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Preface 
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Adobe Acrobat Reader) is set up correctly these links should open the 

appropriate page in your web browser. 
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Introduction 

Electrical engineers should never forget “the big picture”. 

Every day we take for granted the power that comes out of the wall, or the light 

that instantly illuminates the darkness at the flick of a switch. We take for 

granted the fact that electrical machines are at the heart of every manufacturing 

industry. There has been no bigger benefit to humankind than the supply of 

electricity to residential, commercial and industrial sites. Behind this “magic” 

is a large infrastructure of generators, transmission lines, transformers, 

protection relays, motors and motor drives. 

We also take for granted the automation of once hazardous or laborious tasks, 

we take for granted the ability of electronics to control something as 

complicated as a jet aircraft, and we seem not to marvel at the idea of your 

car’s engine having just the right amount of fuel injected into the cylinder with 

just the right amount of air, with a spark igniting the mixture at just the right 

time to produce the maximum power and the least amount of noxious gases as 

you tell it to accelerate up a hill when the engine is cold! 

We forget that we are now living in an age where we can communicate with 

anyone (and almost anything), anywhere, at anytime. We have a point-to-point 

telephone system, mobile phones, the Internet, radio and TV. We have never 

lived in an age so “information rich”. 

Electrical engineers are engaged in the business of designing, improving, 

extending, maintaining and operating this amazing array of systems. 

One thing that engineers need to do well is to break down a seemingly complex 

system into smaller, easier parts. We therefore need a way of describing these 

systems mathematically, and a way of describing the input and output signals. 

Why we study 
systems 
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1.1 Signal Operations 

There really aren’t many things that you can do to signals. Take a simple FM 

modulator: 

 







to
antenna
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modulator

cos(2       ) f
ct

L'

R'

L+R

L-R

Preemphasiser

Preemphasiser

L-R(      )cos(2       ) f
ct

L-R(      )cos(2       ) f
ctL+R+L

R

 

 

Figure 1.1 

Some of the signals in this system come from “natural” sources, such as music 

or speech, some come from “artificial” sources, such as a sinusoidal oscillator. 

We can multiply two signals together, we can add two signals together, we can 

amplify, attenuate and filter. We normally treat all the operations as linear, 

although in practice some nonlinearity always arises. 

We seek a way to analyse, synthesise and process signals that is 

mathematically rigorous, yet simple to picture. It turns out that Fourier analysis 

of signals and systems is one suitable method to achieve this goal, and the 

Laplace Transform is even more powerful. But first, let’s characterise 

mathematically and pictorially some of the more common signal types. 

Example of signal 
operations 

Linear system 
operations 
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1.2 Continuous and Discrete Signals 

A continuous signal can be broadly defined as a quantity or measurement that 

varies continuously in relation to another variable, usually time. We say that 

the signal is a function of the independent variable, and it is usually described 

mathematically as a function with the argument in parentheses, e.g.  tg . The 

parentheses indicate that t is a real number. 

Common examples of continuous-time signals include temperature, voltage, 

audio output from a speaker, and video signals displayed on a TV. An example 

of a graph of a continuous-time signal is shown below: 

 

g t( )

t
 

 

Figure 1.2 

A discrete signal is one which exists only at specific instants of the 

independent variable, usually time. A discrete signal is usually described 

mathematically as a function with the argument in brackets, e.g.  ng . The 

brackets indicate that n is an integer. 

Common examples of discrete-time signals include your bank balance, 

monthly sales of a corporation, and the data read from a CD. An example of a 

graph of a discrete-time signal is shown below: 

 

g  n[  ]

n
 

 

Figure 1.3 
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1.3 Periodic and Aperiodic Signals 

A periodic signal  g t  is defined by the property: 

    0, 00  TTtgtg  (1.1) 

The smallest value of T0  that satisfies Eq. (1.1) is called the period. The 

fundamental frequency of the signal is defined as: 

f
T0

0

1


 
(1.2) 

A periodic signal remains unchanged by a positive or negative shift of any 

integral multiple of T0 . This means a periodic signal must  begin at t    and 

go on forever until t   . An example of a periodic signal is shown below: 

 

g t( )

t

T
0  

 

Figure 1.4 

We can also have periodic discrete-time signals, in which case: 

    0, 00  TTngng  (1.3) 

An aperiodic signal is one for which Eq. (1.1) or Eq. (1.3) does not hold. Any 

finite duration signal is aperiodic. 

