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Lecture 2 – Power and Symmetrical Components 

Per-unit values. Power flow in an interconnector. Modelling of power system 
loads. Introduction to symmetrical components. 

Per-Unit Values of Electrical Quantities 

Definition 

Per-unit values are used extensively in power system calculations. The per-unit 

value is defined as the ratio of a physical value of some quantity to a base (or 

reference) value. Thus the relevant physical quantities, like voltage, current, 

etc. are expressed as pure non-dimensional numbers, traditionally designated 

by the label “per unit” or “p.u.”. Per-unit values are frequently expressed in 

percent. 

100%   valuep.u.   value%
 valuebase

 valuephysical
   valuep.u.




 

 

(2.1)  

The “physical value” may be real or complex. The “base value” is always real. 

Base Values 

To be useful, the p.u. values must obey standard network equations, like 

Ohm’s Law, etc. That means that the base values cannot be chosen 

independently. The usual practice is to choose the base values for power and 

voltage, and then calculate compatible base values for current and impedance. 

The base power baseS  (used for S, P, and Q) is usually one of the following: 

 Equipment VA rating (either total or “per phase”), when dealing with a 

single item, or a number of items with equal VA ratings. 

 An arbitrarily assigned figure, when dealing with a collection of items 

with different individual VA ratings. A commonly used figure for large 

power systems is MVA 100baseS  (total three-phase value). 

p.u. value defined 
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The base voltage baseV  may be either of the following: 

 The nominal voltage of the power system (line-to-line voltage). 

 The nominal phase voltage of an equivalent star system, i.e. the 

nominal system voltage divided by 3 . 

Care is required by the inexperienced to decide which of the two possible base 

voltages to use in a particular case. 

Having decided on baseS  and baseV , the values of base current and base 

impedance are calculated as in the following table. The table is organised in 

two columns. Experienced power systems engineers generally use, for three-

phase calculations, the formulae in the second column, but students may find it 

less confusing to stick with the first column, and work with all quantities “per 

phase”. 

Single-phase and 3-phase, 

using phase voltage, phase 

current and power per phase 

as base values 

3-phase, using line voltage, 

line current, 3-phase power 

and equivalent star 

impedance 
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

 

 

 

 

(2.2)  

(2.3) 

(2.4) 

(2.5) 

 

(2.6)

Note that Eq. (2.6) is identical for both columns. 

Table of base 
values 
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In network calculations all per-unit parameters must be determined on a 

common value of baseS  for the entire network. When the network includes 

transformers, the value of baseV  are changed for different parts of the network 

according to the turns ratio of the transformers. Hence baseI  and baseZ  are also 

changed. 

Base Conversion of Impedance 

Frequently the p.u. value of impedance  
givenupZ ..  is known, based on 

 
givenupS .. , say the equipment rating, but we need ..upZ  on a different VA base 

 newbaseS . It is easy to show that: 

 
     

  











givenbase

newbase

givenupnewup S

S
ZZ ....  

 

(2.7)  

Advantages of Using Per-Unit Values 

Numerical values of p.u. values tend to fall within narrow ranges, making it 

easier to detect errors. More importantly, the fact that the numerical range of 

variables is close to “1” means that the numerical methods used in the 

computer solution of power system equations are able to operate on “well-

conditioned” matrices. This is important for large systems where there may be 

significant errors due to “machine number” round-off. Also, the need to handle 

very large or small numbers is eliminated. This advantage is lost if we make 

the value of baseS  too far removed from equipment ratings. 

Calculations involving transformers are simplified, since the p.u. value of 

impedance is the same whether referred to the high voltage or the low voltage 

winding. 

A common power 
base must be used 
for an entire network
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Power Flow in an Interconnector 

The General Problem 

A large power supply network is a collection of many buses (nodes), some 

connected to generators, and some to loads, but all interconnected via 

transmission lines and/or transformers. There is a need to simultaneously 

control node voltages and power flow. In what follows, we focus on a single 

interconnector between node 1 and node 2 in such a network. We will assume 

coupling to other interconnectors to be negligible. 

