6 Electrostatics

1.

Two small conducting spheres q_1 and q_2 are separated by a distance of 3 m between centres and carry charges $+10^{-9}$ C and -10^{-8} C respectively. A third charge q_3 of $+10^{-8}$ C is placed in the same plane as q_1 and q_2 as shown:

The medium is air.

 $\varepsilon_0 = 8.85419 \times 10^{-12} \text{ Fm}^{-1}$

- (a) Find the force on the charge q_3 . (Hint: you could first find the x and y components of the forces).
- (b) In what direction would q_3 move initially if let free? (Describe as an angle to the *x*-axis.)
- (c) What is the electric field intensity **E** at the position of q_3 due to charges q_1 and q_2 ?

2.

Use Gauss' Law to obtain the electrostatic flux density \mathbf{D} and hence the field intensity \mathbf{E} , at a distance *r*, in a vacuum, from:

- (a) the centre of a uniformly charged spherical shell, with radius *a*, and a total charge *q*, when $r \ge a$.
- (b) as in (a) but with r < a.
- (c) an infinite line charge with uniform charge density λ Cm⁻¹.
- (d) an infinite plane with uniform charge density $\sigma \text{ Cm}^{-2}$.