 

Periodic function 
defined 

Fundamental 
frequency defined 

A periodic signal 

Aperiodic signals 
defined 
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EXAMPLE 1.1 Period and Fundamental Frequency 

Find the period and fundamental frequency (if they exist) of the following 

signal: 

 g t t t 3 2 4 4cos sin   

We can graph this function to easily determine its period: 

g t( )

T
0
= 1

t, (s)
0 1 2-1-2

 

From the graph we find that T0 1  s  and f 0 1  Hz . It is difficult to determine 

the period mathematically (in this case) until we look at the signal’s spectrum. 

If we add two periodic signals, then the result may or may not be periodic. The 

result will only be periodic if an integral number of periods of the first signal 

coincides with an integral number of periods of the second signal: 

rational is   where210
q

p
pTqTT 

 
(1.4) 

In Eq. (1.4), the integers p and q must have no common factors. 

We know that a sinusoid is a periodic signal, and we shall soon see that any 

signal composed of a sum of sinusoids with frequencies that are integral 

multiples of a fundamental frequency is also periodic. 
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1.4 Deterministic and Random Signals 

A deterministic signal is one in which the past, present and future values are 

completely specified. For example,  g t t cos2  and    g t e u tt   are 

obviously signals specified completely for all time. 

Random or stochastic signals cannot be specified at precisely one instant in 

time. This does not necessarily mean that any particular random signal is 

unknown - on the contrary they can be deterministic. For example, consider 

some outputs of a binary signal generator over 8 bits: 

 

t

t

t

t

g  t( )
1

g  t( )
2

g  t( )
3

g  t( )
4

 

 

Figure 1.5 

Each of the possible 2 2568   waveforms is deterministic - the randomness of 

this situation is associated not with the waveform but with the uncertainty as to 

which waveform will occur. This is completely analogous to the situation of 

tossing a coin. We know the outcome will be a head or a tail - the uncertainty is 

the occurrence of a particular outcome in a given trial. 

Random signals are most often the information bearing signals we are used to - 

voice signals, television signals, digital data (computer files), etc. Electrical 

“noise” is also a random signal. 

Deterministic signals 
defined 

Random signals 
defined 

Random signals are 
information bearing 
signals 
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1.5 Energy and Power Signals 

For electrical engineers, the signals we wish to describe will be predominantly 

voltage or current. Accordingly, the instantaneous power developed by these 

signals will be either: 

 
 

p t
v t

R


2

 
(1.5) 

or: 

   p t Ri t 2
 (1.6) 

In signal analysis it is customary to normalise these equations by setting R  1. 

With a signal  g t  the formula for instantaneous power in both cases becomes: 

   p t g t 2
 (1.7) 

The dissipated energy, or the total energy of the signal is then given by: 

 E g t dt





2

 
(1.8) 

A signal is classified as an energy signal if and only if the total energy of the 

signal is finite: 

0  E  (1.9) 

The total energy of a 
signal 

is finite for an 
energy signal 
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The average power of a signal is correspondingly defined as: 

 P
T

g t dt
T T

T


 lim

1 2

2

2

 
(1.10) 

If the signal is periodic with period T0 , we then have the special case: 

 P
T

g t dt
T

T




1

0

2

2

2

0

0

 
(1.11) 

A sinusoid is a periodic signal and therefore has a finite power. If a sinusoid is 

given by      02cos TtAtg , then what is the average power? 

The easiest way to find the average power is by performing the integration in 

Eq. (1.11) graphically. For the arbitrary sinusoid given, we can graph the 

integrand      0

222 2cos TtAtg  as: 

 

2

A
2

A
2

t
T

0

equal areas

g   t
2
(  )

 

 

Figure 1.6 

Note that in drawing the graph we don’t really need to know the identity 

    22cos1cos2    – all we need to know is that if we start off with a 

sinusoid uniformly oscillating between A  and A , then after squaring we 

The average power 
of a signal 

and the average 
power of a periodic 
signal 
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obtain a sinusoid that oscillates (at twice the frequency) between 2A  and 0. We 

can also see that the average value of the resulting waveform is 22A , because 

there are equal areas above and below this level. Therefore, if we integrate (i.e. 

find the area beneath the curve) over an interval spanning 0T , we must have an 

area equal to the average value times the span, i.e. 20

2TA . (This is the Mean 

Value Theorem for Integrals). So the average power is this area divided by the 

period: 

2

2A
P 

 
(1.12) 

This is a surprising result! The power of any sinusoid, no matter what its 

frequency or phase, is dependent only on its amplitude. 

