susceptance B . Thus: 

jXR
jBG




11

Z
Y

 
(20.78) 

This formula should be scrutinized carefully. It does not mean that RG 1  

(unless RZ , a pure resistance), nor does it mean XB 1 . 

Admittance, conductance and susceptance are all measured in siemens (S). 

Admittance defined 

Admittance is the 
reciprocal of 
impedance 

Admittance is 
composed of a 
conductance (real 
part) and a 
susceptance 
(imaginary part) 
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EXAMPLE 20.9 Admittance of a Resistor and Capacitor in Series 

Consider a resistor and a capacitor in series: 

1
0.1F

 

At 
-1Mrads 5 , the equivalent impedance is   21 jeqZ . Its admittance 

is: 

S  4.02.0

21

21

21

1

21

11

j

j

j

jj













Z
Y

 

It should be apparent that the equivalent admittance of a circuit consisting of  a 

number of parallel branches is the sum of the admittances of the individual 

branches. Thus, the admittance obtained above is equivalent to: 

5 0.8 F

 

only at 
-1Mrads 5 . As a check , the equivalent impedance of the parallel 

network at 
-1Mrads 5  is: 

 





   21

5.25

5.25
j

j

j
eqZ  

as before. 
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20.7 Summary 

 Sinusoids are important theoretically and practically. A sinusoidal source 

yields a sinusoidal response. 

 The sinusoidal forced response is also known as the sinusoidal steady-state 

– the condition which is reached after the transient response has died out. 

 A complex forcing function produces a complex response – the real part of 

the forcing function creates the real part of the response. 

 The application of a complex forcing function to a linear circuit turns the 

describing differential equation into a complex algebraic equation. 

 The phasor representation of a sinusoid captures the amplitude and phase 

information in a complex number – amplitude corresponds to magnitude, 

and phase corresponds to angle. 

Time-Domain Frequency-Domain 

sinusoid phasor 

     tAtx cos  
jAeX  

amplitude  magnitude  

phase  angle  

 Phasor IV   relationships for the three passive elements lead to the 

concept of frequency-domain impedance. The impedances of the three 

passive elements are: RR Z , LjL Z , CjC 1Z . Impedances can 

be combined and manipulated like resistors except we use complex algebra. 

 Impedance consists of a real resistive component and an imaginary reactive 

component: jXR Z . 

 Admittance is defined as the inverse of impedance: jBG ZY 1 . 
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Exercises 

1. 

Consider the circuit shown below: 

i  t(  )

v  t(  )s 0.1 H

200

 

Let  A 40500sin2  ti . Determine the source voltage  tvs . 

2. 

Consider the circuit shown below: 

150 mH

300

i  t( )

600cos(         )60 t2000 V

200

L

 

Find  tiL . 
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3. 

Consider the circuit shown below: 

i  t(  )

v  t(  )s 2 H

10

 

Let V 10cos305cos20 ttvs  . Find  ti . 

4. 

Give in polar form: 

(a)  40811020   (b)    541.017.182.31.6 jj   

Give in rectangular form: 

 (c)  71.93.6 jj    (d) 
521.2je  

5. 

Assume that only three currents, 1i , 2i  and 3i , enter a certain node. 

(a) Find  ti1  if mA  110652 I  and mA  50453 I  

(b) Find 2I  if     mA  40400cos551  tti  and     mA  70400sin353  tti . 
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6. 

The circuit below is operated at 
-1rads  100 . 

i1

1 H 400F40

iR

 

(a) If A  2001.0 RI , find 1I . 

(b) If A  3021 I , find RI . 

7. 

Using a 1 H inductor and a μF  1  capacitor, at what frequency (in hertz) may an 

impedance be obtained having a magnitude of   2000  if the two elements are 

combined in: 

(a) series  (b) parallel 

8. 

A μF  10  capacitor and a   25  resistor are in parallel. What size inductor 

should be placed in series with this parallel combination so that the impedance 

of the final series network has zero reactance at 
-1krads  8 ? 

9. 

What size capacitor should be placed in series with the series combination of 

  800  and 20 mH to give an admittance whose magnitude is 1 mS at 

-1krads  10 ? 
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10. 

If the input admittance and impedance of the network shown below are equal at 

every frequency, find R and L. 

R 1 F

R

L

Yin

Zin
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Joseph Fourier (1768-1830) (Jo´ sef Foor´ yay) 

Fourier is famous for his study of the flow of heat in metallic plates and rods. 

The theory that he developed now has applications in industry and in the study 

of the temperature of the Earth’s interior. He is also famous for the discovery 

that many functions could be expressed as infinite sums of sine and cosine 

terms, now called a trigonometric series, or Fourier series. 

Fourier first showed talent in literature, but by the age of thirteen, mathematics 

became his real interest. By fourteen, he had completed a study of six volumes 

of a course on mathematics. Fourier studied for the priesthood but did not end 

up taking his vows. Instead he became a teacher of mathematics. In 1793 he 

became involved in politics and joined the local Revolutionary Committee. As 

he wrote:-  

As the natural ideas of equality developed it was possible to conceive the 

sublime hope of establishing among us a free government exempt from kings 

and priests, and to free from this double yoke the long-usurped soil of 

Europe. I readily became enamoured of this cause, in my opinion the 

greatest and most beautiful which any nation has ever undertaken. 