 
V1 I y=g+jb V2

S12 S12  

 

Figure 2.1 
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(2.8)

At node 1: 
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(2.9) 

(2.10) 

(2.11)
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At node 2: 
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(2.12) 

(2.13) 

(2.14) 

The complex power lost in the interconnector is: 

  2

21

2

21
*

2121 VVjbgVVySS   
(2.15) 

and by the cosine rule: 

  1221

2

2

2

12121 cos2 VVVVjbgSS   
(2.16) 

The result in Eq. (2.16) can also be obtained by subtracting Eq. (2.12) from 

Eq. (2.9). 
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The Ideal “Loss Free” Interconnector 

Let the interconnector be a pure inductor with impedance jX . Then 0g  and 

1 Xb . From Eqs. (2.10), (2.11), (2.13) and (2.14): 

var/phase
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21221
21

1221

2

1
21

12
21

2121

X

VVV
Q

X

VVV
Q

X

VV
PP















 

 

 

(2.17)

 

There is no real power loss, although there is a reactive power loss. The 

direction of real power flow is determined entirely by 12 . Positive 12  means 

1V  leads 2V  and power flows from node 1 to node 2. The angle 12  is known as 

the power angle, in machine theory also as the torque angle. 

The average transferred reactive power is: 

X

VVQQ
Qav 22

2

2

2

12121 



  

 

(2.18)

which indicates that the reactive power flows from the node with the higher 

voltage towards the node with the lower voltage, and this flow is not dependent 

on 12 . In the special case when 21 VV   there is no average transferred 

reactive power flow, and the reactive power losses are supplied equally from 

both ends. 

Power flow in an 
ideal “loss free” 
interconnector 

In an inductive 
circuit real power 
does not necessarily 
flow from the higher 
voltage node to the 
lower voltage node 
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Example 

An interconnector has the following known quantities: 

kV 
3

138
21  VV , /ph 80X . 

Determine the power angle 12  and the reactive flow in the line ends if the 

active power flow from 1 to 2 is 100 MW. 

Since VVV  21 , then 12

2

2121 sin
X

V
PP  . Therefore: 

 84.244208.080
138

3

3

100
sin 12212   

Then the reactive power flows are: 

 

 

Mvar 02.22

Mvar 02.2284.24cos1
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
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Note the cancellation of threes and powers of ten in the example. 
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The Static Stability Limit 

Differentiating Eq. (2.13) with respect to 12 : 

0cossin 12211221
12

21 






VVbVVg
P

 (2.19)

for maximum 21P . Therefore the maximum 21P  occurs when: 

R

X

g

b
12tan

 (2.20)

and this power is known as the static stability limit. For a purely inductive 

circuit, 0R , and the static stability limit occurs when 212   . Hence for 

the purely inductive circuit: 

  W21

max21 X

VV
P   (2.21)

In a practical power system the voltages are confined to fairly narrow limits, so 

that VVV  21 , and we have: 

  W
2

max21 X

V
P   

(2.22)

Eq. (2.22) shows why high voltages are required for transmitting large amounts 

of power over long distances (large X). 

Static stability limit 
for an ideal “loss 
free” interconnector 
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Role of vars in the Power System 

Clearly, the role of the power system is to supply energy, and hence real power 

(watts). The inductive effect of transmission lines, transformers, and most 

loads, dictates that these consume vars, and this inevitable reactive power must 

also be supplied to satisfy the law of conservation of complex power. 

The previous example illustrates that the vars also have a role of promoting the 

transmission of real power while keeping the supply voltage within the 

required tolerances. In the example it is not enough to supply vars to the 

transmission line from the sending end alone – we also need a separate source 

of vars at the receiving end. 