Confirm the above result by performing the integration algebraically. 

A signal is classified as a power signal if and only if the average power of the 

signal is finite and non-zero: 

0 P  (1.13) 

We observe that if E, the energy of  g t , is finite, then its power P is zero, and 

if P is finite, then E is infinite. It is obvious that a signal may be classified as 

one or the other but not both. On the other hand, there are some signals, for 

example: 

 g t e at 
 (1.14) 

that cannot be classified as either energy or power signals, because both E and 

P are infinite. 

It is interesting to note that periodic signals and most random signals are power 

signals, and signals that are both deterministic and aperiodic are energy signals. 

The power of any 
arbitrary sinusoid of 
amplitude A 

are finite and non-
zero for a power 
signal 
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1.6 Common Continuous-Time Signals 

Earlier we stated that the key to handling complexity is to reduce to many 

simple parts. The converse is also true - we can apply superposition to build 

complexity out of simple parts. It may come as a pleasant surprise that the 

study of only a few signals will enable us to handle almost any amount of 

complexity in a deterministic signal. 

1.6.1 The Continuous-Time Step Function 

We define the continuous-time step function to be: 

 u t
t
t

t














0 0
1 2 0

1 0

,
,

,
 

(1.15) 

Graphically: 

 

1

t

u t( )

0  

 

Figure 1.7 

We will now make a very important observation: it is the argument of the 

function which determines the position of the function along the t-axis. Now 

consider the delayed step function: 

 u t t

t t

t t

t t

 













0

0

0

0

0

1 2

1

,

,

,
 

(1.16) 

We obtain the conditions on the values of the function by the simple 

substitution t t t  0  in Eq. (1.15). 

Superposition is the 
key to building 
complexity out of 
simple parts 

The continuous-time 
step function 
defined 

and graphed 

The argument of a 
function determines 
its position 
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Graphically, we have: 

 

1

t0 t
0

(     )u t- t
0

 

 

Figure 1.8 

We see that the argument  t t 0  simply shifts the origin of the original 

function to t0 . A positive value of t0  shifts the function to the right - 

corresponding to a delay in time. A negative value shifts the function to the left 

- an advance in time. 

We will now introduce another concept associated with the argument of a 

function: if we divide it by a real constant - a scaling factor - then we regulate 

the orientation of the function about the point t0 , and usually change the 

“width” of the function. Consider the scaled and shifted step function: 

u
t t

T

t

T

t

T
t

T

t

T
t

T

t

T









 




















0

0

0

0

0

1 2

1

,

,

,

 

(1.17) 

as well as “width” 
and orientation 
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In this case it is not meaningful to talk about the width of the step function, and 

the only purpose of the constant T is to allow the function to be reflected about 

the line t t 0 , as shown below: 

 

1

t0 t
0

1

t0

u (     )
t- t

0

T

1 2 3 4-1-2

(    )u
t- 2

-1

T positivet
0
,

 

 

Figure 1.9 

Use Eq. (1.17) to verify the bottom step function in Figure 1.9. 

The utility of the step function is that it can be used as a “switch” to turn 

another function on or off at some point. For example, the product given by 

 u t t1 2cos   is as shown below: 

 

1

t0 1 2 3 4-1-2

(    )u t- 1 cos t2

 

 

Figure 1.10 

The step function as 
a “switch” 
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1.6.2 The Rectangle Function 

One of the most useful functions in signal analysis is the rectangle function, 

defined as: 

 rect t

t

t

t






















0
1

2

1 2
1

2

1
1

2

,

,

,

 

(1.18) 

Graphically, this is a “rectangle” with a height, width and area of one: 

 

1

t0 1/2-1/2

rect(  )t

 

 

Figure 1.11 

If we generalise the argument, as we did for the step function, we get: 

rect
t t

T

t t

T

t t

T

t t
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(1.19) 

The rectangle 
function defined 

and graphed 
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Graphically, it is a rectangle with a height of unity, it is centred on t t 0 , and 

both its width and area are equal to T : 

 

1

t0 t
0
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T
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0

Area = 

|T|

t

1
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Figure 1.12 

In the time-domain the rectangle function can be used to represent a gating 

operation in an electrical circuit. Mathematically it provides an easy way to 

turn a function on and off. 

