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Introduction 

In previous analyses our major concern has been with determining voltages and 

currents. In many applications (e.g. electric utilities), energy or power supplied 

and absorbed are extremely important parameters. Knowing the instantaneous 

power is useful, since many electrical and electronic devices have maximum 

instantaneous or “peak” power ratings that, for satisfactory operation, should 

not be exceeded. By averaging instantaneous power we get average power, 

which is the average rate at which energy is supplied or absorbed. Power 

usages vary from a fraction of a watt for small electronic circuits to millions of 

watts for large electric utilities. 

We have previously defined power to be the product of voltage and current. 

This is only true for instantaneous power. For DC circuits, the voltage and 

current are constant, and therefore the instantaneous power is equal to the 

average power. However, for sinusoidal voltages and currents, average power 

depends on the phase difference between the voltage and current. Sinusoids 

also give rise to notions of reactive power and complex power. 
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22.1 Power in the Sinusoidal Steady-State 

Consider a single sinusoidal source supplying a network as shown below: 
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Figure 22.1 

If the network contains reactive components, then in general there will be a 

phase shift between the voltage and current. Let: 
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and define: 

   (22.2) 

Thus   is the angle by which the voltage leads the current. 

22.1.1 Instantaneous Power 

The instantaneous power delivered to the network is: 
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(22.3) 

Notice that the first term is a constant, and the second term oscillates with time 

at double the supply frequency. 
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22.1.2 Average Power 

Average power is just the average value of the instantaneous power. We define 

this average in the normal way (the “mean value theorem”) as: 
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(22.4) 

If the instantaneous power is periodic with period T0 , we have the special case: 
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That is, for a periodic instantaneous power, we can integrate over one period, 

and divide by the period. A graph of the instantaneous power in a network 

operating in the sinusoidal steady-state, Eq. (22.3), is shown below: 
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Figure 22.2 

From this graph it is easily seen that the average power is the constant part of 

the instantaneous power (the oscillating part averages to zero) and we have: 

(W)cos
2

mmIV
P 

 
(22.6) 

 

P is the average 
value of p 
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EXAMPLE 22.1 Instantaneous Power and Average Power 

A graph of the instantaneous power is shown below for  04V  and 

 602I : 

 

2

4

6

t
T

0
0

p

v

i
P

-2

  

 

Figure 22.3 

Note that, on occasion, the power delivered to the network is negative, which 

implies that the network is actually sourcing power back to the voltage supply. 

The average power is calculated to be: 

    W260cos24cos
2

2
1  mmIV

P  

Both the 2 W average power and its period, one-half the period of either the 

current or the voltage, are evident in the graph. The zero value of the 

instantaneous power at each instant when either the voltage or current is zero is 

also apparent. 



22.6 

Index Power in the Sinusoidal Steady-State PMcL   

22 - AC Power  2019 

22.1.3 Root-Mean-Square (RMS) Values 

It is customary, when dealing with AC power, to refer to voltage and current  

using a root-mean-square, or RMS value. As we shall see, this leads to some 

simplification for many power formulas. The concept of an RMS value for a 

voltage or current comes about by considering the average power dissipated in 

a resistor when it carries a periodic current: 
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That is, the RMS value of any periodic current is equal to the value of the 

direct current which delivers the same average power. Removing R from the 

above formula, we thus have: 
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(22.8) 

The operation involved in finding this value is the root of the mean of the 

square, hence the name root-mean-square value, or RMS value for short. A 

similar expression is obtained for voltage, RMSV  (or for any other signal for that 

matter). 

RMS value defined 
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22.1.4 RMS Value of a Sinusoid 

A sinusoid is the most important special case of a periodic signal. Consider a  

sinusoidal current given by: 

     tIti m cos  (22.9) 

The easiest way to find its RMS value is by performing the mean-square 

operations in Eq. (22.8) graphically. For the arbitrary sinusoid given, we can 

graph the square of the current,      tIti m

222 cos , as shown below: 
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Figure 22.4 

Note that in drawing the graph we don’t really need to know the identity 

    22cos1cos2    – all we need to know is that if we start off with a 

sinusoid uniformly oscillating between mI  and mI , then after squaring we 

obtain a sinusoid that oscillates (at twice the frequency) uniformly between 
2

mI  

and 0. We can now see that the average value of the resulting waveform is 

22

mI , because there are equal areas above and below this value. This is the 

mean of the square, and so we now just take the root and get: 
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(22.10) 

The RMS value of 
an arbitrary sinusoid 
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Note that the RMS value depends on the magnitude of the sinusoid only – the 

frequency and phase is irrelevant! 

In the power industry, it is tacitly assumed that values of voltage and current 

will be measured using their RMS value. For example, in Australia the 

electricity delivered to your home has a frequency of 50 Hz and an RMS value 

of 230 V. This means the voltage available at a general power outlet is a 50 Hz 

sinusoid with a peak value of approximately 325 V. 

