6 LED Driver Design

(a) A simple circuit used to "drive" an LED is shown below. The three voltages correspond to minimum, typical and maximum "forward voltages" for the LED.

$V_{BAT} = 3.7 \text{ V}$ $R \neq I_D$ $V_D \neq V_D$ $T_D \neq V_D$ $T_D \neq V_D$ white	V_D (V) (aka V_F)	I_D (mA) (aka I_F)	Relative luminous intensity (%)
	$V_{D\min} =$		
	$V_{D typ} = 2.8$	20	100
-	$V_{D \max} =$		

(i) Design the resistor R for the typical V_D and a current of $I_D = 20 \text{ mA}$.

- (ii) Using information in the <u>LED datasheet</u>, and using a constant voltage drop model for the LED, determine the min. and max. LED currents.
- (iii) Using Fig. 2 in the datasheet, estimate the relative luminous intensity.

What is the problem with this type of circuit for driving an LED?

 (b) Using information given in the <u>LED driver datasheet</u>, design the following LED driver circuit so that the LED current is a constant 20 mA.

(This schematic is available as a separate PDF.)

There is a section on page 7 of the datasheet called "LED Current Selection". Use this formula to determine R102.

Use a 1% (E96) resistor.

What is the advantage of this circuit for driving an LED?