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Introduction 

In the analysis of resistive circuits of arbitrary complexity, we are able to 

employ many different circuit analysis techniques to determine the response – 

nodal analysis, mesh analysis, superposition, source transformations, 

Thévenin’s and Norton’s theorems. 

Sometimes one method is sufficient, but more often we find it convenient to 

combine several methods to obtain the response in the most direct manner. 

We now want to extend these techniques to the analysis of circuits in the 

sinusoidal steady-state. We have already seen that impedances combine in the 

same manner as do resistances. We have seen that KVL and KCL are obeyed 

by phasors, and we also have an Ohm-like law for the passive elements, 

ZIV  . We can therefore extend our resistive circuit analysis techniques to 

the frequency-domain to determine the phasor response, and therefore the 

sinusoidal steady-state response. 
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21.1 Analysis using Phasors 

Phasors can only be used for sinusoidal steady-state analysis. 

Phasor analysis is a transform method of analysis. In phasor analysis we 

transform a problem from the time-domain to the frequency-domain. To find a 

response in the frequency-domain, we solve equations using complex algebra. 

Once the response is found, we transform the solutions back to the time-

domain. This is illustrated conceptually below: 
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Figure 21.1 

Transform methods are a common method of analysis in branches of 

engineering, and you will be introduced to more powerful transform methods 

in more advanced subjects. 
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21.2 Nodal Analysis 

As an example of nodal analysis, consider the circuit shown below: 

 

5 10
2 H

0.5

40 mF

1 H

v1
v2

20 mF

cos(    )t5 A sin (    )t5 A

 

 

Figure 21.2 

Noting from the sources that 
-1rads 5 , we draw the frequency-domain 

circuit and assign nodal voltages 1V  and 2V : 

 

5 10
j10

-j10

1 0° A 0.5 -90° A

-j5

j5

V1
V2

 

 

Figure 21.3 

Each passive element is specified by its impedance, which has been determined 

by knowing the frequency of the sources (which are the same) and the element 

values. Two current sources are given as phasors, and phasor node voltages 1V  

and 2V  are indicated. 

At the left node, we apply KCL and ZVI  : 
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(21.1) 

Nodal analysis in 
the frequency-
domain 
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At the right node: 

 5.0
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221212 j
jjj


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


 VVVVVV
 

(21.2) 

Combining terms we have the two equations: 
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(21.3) 

Using Cramer’s Rule to solve, we obtain:  
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(21.4) 

The time-domain solutions are best obtained by representing the phasors in 

polar form: 

V  6.11652

V  4.635

2

1





V

V

 
(21.5) 

and passing to the time-domain: 

   

    V  6.1165cos52

V  4.635cos5

2

1





ttv

ttv

 
(21.6) 

Note how simple phasor analysis is compared to the work involved if we 

stayed in the time-domain solving differential equations! 
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21.3 Mesh Analysis 

As an example of mesh analysis, consider the circuit shown below: 

 

3
500

4 mH

i1

cos(       )10 t10 V
3

F

2

 

 

Figure 21.4 

Noting from the source that 
-13 rads 10 , we draw the frequency-domain 

circuit and assign mesh currents 1I  and 2I : 

 

3

10 0° V

-j2

j4

I 1 I 2
2

 

 

Figure 21.5 

Around mesh 1: 

   01043 211 III j  (21.7) 

while mesh 2 leads to: 

  0224 2212  IIII jj  (21.8) 

Mesh analysis in the 
frequency-domain 
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Combining terms we have the two equations: 

 

  0224

10443
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(21.9) 

Solving: 
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(21.10) 

or: 

   
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(21.11) 

The solution above could be checked by working entirely in the time-domain, 

but it would be quite an undertaking! 
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21.4 Superposition 

Linear circuits are those that consist of idealised linear passive circuit elements 

(R, L and C) and ideal independent voltage and current sources. Such circuits 

are amenable to the superposition principle. 

We can analyse linear circuits with phasors and the principle of superposition. 

(You may remember that linearity and superposition were invoked when we 

combined real and imaginary sources to obtain a complex source). 