It should be noted that this formula can only be applied to a sinusoid – for other 

waveforms, you will obtain a different ratio between the peak and the RMS 

value. For example, the RMS value of a triangle waveform is 3mI  whilst for 

a square wave it is simply mI . 

22.1.5 Phasors and RMS Values 

We defined a phasor corresponding to: 

     tIti m cos  (22.11) 

as: 

 mII  (22.12) 

We could have just as easily defined it to be: 

  RMS
m I

I

2
I

 
(22.13) 

If we use this definition, then all relationships involving phasors, such as 

ZIV  , KCL, KVL, etc. must also use this definition. When working with 

power and machines, it is customary to use the RMS value for the phasor 

magnitude. In other fields, such as telecommunications and electronics, we use 

the amplitude for the phasor magnitude. You need to be aware of this usage. 

Phasor magnitudes 
can be defined as 
RMS values 
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22.1.6 Average Power Using RMS Values 

Returning to the formula for average power, we can now rewrite it using RMS 

values. We have: 

(W)cosRMSRMSIVP   (22.14) 

22.1.7 Apparent Power 

The average power in a DC network is simply VIP  .  In sinusoidal steady-

state analysis, we define: 

(VA)powerapparent RMSRMSIV  (22.15) 

Dimensionally, average power and apparent power have the same units, since 

cos  is dimensionless. However, to avoid confusion, the term volt-amperes, or 

VA, is applied to apparent power. 

22.1.8 Power Factor 

The ratio of average power to the apparent power is called the power factor, 

symbolized by PF: 

RMSRMSIV

P
PF

 
(22.16) 

In the sinusoidal case, the power factor is also equal to: 

cosPF   (22.17) 

We usually refer to leading PF or lagging PF when referring to loads to resolve 

the ambiguity in taking the “cos”. The terms leading and lagging refer to the 

phase of the current with respect to the voltage. Thus, inductive loads have a 

lagging power factor, capacitive loads have a leading power factor. 

The average power 
P using RMS values 
of voltage and 
current 

Apparent power 
defined 

Power factor defined 
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22.1.9 Complex Power 

Using RMS phasors of    tVv m cos  and    tIi m cos : 
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(22.18) 

we know that the average power is: 

   cosRMSRMSIVP  (22.19) 

We can associate the average power with the real part of a complex power: 
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(22.20) 

Thus, we can define average power as: 

 *Re VIP  (22.21) 

Note the use of 
*

I  because of the way we defined   . It is an accident 

of history that   was defined this way, as it just as easily could have been 

defined as   . 

We therefore define complex power as: 

VA)(complex *VIS   (22.22) 

 

Complex power 
defined 
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In polar form the complex power is: 

 RMSRMSIV*
VIS  (22.23) 

so we can now see that the apparent power is: 

RMSRMSIV IVS  (22.24) 

Written in rectangular form, the complex power is: 

  jQPjIV RMSRMS   sincosS  (22.25) 

22.1.10 Reactive Power 

From the rectangular form, we can see that the average power is also the “real” 

power. It can also be seen that the “imaginary” power, which we call the 

reactive power, is:  

var)(sinRMSRMSIVQ   (22.26) 

It has the same dimensions as the real power P, the complex power S and the 

apparent power S . In order to avoid confusion, the unit of Q is defined as the 

volt-ampere-reactive, or var for short. 

Reactive power is a measure of the energy flow rate into or out of the reactive 

components of a network. It is positive for inductive loads, and negative for 

capacitive loads. 

The physical interpretation of reactive power causes a lot of confusion. Even 

though it is the imaginary component of complex power, it has a physical and 

real interpretation, and must be generated by a power system. (A voltage 

phasor, such as 43 jV , has an imaginary component of 4 which 

contributes to the amplitude and phase of the real voltage sinusoid – so we 

expect Q to also be physically real). 

Reactive power 
defined 
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To see how Q manifests itself in the real world, we return to the formula for 

instantaneous power. Using   BABABA sinsincoscoscos  , and noting 

that   , we get: 
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(22.27) 

Then: 

     22sin22cos1  tQtPp  (22.28) 

The instantaneous power associated with the real and reactive power 

components is shown below: 
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Figure 22.5 

Note that the instantaneous power associated with P follows a “cos”, and the 

instantaneous power associated with Q follows a “sin”. Thus, the two 

waveforms are 90° apart and are said to be in “quadrature”. You can see that 

reactive power does not transfer energy – instantaneous power is both 

delivered to, and received from, the network in a cyclic fashion, with an 

average of zero. In contrast, real power does transfer energy – instantaneous 

power is always delivered to the network in a cyclic fashion, but it has a non-

zero average. 
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22.1.11 Summary of Power in AC Circuits 

In summary we have: 

jQP SVIS
*

 (22.29) 

where: 

(VA)powerapparent  IVS  

(W)power realcos  SP  

(var)power reactivesin  SQ  

 = angle by which the current I lags the voltage V 

222
QP S  

(22.30) 

These relationships are illustrated below: 
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Figure 22.6 

The diagram on the right is called a “power triangle”. Note that P and Q are the 

real and imaginary parts of the complex power S. 