The vars can be supplied by synchronous machines (generators or motors), or 

by capacitors. A capacitor, or any load with a leading power factor, consumes 

negative vars, and this is equivalent to generating positive vars. 
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Modelling of Power System Loads 

General 

Power system loads may be of many different types, such as motors, heaters, 

lighting and electronic equipment. Most system loads are a mixture of different 

types. 

The loads vary in size (watts and vars), symmetry, daily and seasonal 

variations, short term fluctuations (e.g. arc furnaces, woodchip mills). Some 

nonlinear loads (e.g. rectifiers and other power conversion equipment) may 

also produce significant harmonic currents. 

Most loads vary with changing voltage and frequency. 

Variation with Voltage 

Assume: 

n
kP V  (2.23)

Consider a small change V  in the voltage magnitude. The relative change is 

VV . A first-order Taylor Series approximation gives the change in power 

as: 

V
V

VVV
V

 P
nkn

P
P

n 



 1

 (2.24)

Hence the relative change in power is: 

V

V
n

P

P


 
(2.25)

While the above is derived for the power P, clearly the same relation applies to 

the reactive power Q, possibly with a different value of the exponent n. 

Relative change in 
power for a voltage 
variation 
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Variation with Frequency 

Let the power P be some function F of frequency f,  fFP  . Then for a 

small change in frequency f  we have, using a first-order Taylor Series 

approximation: 

f
f

P
P 





 

 

(2.26) 

and therefore the relative change in power is: 

f

f

f

P

P

f

P

P 














 

 

(2.27) 

 

Examples 

(1) Constant impedance load 

Admittance constant1  jbgZY  (b is negative for inductive load). 

2* VYS  , therefore 
2

VgP   and 
2

VbQ  . 

Therefore, 2n  in Eq. (2.25). Thus a 1% drop in voltage results in a 2% drop 

in both P and Q . 

(2) Incandescent lighting load 

The resistance of light globes increases significantly with increasing operating 

temperature, therefore the exponent 2n  in Eqs. (2.23) and (2.25). A value of 

6.1n  is typical. Hence a 1% drop in voltage results in a 1.6% drop in P (drop 

in Q is negligible). 

(3) Fluorescent lighting load 

The V~P  relationship is more complicated than it is for incandescent lights, 

but in absence of better information, 6.1n  may be assumed. 

Relative change in 
power for a 
frequency variation 
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(4) Synchronous motor load 

The speed of the motor is not affected by small changes of voltage, but is 

proportional to frequency. However, when the voltage drops too low the motor 

loses synchronism. 

As the mechanical load is unaffected by voltage, the electrical power P may 

also be assumed to remain constant. Therefore 0n  in Eqs. (2.23) and (2.25). 

Variation of P with frequency depends on how the mechanical load varies with 

speed. 

(5) Induction motor load 

Induction motor torque-slip characteristics give torque 
2

VsT  , where 

s = slip, but the torque is actually a characteristic of the mechanical load. If for 

example, T is constant, then 
2 Vs . In practice 05.0s  at rated conditions. 

Say 05.0s , and we increase the voltage by 1%. The new slip is then 

  049.001.105.0 2  .  s 1Speed , therefore with constant T the mechanical 

power is also proportional to  s1 . Hence the mechanical power increases by 

the ratio 00105.1
05.01

049.01





, i.e. the mechanical power increases by only 

0.105% for a 1% voltage increase. 

For an ideal induction motor  s1  is equal to the theoretical efficiency, hence 

the improved efficiency at the lower slip exactly compensates for the increased 

mechanical power, so that the electrical power P remains constant in this ideal 

case. This is not quite so for a practical motor, particularly as the torque varies 

with speed, but we would generally be justified in assuming that the real power 

P is independent of voltage for an induction motor. So 0n  in Eqs. (2.23) and 

(2.25) for P. This is not true for the reactive power Q, which increases with 

voltage  0n . 
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Symmetrical Components – Introduction 

Impedance and Admittance Matrices of a Three-Phase Network 

Let the “network” be a three-phase four-terminal circuit as shown: 