Fourier became entangled in the French Revolution, and in 1794 he was 

arrested and imprisoned. He feared he would go to the guillotine but political 

changes allowed him to be freed. In 1795, he attended the Ecole Normal and 

was taught by, among others, Lagrange and Laplace. He started teaching again, 

and began further mathematical research. In 1797, after another brief period in 

prison, he succeeded Lagrange in being appointed to the chair of analysis and 

mechanics. He was renowned as an outstanding lecturer but did not undertake 

original research at this time. 

In 1798 Fourier joined Napoleon on his invasion of Egypt as scientific adviser. 

The expedition was a great success (from the French point of view) until 

August 1798 when Nelson’s fleet completely destroyed the French fleet in the 

Battle of the Nile, so that Napoleon found himself confined to the land he was 

occupying. Fourier acted as an administrator as French type political 

institutions and administrations were set up. In particular he helped establish 

educational facilities in Egypt and carried out archaeological explorations. 
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While in Cairo, Fourier helped found the Institute d'Égypte and was put in 

charge of collating the scientific and literary discoveries made during the time 

in Egypt. Napoleon abandoned his army and returned to Paris in 1799 and soon 

held absolute power in France. Fourier returned to France in 1801 with the 

remains of the expeditionary force and resumed his post as Professor of 

Analysis at the Ecole Polytechnique. 

Napoleon appointed Fourier to be Prefect at Grenoble where his duties were 

many and varied – they included draining swamps and building highways. It 

was during his time in Grenoble that Fourier did his important mathematical 

work on the theory of heat. His work on the topic began around 1804 and by 

1807 he had completed his important memoir On the Propagation of Heat in 

Solid Bodies. It caused controversy – both Lagrange and Laplace objected to 

Fourier’s expansion of functions as trigonometric series. 

…it was in attempting to verify a third theorem that I employed the 

procedure which consists of multiplying by dxx cos  the two sides of the 

equation 

  ...2coscos 210  xaxaax  

and integrating between 0x  and x . I am sorry not to have known the 

name of the mathematician who first made use of this method because I 

would have cited him. Regarding the researches of d’Alembert and Euler 

could one not add that if they knew this expansion they made but a very 

imperfect use of it. They were both persuaded that an arbitrary…function 

could never be resolved in a series of this kind, and it does not seem that 

any one had developed a constant in cosines of multiple arcs 

[i.e. found 1a , 2a ,…, with ...2coscos1 21  xaxa  for 22   x ] 

the first problem which I had to solve in the theory of heat. 

Other people before Fourier had used expansions of the form 

   


r r irtaxf exp~  but Fourier’s work extended this idea in two totally 

new ways. One was the “Fourier integral” (the formula for the Fourier series 

coefficients) and the other marked the birth of Sturm-Liouville theory (Sturm 

and Liouville were nineteenth century mathematicians who found solutions to 

many classes of partial differential equations arising in physics that were 

analogous to Fourier series). 

The Institute 
d'Égypte was 
responsible for the 
completely 
serendipitous 
discovery of the 
Rosetta Stone in 
1799. The three 
inscriptions on this 
stone in two 
languages and three 
scripts (hieroglyphic, 
demotic and Greek) 
enabled Thomas 
Young and Jean-
François 
Champollion, a 
protégé of Fourier, 
to invent a method 
of translating 
hieroglyphic writings 
of ancient Egypt in 
1822. 

This extract is from 
a letter found among 
Fourier’s papers, 
and unfortunately 
lacks the name of 
the addressee, but 
was probably 
intended for 
Lagrange. 
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Napoleon was defeated in 1815 and Fourier returned to Paris. Fourier was 

elected to the Académie des Sciences in 1817 and became Secretary in 1822. 

Shortly after, the Academy published his prize winning essay Théorie 

analytique de la chaleur (Analytical Theory of Heat). In this he obtains for the 

first time the equation of heat conduction, which is a partial differential 

equation in three dimensions. As an application he considered the temperature 

of the ground at a certain depth due to the sun’s heating. The solution consists 

of a yearly component and a daily component. Both effects die off 

exponentially with depth but the high frequency daily effect dies off much 

more rapidly than the low frequency yearly effect. There is also a phase lag for 

the daily and yearly effects so that at certain depths the temperature will be 

completely out of step with the surface temperature. 

All these predictions are confirmed by measurements which show that annual 

variations in temperature are imperceptible at quite small depths (this accounts 

for the permafrost, i.e. permanently frozen subsoil, at high latitudes) and that 

daily variations are imperceptible at depths measured in tenths of metres. A 

reasonable value of soil thermal conductivity leads to a prediction that annual 

temperature changes will lag by six months at about 2–3 metres depth. Again 

this is confirmed by observation and, as Fourier remarked, gives a good depth 

for the construction of cellars. 

As Fourier grew older, he developed at least one peculiar notion. Whether 

influenced by his stay in the heat of Egypt or by his own studies of the flow of 

heat in metals, he became obsessed with the idea that extreme heat was the 

natural condition for the human body. He was always bundled in woollen 

clothing, and kept his rooms at high temperatures. He died in his sixty-third 

year, “thoroughly cooked”. 

References 

Körner, T.W.: Fourier Analysis, Cambridge University Press, 1988. 