Let’s look again at the circuit of Figure 21.3, redrawn below with each pair of 

parallel impedances replaced by a single equivalent impedance (for example, 5 

and 10j  in parallel yield 24 j ): 

 

4 -j2 1 0° A 0.5 -90° A

V1
V2

-j10

2+j4 

 

 

Figure 21.6 

To find 1V  we first activate only the left source and find the partial response: 

  
22

86

284

421024

421024
011 j

j

j

jjj

jjj
L 









V  (21.12) 

With only the right source active, current division helps us to obtain: 
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421024
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







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






j
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j
RV  (21.13) 

Summing, we get: 

 V  211221 jj V  (21.14) 

which agrees with our previous result. 

Superposition in the 
frequency-domain 
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21.5 Thévenin’s Theorem 

We will use the same circuit to see whether Thévenin’s Theorem can help us: 

 

4 -j2 1 0° A 0.5 -90° A

V1
V2

-j10

2+j4 

 

 

Figure 21.7 

Suppose we determine the Thévenin equivalent faced by the   10j  

impedance. The open circuit voltage (+ reference to the left) is: 

     

361224

42905.02401

jjj

jjoc



V

 
(21.15) 

The impedance of the inactive circuit, as viewed from the load terminals, is 

simply the sum of the two remaining impedances (because the current sources 

are set to zero – open circuits). Hence: 

26 jth Z  (21.16) 

 

Thévenin’s Theorem 
in the frequency-
domain 
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Thus, when we reconnect the circuit, the current directed from node 1 toward 

node 2 through the   10j  load is: 

3.06.0
1026

36
12 j

jj

j





I

 
(21.17) 

Subtracting this from the left source current, the downward current through the 

  24 j  branch is found: 

  3.04.03.06.011 jj I  (21.18) 

and , thus: 

   V 213.04.024111 jjj  IZV  (21.19) 

 



21.11 

PMcL Norton’s Theorem Index     

2019  21 - The Sinusoidal Steady-State Response 

21.6 Norton’s Theorem 

Again using the same circuit, if our chief interest is in 
1V  we could use 

Norton’s Theorem on the three right elements: 

 

0.5 -90° A

-j10

2+j4 

 

 

Figure 21.8 

The short circuit current is obtained using current division: 
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A  
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(21.20) 

and the Norton impedance (equal to the Thévenin impedance) is simply: 

62 jth Z  (21.21) 

 

Norton’s Theorem in 
the frequency-
domain 
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We thus need to analyse the circuit: 

 

4 -j2 1 A A

V1

2-j6  +j1
4

 

 

Figure 21.9 

The voltage 1V  is therefore: 

  
 

  

     V  2125.075.02225.075.0
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284

25.025.01
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1
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j

j

j
jj

jj



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

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(21.22) 

It should now be clear that all methods available for linear circuit analysis can 

be applied to the frequency-domain. The slight additional complexity that is 

apparent now arises from the necessity of using complex numbers and not from 

any more involved theoretical considerations. 
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21.7 Phasor Diagrams 

The phasor diagram is a sketch in the complex plane of the phasor voltages and 

currents throughout a specific circuit. It provides a graphical method for 

solving problems which may be used to check more exact analytical methods. 

Since phasor voltages and currents are complex numbers, they may be 

identified as points in a complex plane. For example, the phasor voltage 

 1.5310861 jV  is identified on the complex voltage plane shown 

below: 

 

Real axis (V)
6

V18j

10

53.1°

Imaginary
axis (V)

 

 

Figure 21.10 

The axes are the real voltage axis and the imaginary voltage axis. The voltage 

1V  is located by an arrow drawn from the origin. Since addition and 

subtraction are particularly easy to perform and display on a complex plane, it 

is apparent that phasors may be easily added and subtracted in a phasor 

diagram. Multiplication and addition result in a change in magnitude and the 

addition and subtraction of  angles. 

A phasor diagram is 
a graphical sketch of 
phasors in the 
complex plane 

A simple phasor 
diagram 
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Figure 21.11 shows the sum of 
1V  and a second phasor voltage 

 1.535432 jV : 

 

+

V1

V2

V2V1

 

 

Figure 21.11 

Figure 21.12 shows the current 1I , which is the product of 1V  and the 

admittance 11 jY : 

 

V1

=I1

V1(1+  1)j
45°

 

 

Figure 21.12 

This last phasor diagram shows both current and voltage phasors on the same 

complex plane – it is understood that each will have its own amplitude scale, 

but a common angle scale. 