 

a

b

c

n

aV

Vb

Vc In

Ic

Ib

Ia

Network

 

 

Figure 2.2 

Assume that the network contains no internal sources. Whatever the structure 

of the network, and regardless of how many branches and nodes it contains, its 

external behaviour is determined by KCL and a 3 x 3 matrix, either abcZ  or 

abcY . KCL gives: 

0 ncba IIII  (2.28) 

We can regard the network as having three loops (a, b, c) completed via the 

common “n” terminal. The loop currents and applied voltages are then related 

by the impedance matrix abcZ : 

abcabcabc IZV   (2.29) 
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Alternatively, we can regard the network as having three independent nodes (a, 

b, c) with the “n” terminal as the reference node. The node voltages and 

applied node currents are then related by the admittance matrix abcY : 

abcabcabc VYI   (2.30)

Eqs. (2.29) and (2.30) describe the same network, therefore 1 abcabc YZ  and 

1 abcabc ZY , providing the inverse matrices exist in each case. In the general 

case: 


















cccbca

bcbbba

acabaa

abc

ZZZ

ZZZ

ZZZ

Z
 

 

(2.31)

abcY  is the same as Eq. (2.31) with the Z’s replaced by Y’s. 

In the general case the above equations can be quite difficult to solve. 

For a symmetrical three-phase power apparatus: 

cZZZ

bZZZ

aZZZ

accbba

cabcab

ccbbaa





 

 

(2.32)

Thus, in the symmetrical case, the matrix Eq. (2.31) takes the specialised form 

as follows: 


















acb

bac

cba

abcZ
 

 

(2.33)

and the form of abcY  is also similar. 
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Diagonalization of the Impedance and Admittance Matrices 

It is useful to change the reference frame of the impedance matrix Eq. (2.33) so 

as to eliminate all off-diagonal elements. This involves solving the 

characteristic equation: 

 
 

 
0






Zacb

bZac

cbZa

 

 

 

(2.34) 

hence: 

    03 333  cbZabcZa  (2.35) 

We now introduce subscripts (0, 1, 2) for the three solutions of the cubic 

equation. The solutions are: 

chhbaZ

hcbhaZ

cbaZ

2
2

2
1

0







 

 

 

(2.36) 

where a, b, c are as defined in Eq. (2.32). 

The next step is to determine the “eigenvectors” by solving: 

iiiabc Z HUHZ 3  (2.37) 

where: 

 

 

ii Z

i

  toingcorrespond matrix) 1 x (3r eigenvecto 

matrixidentity  3 x 3 

2,1,0

3






H

U  
 

(2.38) 
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A set of three solutions is: 




















































2
2

2
10

1

,

1

,

1

1

1

h

h

h

h HHH
 

 

(2.39)

These solutions are not unique, as any solution multiplied by a complex 

constant is also a solution. 

The eigenvectors of Eq. (2.39) each represent a system of three symmetrical 

unit length phasors (a, b, c from top down): 

b c, a, is sequence phase sequence": negative" 

c b, a, is sequence phase sequence": positive" 

phasein  are c b, a, sequence": zero" 

2

1

0





H

H

H

 
(2.40)

The three eigenvectors given by (2.39) are the standard basis vectors of the 

symmetrical components. The corresponding transformation matrix is: 

 

















2

2
210

1

1

111

hh

hhHHHH
 

 

(2.41)

Inverting Eq. (2.41) we obtain the inverse transformation matrix: 


















hh

hh
2

21

1

1

111

3

1
H

 

 

(2.42)

(Remember,  hh2 ) 

Transformation 
matrix for converting 
sequence 
coordinates to 
phase coordinates 

Transformation 
matrix for converting 
phase coordinates 
to sequence 
coordinates 
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The factor 31  appears because the eigenvectors are not normalised. In this 

case the Euclidean norm of iH  is 3 , whereas if the eigenvectors were 

normalised the Euclidean norm would be 1, and the factor 31  would not 

appear in Eq. (2.42). 