It can be shown that the total complex power jQP S  consumed by a 

network is the sum of the complex powers consumed by all the component 

parts of the network. This conservation property is not true of the apparent 

power S . 

Components of 
complex power 

Real power is also 
known as active 
power and average 
power 
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EXAMPLE 22.2 Conservation of Complex Power 

Consider three loads connected in parallel across a 230 V (RMS) 50 Hz line as 

shown below: 

S S S1 2 3V

I

 

Load 1 absorbs 10 kW and 7.5 kvar. Load 2 absorbs 3.84 kW at 0.96 PF 

leading. Load 3 absorbs 5 kW at unity power factor. Find the overall power 

factor. 

The first load is given in rectangular form: 

kVA 5.7101 jS  

The complex power supplied to the second load must have a real part of 

3.84 kW and an angle (refer to the power triangle) of    26.1696.0cos 1 . 

Hence, 

kVA 12.184.326.16426.16
96.0

84.3

cos
2 j

P
 


S  

The third load is simply: 

kVA 053 jS  

The total complex power is: 

kVA 38.684.180512.184.35.710321 jjjjtotal  SSSS  

Thus, the combined load is operating at a power factor equal to: 

9472.0
89.19

84.18
PF 

S

P
 lagging 
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The magnitude of the line current drawn by the combined load is: 

A 48.86
230

19890


V

S
I  RMS 

Electricity supply authorities do all they can to improve the PF of their loads by 

installing capacitors or special machines called synchronous condensers which 

supply vars to the system. They also impose tariffs which encourage consumers 

to correct their PF. 

If we now seek to raise the PF to 0.98 lagging, without affecting the existing 

real power, the total complex power must become: 

  kVA 826.318.8411.4819.220.98cos
98.0

84.18 1- jnew S  

We would therefore need to add a corrective load of: 

kVA 554.24 jtotalnew  SSS  

Now since: 

*

4

2

*

4

*
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44
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VV
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then: 

  71.20
2554

230 2

*

4

2

4 j
jS

V
Z  

Thus, the corrective load is a capacitor of value: 

μF 7.153
71.20502

11





 CX
C  

The magnitude of the line current drawn by the new combined load reduces to: 

A 57.83
230

19220


V

S
I  
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22.2 Summary 

 The RMS value of a sinusoid   )cos(   tXtx m  is 2mRMS XX  . 

 There are many power terms in AC circuits: 

- instantaneous power,      titvtp   (W) 

- average power, cosRMSRMSIVP   (W) 

- reactive power, sinRMSRMSIVQ  , (var) 

- complex power, jQP *VIS , (VA) 

- apparent power, IVS  , (VA) 

- power factor, cosPF   

 The average power delivered to the resistive component of a load is 

nonzero. The average power delivered to the reactive component of a load 

is zero. 

 Capacitors are commonly used to improve the PF of industrial loads to 

minimize the reactive power and current required from the electricity 

utility. 

22.3 References 

Hayt, W. & Kemmerly, J.: Engineering Circuit Analysis, 3rd Ed., McGraw-

Hill, 1984. 
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Exercises 

1. 

If  V 301000cos20  tvs  in the circuit below, find the power being 

absorbed by each passive element at 0t . 

2.5 k

1 H 10 kvs F1

R1

R2

 

2. 

Determine the average power delivered to each resistor in the network shown 

below:  

20I1
j60

10

-j50

1000 0° V

 

3. 

The series combination of a  1000  resistor and a 2 H inductor must not 

absorb more than 100 mW of power at any instant. Assuming a sinusoidal 

current with 
-1rads 400 , what is the largest RMS current that can be 

tolerated? 
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4. 

A composite load consists of three loads connected in parallel. 

One draws 100 W at 0.9 lagging PF, another takes 200 W at 0.8 lagging PF, 

and the third requires 150 W at unity PF. The composite load is supplied by a 

source sV  in series with a  10  resistor. If the loads are all to operate at 110 V 

RMS, determine: 

(a) the RMS current through the source 

(b) the PF of the composite load 

5. 

A load operating at 2300 V RMS draws 25 A RMS at a power factor of 

0.815 lagging. Find: 

(a) the real power taken by the load 

(b) the reactive power 

(c) the complex power 

(d) the apparent power drawn by the load 

(e) the impedance of the load 
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6. 

In the circuit shown below, load A receives VA 4080 jA S , while load B 

absorbs VA 200100 jB S . Find the complex power supplied by each 

source. 

100 0° V RMS 2 0° A RMS

A

B

 