Phasor diagram 
showing addition 

Phasor diagram 
showing 
multiplication 
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The phasor diagram can also show the connection between the frequency-

domain and the time-domain. For example, let us show the phasor  mVV  

on the phasor diagram, as in (a) below: 

 

Vm 

Vm t+

t+

t



V Vm= 



(a) (b)

Vm

 

 

Figure 21.13 

In order to transform V  to the time-domain, we first need to multiply by 
tje 
. 

We now have the complex voltage   tVeeV m

tjj

mV . This voltage 

may be interpreted as a phasor which possesses a phase angle that increases 

linearly with time. On a phasor diagram it therefore represents a rotating line 

segment, the instantaneous position being rad t  ahead (counterclockwise) of 

mV . Both  mV  and   tVm  are shown on the phasor diagram in (b). 

The transformation to the time-domain is completed by taking the real part of 

  tVm , which is the projection of the phasor onto the real axis. It is helpful 

to think of the arrow representing the phasor V  on the phasor diagram as the 

snapshot, taken at 0t , of a rotating arrow whose projection onto the real axis 

is the instantaneous voltage  tv . 

 

Phasor diagram 
showing 
transformation to the 
time-domain by 
rotating the phasor 
and taking the real 
part 

See the “Phasors” 
PC program 
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EXAMPLE 21.1 Phasor Diagram of a Series RLC Circuit 

The series RLC circuit shown below has several different voltages associated 

with it, but only a single current: 

10Vs

I 3 6j

-j

VR VL

VC

 

The phasor diagram is constructed most easily by employing the single current 

as the reference phasor – all other phasors with have their angles measured 

with respect to the reference. Let us arbitrarily set  0mII  and place it along 

the real axis of the phasor diagram, as shown below: 

Vs

IVR

VL +VR VL

VC

+VR VC

+VR VL + VC=

3

6j

10-j

4-j

5-j

j5
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The resistor, inductor and capacitor voltages may next be calculated and placed 

on the diagram, where the 90  phase relationships stand out clearly. The sum 

of these three voltages is the source voltage for this circuit. The total voltage 

across the resistance and inductance or resistance and capacitance or 

inductance and capacitance is easily obtained from the phasor diagram. 

We can design using the phasor diagram quite easily instead of embarking on 

complex algebraic manipulation. For example, suppose we would like to 

determine a single extra passive element that can be added in series with the 

circuit so that the magnitude of the current does not change. This additional 

circuit element will contribute to an additional voltage drop, but we still must 

have KVL satisfied so that the total voltage drop magnitude equals the source 

voltage magnitude. Therefore, the addition of the voltage drop due to the new 

element must keep the source voltage on a circle of radius 
sV . From the 

phasor diagram, we can see that we can only add an inductor with an 

impedance   8jLnewZ , so that the additional voltage drop still brings us onto 

the circle of radius 
sV : 

VLnew

Vs +VR VL + VC=

3

4-j

5-j

j5

j4
Vsnew +VR VL + VC= + VLnew
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As another example of the use of the phasor diagram, consider the original 

circuit again. We know that an increase in frequency will cause the voltage 

across the inductor to increase, whilst simultaneously decreasing the voltage 

across the capacitor (although not linearly). In fact, if we increase the 

frequency by 29.1%, the inductor voltage and capacitor voltage will exactly 

cancel one another, and we have a condition known as resonance. In this case 

the supply voltage and current are precisely in phase, and the circuit appears 

resistive: 

I

VL

+VR VL

VC

+VR VC

RVVs =

3

7.746j

7.746-j
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EXAMPLE 21.2 Phasor Diagram of a Parallel RC Circuit 

The figure below shows a simple parallel circuit in which it is logical to use the 

single voltage between the two nodes as a reference phasor: 

5

I R

V

I C

I s 10-j

 

Let us arbitrarily set  0mVV  and place it along the real axis of the phasor 

diagram. The resistor current is in phase with this voltage, A 2.0 mR VI , and 

the capacitor current leads the reference voltage by 90 , A 1.0 mC VjI . After 

these two currents are added to the phasor diagram, shown below, they may be 

summed to obtain the source current. The result is   A 1.02.0 ms VjI . 