The voltages and currents in the original phase (a, b, c) reference frame, and 

the new sequence reference frame (0, 1, 2) are related by the following: 

012

012

HII

HVV




abc

abc

 

 

(2.43) 

Inverting Eq. (2.43): 

abc

abc

IHI

VHV
1

012

1
012








 

 

(2.44) 

Combining Eqs. (2.29), (2.43) and (2.44) we obtain: 

012
1

012 HIZHV abc
  (2.45) 

or: 

012012012 IZV   
 

(2.46) 

where: 

HZHZ abc
1

012
  

(2.47) 

 

Transforms from 
sequence 
coordinates to 
phase coordinates 

Transforms from 
phase coordinates 
to sequence 
coordinates 

Transform from 
phase impedances 
to sequence 
impedances 
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Eq. (2.47) is quite general and applies to symmetrical as well as unsymmetrical 

impedances. If, however, abcZ  is symmetrical, and therefore conforms to  

Eq. (2.33), then combining Eq. (2.33) and Eq. (2.47) we obtain for a 

symmetrical system: 


















2

1

0

012

00

00

00

Z

Z

Z

Z
 

 

(2.48)

where 0Z , 1Z  and 2Z  are the sequence impedances as given by Eq. (2.36). 

For a symmetrical system we obtain from Eqs. (2.46) and (2.48): 



















































22

11

00

2

1

0

2

1

0

012012012

00

00

00

IZ

IZ

IZ

I

I

I

Z

Z

Z

IZV
 

 

(2.49)

Hence 000 IZV  , 111 IZV   and 222 IZV   for a symmetrical network that does 

not contain sources. 

The theory of symmetrical components was developed by diagonalizing the 

impedance matrix of a symmetrical network. The same can be done with the 

admittance matrix, giving the sequence admittance matrix: 

1
012

1
012

  ZHYHY abc  (2.50)
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Passive Circuits 

The mutual impedances (or admittances) b and c in Eqs. (2.32) and (2.33) have 

different values for rotating machines, but for a passive symmetrical network 

cb   (reciprocity). Then Eq. (2.36) is reduced to: 

baZZ

baZ




21

0 2
 

 

(2.51) 

Thus for passive symmetrical circuits the positive and negative sequence 

impedances are equal, and identical to the effective impedance per phase. 

Note on the Effect of the Reference Phase 

The eigenvectors in Eq. (2.39), and the transformation matrices Eqs. (2.41) and 

(2.42) are based on phase “a” providing the zero reference angle. The same 

could have been done using phase “b” or “c” as a reference. The three sets of 

results are: 
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(2.52) 

These results are included her for completeness, but we will not make any 

practical use of them. Note that a
T
a HH  , but the same is not true in other 

cases. 
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Graphical Representation 

Define three symmetrical sets of phasor, based on the eigenvectors, as follows: 
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(2.53)

Then for an arbitrary set of three unsymmetrical phasors aV , bV  and cV  we 

expand as follows: 
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(2.54)

Thus the set of unsymmetrical phasors is expressed as the sum of three sets of 

symmetrical phasors, or symmetrical components as shown below. 
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Figure 2.3 

Graphical 
representation of 
symmetrical 
components 
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The Three-Phase Generator 

The figure below illustrates a three-phase generator, assumed to be star-

connected. 
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Figure 2.4 

The open-circuit phase voltages (emf’s) are: 
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(2.55) 

The terminal voltage, in phase coordinates, is: 

abcabcabcabc IZEV   (2.56) 

where abcZ  is the phase impedance matrix of the generator. Pre-multiply both 

sides with 1H : 

abcabcabcabc IZHEHVH 111    (2.57) 

Using Eqs. (2.43) and (2.44), we get: 

012
1

012012 HIZHEV abc
  (2.58) 
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and then use Eq. (2.47): 

012012012012 IZEV   (2.59)

As abcZ  is of the form in Eq. (2.33), 012Z  is diagonal. Hence: 
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(2.60)

Therefore: 
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(2.61)

where aEE 1 = positive sequence open-circuit voltage. 