Notice from the symmetry of the function that the sign of T has no effect on the 

function’s orientation. However, the magnitude of T still acts as a scaling 

factor. 

The rectangle 
function can be 
used to turn another 
function on and off 
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1.6.3 The Straight Line 

It is surprising how something so simple can cause a lot of confusion. We start 

with one of the simplest straight lines possible. Let  g t t : 

 

1

t0 1 2-1-2

-1

slope=1

(  )g t = t

 

 

Figure 1.13 

Now shift the straight line along the t-axis in the standard fashion, to make 

 g t t t  0 : 

 

t0

slope=1

0
t

(  )g t = t-
0
t

 

 

Figure 1.14 

To change the slope of the line, simply apply the usual scaling factor, to make: 

 g t
t t

T


 0

 
(1.20) 

The straight line 
defined 
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This is the equation of a straight line, with slope 1 T  and t-axis intercept t0 : 

 

t0
0
t

(  )g t =
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0
t

T slope = 1/T

+T
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t

1

1

t0 1-1-2
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slope = -1/3 (  )g t =
t- 1

-3

 

 

Figure 1.15 

We can now use our knowledge of the straight line and rectangle function to 

completely specify piece-wise linear signals. 

and graphed 
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EXAMPLE 1.2 Mathematical Description of a Periodic Waveform 

A function generator produces the following sawtooth waveform: 

1

t0 4 8 12 16-4-8

(  )g t

 

We seek a mathematical description of this waveform. We start by recognising 

the fact that the waveform is periodic, with period T0 4 . First we describe 

only one period (say the one beginning at the origin). We recognise that the 

ramp part of the sawtooth is a straight line multiplied by a rectangle function: 

 g t
t t

0 4

2

4










rect  

Graphically, it is: 

1
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(  )g t
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1
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1

t0 4 8 12 16-4-8
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The next period is just  g t0  shifted right (delayed in time) by 4: 

1

t0 4 8 12 16-4-8

t(  )g
1

1

t0 4 8 12 16-4-8

1

t0 4 8 12 16-4-8

 

 

The next period is therefore described by: 

   g t g t
t t

1 0 4
4

4

4 2

4
  

  







rect  

It is now easy to see the pattern. In general we have: 

   g t g t n
t n t n

n   
  







0 4

4

4

4 2

4
rect  

where  g tn  is the nth period and n is any integer. Now all we have to do is 

add up all the periods to get the complete mathematical expression for the 

sawtooth: 

 g t
t n t n

n
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EXAMPLE 1.3 Mathematical Description of a One-off Waveform 

Sketch the following waveform: 

           g t t t t t t        1 15 25 05 25 05 2rect rect rect. . . . .  

We can start by putting arguments into our “standard” form: 

       g t t t t
t t

     






















1 15 2 5

5

2

4

2
rect rect rect. .  

From this, we can compose the waveform out of the three specified parts: 
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1.6.4 The Sinc Function 

The sinc function will show up quite often in studies of linear systems, 

particularly in signal spectra, and it is interesting to note that there is a close 

relationship between this function and the rectangle function. Its definition is: 

 sinc t
t

t


sin

  
(1.21) 

Graphically, it looks like: 

 

t

sinc(  )t

2 3 41-1-2-3-4
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Figure 1.16 

The inclusion of   in the formula for the sinc function gives it certain “nice” 

properties. For example, the zeros of  sinc t  occur at non-zero integral values, 

its width between the first two zeros is two, and its area (including positive and 

negative lobes) is just one. Notice also that it appears that the sinc function is 

undefined for t0 . In one sense it is, but in another sense we can define a 

function’s value at a singularity by approaching it from either side and 

averaging the limits. 