VmIs = (0.2+       )0.1j

V= Vm 0°IR=0.2Vm

jIC =  0.1Vm
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If the source current were specified initially as, for example, A 01 sI , and 

the node voltage is not initially known, it is still convenient to begin 

construction of the phasor diagram by assuming, say  01V . The source 

current, as a result of the assumed node voltage, is now A 1.02.0 js I . The 

true source current is A 01  , however, and thus the true node voltage is 

greater by the factor  1.02.01 j ; the true node voltage is therefore V 24 j . 

The assumed voltage leads to a phasor diagram which differs from the true 

phasor diagram by a change of scale (the assumed diagram is smaller by a 

factor of 201 ) and an angular rotation (the assumed diagram is rotated 

clockwise through 6.26 ). The true phasor diagram in this case is shown 

below: 

Is = 1

V=
IR

IC

-26.6°20 V

0° A

 

 

Phasor diagrams are usually very simple to construct, and most sinusoidal 

steady-state analyses will be more meaningful if such a diagram is included. 
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21.8 Summary 

 A linear circuit can be converted to the frequency-domain where we use the 

concept of phasors and impedances, and in particular the branch phasor 

relationship ZIV  . The circuit is then amenable to normal circuit analysis 

techniques: nodal analysis, mesh analysis, superposition, source 

transformations, Thévenin’s theorem, Norton’s theorem, etc. Time-domain 

responses are obtained by transforming phasor responses back to the time-

domain. 

 A phasor diagram is a sketch in the complex plane of the phasor voltages 

and currents throughout a circuit and is a useful graphical tool to illustrate, 

analyse and design the sinusoidal steady-state response of the circuit. 
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Exercises 

1. 

Consider the circuit shown below: 

50 0° V

4

-j4 V2

4

-j4

4

-j4

 

(a) Find 2V . 

(b) To what identical value should each of the   4  resistors be changed so 

that 2V  is 180  out of phase with the source voltage? 

2. 

Consider the circuit shown below: 

1

A(       +30°)cos10 t10
4

v3

400F

1

400 H 21
i3

 

(a) Find  tv3  in the steady-state by using nodal analysis. 

(b) Find  ti3  in the steady-state by using mesh analysis 
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3. 

Consider the circuit shown below: 

2

A(       )cos1 t10
6

vLvR

F
1

4
2   H

2 A

 

(a) Find  tvR . 

(b) Find  tvL . 

4. 

Use superposition to find xI  in the circuit below: 

1 0° A

1

1

-j1

j1

1 0° V

1 0° A

1 0° V

I x
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5. 

For the circuit below, find the phase angles of xV  and yV  graphically if 

V 90xV  and V 150yV . 

120 0° V

Vx Vy

50 80° V

 

6. 

Consider the following circuit: 

R100 0° V RMS 300j 

100j 

 

(a) What value of R will cause the RMS voltages across the inductors to be 

equal? 

(b) What is the value of that RMS voltage? 
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Oliver Heaviside (1850-1925) 

The mid-Victorian age was a time when the divide between the rich and the 

poor was immense (and almost insurmountable), a time of unimaginable 

disease and lack of sanitation, a time of steam engines belching forth a steady 

rain of coal dust, a time of horses clattering along cobblestoned streets, a time 

when social services were the fantasy of utopian dreamers. It was into this 

smelly, noisy, unhealthy and class-conscious world that Oliver Heaviside was 

born the son of a poor man on 18 May, 1850. 

A lucky marriage made Charles Wheatstone (of Wheatstone Bridge fame) 

Heaviside’s uncle. This enabled Heaviside to be reasonably well educated, and 

at the age of sixteen he obtained his first (and last) job as a telegraph operator 

with the Danish-Norwegian-English Telegraph Company. It was during this 

job that he developed an interest in the physical operation of the telegraph 

cable. At that time, telegraph cable theory was in a state left by Professor 

William Thomson (later Lord Kelvin) – a diffusion theory modelling the 

passage of electricity through a cable with the same mathematics that describes 

heat flow. 