Three-phase star 
connected generator 
terminal sequence 
voltage 
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Eq. (2.61) can be represented by a three-part equivalent circuit as shown 

below. These are called sequence networks. 
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Figure 2.5 
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equivalent sequence 
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The Effect of Neutral Impedance 

The neutral terminal may be connected via any value of series impedance 

ranging from zero to infinity (open circuit). This applies to loads, transformers, 

generators, etc. We will examine here the case of a generator with its neutral 

connected to earth via an impedance nZ , and we define the phase voltages with 

respect to earth rather than the generator neutral. 
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Figure 2.6 

The neutral current is: 

  03IIIII cban   (2.62)

Only the zero sequence current contributes to the neutral current, therefore nI  

has no effect on the positive and negative sequence networks. 

Three-phase star 
connected generator 
with neutral earthing 
impedance 
equivalent sequence 
networks 
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The total zero sequence voltage is now: 

000

00

000

3 IZIZ

IZIZ

VIZV

n

nn

n





 

 

 

(2.63) 

Therefore: 

  000 3 IZZV n  
(2.64) 

Here 0Z  is the zero sequence impedance of the generator itself, and  nZZ 30   

is the zero sequence impedance of the generator complete with the neutral 

earthing impedance. 

Note that if the neutral is open-circuited, then the zero sequence network is 

also open-circuited. 

Using the Sequence Networks 

In a completely symmetrical three-phase power system the positive, negative 

and zero sequence networks are separate (uncoupled). If now an unsymmetrical 

condition occurs (accidentally) at just one location, then this condition can be 

translated into an interconnection between the networks. We will look at some 

specific cases here. As the symmetrical components are most frequently used 

for fault calculations, we assume the conditions to be faults, but the results can 

be applied to similar unbalanced conditions which are not necessarily faults. 
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Symmetrical Three-Phase Fault 

Let the equivalent star fault (or load) impedance be FZ  for the three phases: 
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Figure 2.7 

Clearly, only positive sequence currents exist in this case. Only the positive 

sequence network is used, and the analysis is identical to the normal “per 

phase” analysis of a symmetrical network. The fault current is: 
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Line-to-Line Fault 

Let the fault (or single phase load) be between lines “b” and “c”, and have an 

impedance FZ : 
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Figure 2.8 

The fault admittance matrix is, by inspection: 
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Then: 
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Hence: 
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Clearly, the zero sequence network is open-circuited, and the positive and 

negative sequence networks are connected as shown in Figure 2.8. The 

sequence currents are: 
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and the fault current is given by: 
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Hence, using Eq. (2.69): 
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Line-to-Earth Fault 

Let the fault (or single phase load) be between line “a” and earth (or neutral), 

and have an impedance FZ : 
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Figure 2.9 

The fault admittance matrix is, by inspection: 
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Then: 
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Hence: 
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and: 
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Clearly, the three sequence networks are connected in series as shown in 

Figure 2.9. The sequence currents are: 

FZZZZ

E
III

3210

1
210 


 

 

(2.76)

and the fault current is given by: 
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Summary 

 The per-unit value is defined as the ratio of a physical value of some 

quantity to a base value. They are used extensively in power systems 

analysis. 

 Real power flow in an ideal “loss free” interconnector is determined only 

by the power angle (the phase difference between the end voltages). 

 The average transferred reactive power in a “loss free” interconnector is 

determined only by the voltage magnitudes. 

 The static stability limit in an interconnector is achieved when maximum 

real power transfer is achieved – this occurs when the phase difference 

between the end voltages matches the angle of the interconnector 

impedance. 

 Various types of power system loads exhibit different sensitivities, with 

respect to relative power changes, to voltage and frequency variations. 

 A set of unsymmetrical phasors can be expressed as the sum of three sets of 

symmetrical phasors, or symmetrical components, known as positive, 

negative and zero sequence components. 