This is not unusual – we did it explicitly in the definition of the step function, 

where there is obviously a singularity at the “step”. We overcame this by 

calculating the limits of the function approaching zero from the positive and 

negative sides. The limit is 0 (approaching from the negative side) and 1 

(approaching from the positive side), and the average of these two is 1 2 . We 

then made explicit the use of this value for a zero argument. 

The sinc function 
defined 

and graphed 

Features of the sinc 
function 



1.22 

Index Common Continuous-Time Signals PMcL   

1 - Signals  2015 

The limit of the sinc function as t0  can be obtained using l’Hôpital’s rule: 

lim
sin

lim
cos

t t

t

t

t

 
 

0 0
1





 

  
(1.22) 

Therefore, we say the sinc function has a value of 1 when its argument is zero. 

With a generalised argument, the sinc function becomes: 

sinc
t t

T

t t

T

t t

T
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(1.23) 

Its zeros occur at t nT0  , its height is 1, its width between the first two zeros is 

2 T  and its area is T : 
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Figure 1.17 
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1.6.5 The Impulse Function 

The impulse function, or Dirac delta function, is of great importance in the 

study of signal theory. It will enable us to represent “densities” at a single 

point. We shall employ the widely accepted symbol   t  to denote the impulse 

function. 

The impulse function is often described as having an infinite height and zero 

width such that its area is equal to unity, but such a description is not 

particularly satisfying. 

A more formal definition is obtained by first forming a sequence of functions, 

such as  1 T t Trect , and then defining   t  to be: 

  t
T

t

TT













lim

0

1
rect

 
(1.24) 

As T  gets smaller and smaller the members of the sequence become taller and 

narrower, but their area remains constant as shown below: 

 

1

t0 1-1 2-2

1

2
rect( t

2
)

rect(  )t

2rect(    )t2
2

 

 

Figure 1.18 

This definition, however, is not very satisfying either. 

The need for an 
impulse function 

An informal 
definition of the 
impulse function 

A more formal 
definition of the 
impulse function 
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From a physical point of view, we can consider the delta function to be so 

narrow that making it any narrower would in no way influence the results in 

which we are interested. As an example, consider the simple RC circuit shown 

below, in which a rectangle function is applied as  v ti : 

 

R

vov i
C

 

 

Figure 1.19 

We choose the width of the pulse to be T, and its height to be equal to 1 T  

such that its area is 1 as T is varied. The output voltage  v to  will vary with 

time, and its exact form will depend on the relative values of T and the product 

RC. 

If T is much larger than RC, as in the top diagram of Figure 1.20, the capacitor 

will be almost completely charged to the voltage 1 T  before the pulse ends, at 

which time it will begin to discharge back to zero. 

If we shorten the pulse so that T RC , the capacitor will not have a chance to 

become fully charged before the pulse ends. Thus, the output voltage behaves 

as in the middle diagram of Figure 1.20, and it can be seen that there is a 

considerable difference between this output and the proceeding one. 

If we now make T still shorter, as in the bottom diagram of Figure 1.20, we 

note very little change in the shape of the output. In fact, as we continue to 

make T shorter and shorter, the only noticeable change is in the time it takes 

the output to reach a maximum, and this time is just equal to T. 

An impulse function 
in the lab is just a 
very narrow pulse 

As the duration of a 
rectangular input 
pulse get smaller 

and smaller 

and smaller, the 
output of a linear 
system approaches 
the “impulse 
response” 
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If this interval is too short to be resolved by our measuring device, the input is 

effectively behaving as a delta function and decreasing its duration further will 

have no observable effect on the output, which now closely resembles the 

impulse response of the circuit.  
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Figure 1.20 

Graphical derivation 
of the impulse 
response of an RC 
circuit by decreasing 
a pulse’s width while 
maintaining its area 
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With the previous discussion in mind, we shall use the following properties as 

the definition of the delta function: given the real constant t0  and the arbitrary 

complex-valued function  f t , which is continuous at the point t t 0 , then 
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(1.25) 

(1.26) 

If  f t  is discontinuous at the point t t 0 , Eq. (1A.32b) may still be used but 

the value of  f t0  is taken to be the average of the limiting values as t0  is 

approached from above and from below. With this definition of the delta 

function, we do not specify the value of   t t 0  at the point t t 0 . Note that 

we do not care about the exact form of the delta function itself but only about 

its behaviour under integration. 