By the early 1870’s, Heaviside was contributing technical papers to various 

publications – he had taught himself calculus, differential equations, solid 

geometry and partial differential equations. But the greatest impact on 

Heaviside was Maxwell’s treatise on electricity and magnetism – Heaviside 

was swept up by its power. 

In 1874 Heaviside resigned from his job as telegraph operator and went back to 

live with his parents. He was to live off his parents, and other relatives, for the 

rest of his life. He dedicated his life to writing technical papers on telegraphy 

and electrical theory – much of his work forms the basis of modern circuit 

theory and field theory. 

In 1876 he published a paper entitled On the extra current which made it clear 

that Heaviside (a 26-year-old unemployed nobody) was a brilliant talent. He 

had extended the mathematical understanding of telegraphy far beyond 

 

I remember my first 
look at the great 
treatise of 
Maxwell’s…I saw 
that it was great, 
greater and 
greatest, with 
prodigious 
possibilities in its 
power.  – Oliver 
Heaviside 
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Thomson’s submarine cable theory. It showed that inductance was needed to 

permit finite-velocity wave propagation, and would be the key to solving the 

problems of long distance telephony. Unfortunately, although Heaviside’s 

paper was correct, it was also unreadable by all except a few – this was a trait 

of Heaviside that would last all his life, and led to his eventual isolation from 

the “academic world”.  In 1878, he wrote a paper On electromagnets, etc. 

which introduced the expressions for the AC impedances of resistors, 

capacitors and inductors. In 1879, his paper On the theory of faults showed that 

by “faulting” a long telegraph line with an inductance, it would actually  

improve the signalling rate of the line – thus was born the idea of “inductive 

loading”, which allowed transcontinental telegraphy and long-distance 

telephony to be developed in the USA. 

When Maxwell died in 1879 he left his electromagnetic theory as twenty 

equations in twenty variables! It was Heaviside (and independently, Hertz) 

who recast the equations in modern form, using a symmetrical vector calculus 

notation (also championed by Josiah Willard Gibbs (1839-1903)). From these 

equations, he was able to solve an enormous amount of problems involving 

field theory, as well as contributing to the ideas behind field theory, such as 

energy being carried by fields, and not electric charges. 

A major portion of Heaviside’s work was devoted to “operational calculus”.1 

This caused a controversy with the mathematicians of the day because although 

it seemed to solve physical problems, it’s mathematical rigor was not at all 

clear. His knowledge of the physics of problems guided him correctly in many 

instances to the development of suitable mathematical processes. In 1887 

Heaviside introduced the concept of a resistance operator, which in modern 

terms would be called impedance, and Heaviside introduced the symbol Z for 

it. He let p be equal to time-differentiation, and thus the resistance operator for 

an inductor would be written as pL. He would then treat p just like an algebraic 

                                                 

1 The Ukrainian Mikhail Egorovich Vashchenko-Zakharchenko published The Symbolic 

Calculus and its Application to the Integration of Linear Differential Equations in 1862. 

Heaviside independently invented (and applied) his own version of the operational calculus. 

Now all has been 
blended into one 
theory, the main 
equations of which 
can be written on a 
page of a pocket 
notebook. That we 
have got so far is 
due in the first place 
to Maxwell, and next 
to him to Heaviside 
and Hertz.  – H.A. 
Lorentz 

Rigorous 
mathematics is 
narrow, physical 
mathematics bold 
and broad.  – Oliver 
Heaviside 
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quantity, and solve for voltage and current in terms of a power series in p. In 

other words, Heaviside’s operators allowed the reduction of the differential 

equations of a physical system to equivalent algebraic equations. 

Heaviside was fond of using the unit-step as an input to electrical circuits, 

especially since it was a very practical matter to send such pulses down a 

telegraph line. The unit-step was even called the Heaviside step, and given the 

symbol  tH , but Heaviside simply used the notation 1. He was tantalizingly 

close to discovering the impulse by stating “… 1p  means a function of t 

which is wholly concentrated at the moment 0t , of total amount 1. It is an 

impulsive function, so to speak…[it] involves only ordinary ideas of 

differentiation and integration pushed to their limit.” 