 Any three-phase network can be represented by an equivalent set of 

sequence networks, called the positive, negative and zero sequence 

networks. 

 Any neutral-to-earth impedance only appears in the zero sequence, and is 3 

times the original magnitude since the zero sequence currents for all phases 

are equal. 

 Sequence networks are used to analyse unbalanced conditions in the 

system, such as faults (or a load unbalance). The sequence networks are 

connected so that the resulting network equations give the fault (or load) 

current and voltage. 
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Exercises 

1. 

A 3-phase transmission circuit has an impedance per phase of   355 j . The 

load at the receiving end consumes 600 kW at unity p.f. and 13.2 kV (line 

voltage). Calculate sending end voltage magnitude, real, reactive and apparent 

power, using per-unit values, given that the 3-phase power base is 100 MVA, 

and the nominal line voltage is 220 kV. 

2. 

Two identical parallel connected 3-phase 6.6 kV 6.25 MVA generators feed 

into the LV winding of a 3-phase 6.6 kV / 66 kV transformer rated at 12.5 

MVA. The HV winding of the transformer is connected to a 3-phase feeder. 

Find the total per-unit impedance of the circuit, as seen from the receiving end 

of the feeder, on a 12.5 MVA 66 kV base, given the following data: 

Generator impedance (each) = (1 + j30) % based on ratings 

Transformer impedance = (1 + j8) % based on ratings 

Feeder impedance per phase = 10 + j14  

3. 

A 3-phase 100 km transmission line has an impedance of  80j  per phase. 

Resistance and capacitance can be neglected. 

(a) 100 MW is carried along the line from end 1 to end 2 while the voltages are 

maintained at 140 kV and 130 kV at ends 1 and 2 respectively. Calculate 

the power angle and the reactive power flow at each end. 

(b) The line is operated at the static stability limit with voltages of 140 kV at 

each end. Calculate the complex power input and output of the line, and the 

voltage half-way along the transmission line. 

Per-unit values of 
electrical quantities 

Power flow in an 
interconnector 
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4. 

A composite load consists of heating, lighting and motors in equal proportions 

of real power. Estimate the percent change in real power resulting from a 5% 

fall in supply voltage. 

5. 

A generator, with its neutral connected to earth via a  10  reactor, supplies the 

following line to earth voltages and line currents to an unbalanced load: 

A 100400A 140350A 0200

kV 1100.12kV 2.133.13kV 00.18




cba

cba

III

VVV
 

Find: 

a) The symmetrical components of the above voltages. 

b) The voltage to earth on the generator neutral. 

c) The active power supplied  (i) using phase coordinates 

    (ii) using sequence coordinates. 

6. 

A three-phase 50 Hz reactor consists of three coupled coils. Each coil has a 

self-inductance of μH 500  and a resistance of m 20 . The mutual inductance 

between any two coils is μH 100 . 

a) Calculate the sequence impedances of the reactor in complex ohms. 

b) Express the results of a) as per-unit values, using a base voltage of 11 kV 

and a base power of 100 MVA. 

Modelling of power 
system loads 

Symmetrical 
components - 
introduction 
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7. 

A generator is running on open circuit at a terminal voltage of 1.1 p.u. Assume 

generator impedances are: 

p.u. 06.0p.u. 12.0 021 jZjZZ   

The generator is equipped with a neutral reactor of such a value as to limit the 

line to earth fault current to 5.0 p.u. 

Calculate the three line to earth voltages for a solid line to earth fault on “a” 

phase. 

8. 

A three-phase load consists of a 1  resistor connected between terminals “a” 

and “b”, a  3j  reactor between terminals “a” and “c, and a   3j  

capacitor between terminals “b” and “c”. Using the matrix transformation in 

Eq. (2.50) prove that the load is balanced when the symmetrical applied 

voltage has the phase sequence abc, but unbalanced when the sequence is acb. 

(Compare with Exercise 1.12). 

 