Heaviside also played a role in the debate raging at the end of the 19th century 

about the age of the Earth, with obvious implications for Darwin’s theory of 

evolution. In 1862 Thomson wrote his famous paper On the secular cooling of 

the Earth, in which he imagined the Earth to be a uniformly heated ball of 

molten rock, modelled as a semi-infinite mass. Based on experimentally 

derived thermal conductivity of rock, sand and sandstone, he then 

mathematically allowed the globe to cool according to the physical law of 

thermodynamics embedded in Fourier’s famous partial differential equation for 

heat flow. The resulting age of the Earth (100 million years) fell short of that 

needed by Darwin’s theory, and also went against geologic and palaeontologic 

evidence. John Perry (a professor of mechanical engineering) redid Thomson’s 

analysis using discontinuous diffusivity, and arrived at approximate results that 

could (based on the conductivity and specific heat of marble and quartz) put 

the age of the Earth into the billions of years. But Heaviside, using his 

operational calculus, was able to solve the diffusion equation for a finite 

spherical Earth. We now know that such a simple model is based on faulty 

premises – radioactive decay within the Earth maintains the thermal gradient 

without a continual cooling of the planet. But the power of Heaviside’s 

methods to solve remarkably complex problems became readily apparent. 

Throughout his “career”, Heaviside released 3 volumes of work entitled 

Electromagnetic Theory, which was really just a collection of his papers. 

Paul Dirac derived 
the modern notion of 
the impulse, when 
he used it in 1927, 
at age 25, in a paper 
on quantum 
mechanics. He did 
his undergraduate 
work in electrical 
engineering and 
was both familiar 
with all of 
Heaviside’s work 
and a great admirer 
of his. 

The practice of 
eliminating the 
physics by reducing 
a problem to a 
purely mathematical 
exercise should be 
avoided as much as 
possible. The 
physics should be 
carried on right 
through, to give life 
and reality to the 
problem, and to 
obtain the great 
assistance which 
the physics gives to 
the mathematics. – 
Oliver Heaviside, 
Collected Works, 
Vol II, p.4 
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Heaviside shunned all honours, brushing aside his honorary doctorate from the 

University of Göttingen and even refusing to accept the medal associated with 

his election as a Fellow of the Royal Society, in 1891. 

In 1902, Heaviside wrote an article for the Encyclopedia Britannica entitled 

The theory of electric telegraphy. Apart from developing the wave propagation 

theory of telegraphy, he extended his essay to include “wireless” telegraphy, 

and explained how the remarkable success of Marconi transmitting from 

Ireland to Newfoundland might be due to the presence of a permanently 

conducting upper layer in the atmosphere. This supposed layer was referred to 

as the “Heaviside layer”, which was directly detected by Edward Appleton and 

M.A.F. Barnett in the mid-1920s. Today we merely call it the “ionosphere”. 

Heaviside spent much of his life being bitter at those who didn’t recognise his 

genius – he had disdain for those that could not accept his mathematics without 

formal proof, and he felt betrayed and cheated by the scientific community 

who often ignored his results or used them later without recognising his prior 

work. It was with much bitterness that he eventually retired and lived out the 

rest of his life in Torquay on a government pension. He withdrew from public 

and private life, and was taunted by “insolently rude imbeciles”. Objects were 

thrown at his windows and doors and numerous practical tricks were played on 

him. 

Today, the historical obscurity of Heaviside’s work is evident in the fact that 

his vector analysis and vector formulation of Maxwell’s theory have become 

“basic knowledge”. His operational calculus was made obsolete with the 1937 

publication of a book by the German mathematician Gustav Doetsch – it 

showed how, with the Laplace transform, Heaviside’s operators could be 

replaced with a mathematically rigorous and systematic method. 

The last five years of Heaviside’s life, with both hearing and sight failing, were 

years of great privation and mystery. He died on 3rd February, 1925. 
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Heaviside should be 
remembered for his 
vectors, his field 
theory analyses, his 
brilliant discovery of 
the distortionless 
circuit, his 
pioneering applied 
mathematics, and 
for his wit and 
humor. – P.J. Nahin 