Eq. (1A.32b) is often called the sifting property of the delta function, because it 

“sifts” out a single value of the function  f t . 

Graphically we will represent   t t 0  as a spike of unit height located at the 

point t t 0 , but observe that the height of the spike corresponds to the area of 

the delta function. Such a representation is shown below: 
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Figure 1.21 

The impulse 
function defined - as 
behaviour upon 
integration 

“Sifting” property of 
the impulse function 
defined 

Graphical 
representation of an 
impulse function 
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1.7 Sinusoids 

Here we start deviating from the previous descriptions of time-domain signals. 

All the signals described so far are aperiodic. With periodic signals (such as 

sinusoids), we can start to introduce the concept of “frequency content”, i.e. a 

shift from describing signals in the time-domain to one that describes them in 

the frequency-domain. This “new” way of describing signals will be fully 

exploited later when we look at Fourier series and Fourier transforms. 

1.7.1 Why Sinusoids? 

The sinusoid with which we are so familiar today appeared first as the solution 

to differential equations that 17
th

 century mathematicians had derived to 

describe the behaviour of various vibrating systems. They were no doubt 

surprised that the functions that had been used for centuries in trigonometry 

appeared in this new context. Mathematicians who made important 

contributions included Huygens (1596-1687), Bernoulli (1710-1790), Taylor 

(1685-1731), Ricatti (1676-1754), Euler (1707-1783), D’Alembert (1717-

1783) and Lagrange (1736-1813). 

Perhaps the greatest contribution was that of Euler (who invented the symbols 

 , e and i 1  which we call j). He first identified the fact that is highly 

significant for us: 

For systems described by linear differential equations a 

sinusoidal input yields a sinusoidal output. 
(1.27) 

The output sinusoid has the same frequency as the input, it is however altered 

in amplitude and phase. 

We are so familiar with this fact that we sometimes overlook its significance. 

Only sinusoids have this property with respect to linear systems. For example, 

applying a square wave input does not produce a square wave output. 

Sinusoids can be 
described in the 
frequency-domain 

The special 
relationship enjoyed 
by sinusoids and 
linear systems 
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It was Euler who recognised that an arbitrary sinusoid could be resolved into a 

pair of complex exponentials: 

 A t Xe X ej t j tcos *      
 (1.28) 

where X A e j 2  . Euler found that the input/output form invariance exhibited 

by the sinusoid could be mathematically expressed most concisely using the 

exponential components. Thus if  
A e

j t
2

 
 was the input, then for a linear 

system the output would be 
 

H A e
j t

. 2
 

 where H is a complex-valued 

function of  . 

We know this already from circuit analysis, and the whole topic of system 

design concerns the manipulation of H. 

The second major reason for the importance of the sinusoid can be attributed to 

Fourier, who in 1807 recognised that: 

Any periodic function can be represented as the weighted 

sum of a family of sinusoids. 
(1.29) 

The way now lay open for the analysis of the behaviour of a linear system for 

any periodic input by determining the response to the individual sinusoidal (or 

exponential) components and adding them up (superposition). 

This technique is called frequency analysis. Its first application was probably 

that of Newton passing white light through a prism and discovering that red 

light was unchanged after passage through a second prism. 

A sinusoid can be 
expressed as the 
sum of a forward 
and backward 
rotating phasor 

Periodic signals are 
made up of 
sinusoids - Fourier 
Series 
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1.7.2 Representation of Sinusoids 

Sinusoids can be resolved into pairs of complex exponentials as in Eq. (1.28). 

In this section, instead of following the historical, mathematical approach, we 

relate sinusoids to complex numbers using a utilitarian argument. Consider the 

sinusoid: 

 x t A
t

T










cos

2
 

(1.30) 

A is the amplitude, 2 T  is the angular frequency, and T is the period. 

Graphically, we have: 

 

A

t

T

cos
t2

T
( )

 

 

Figure 1.22 

Delaying the waveform by t0  results in: 

 

t

A

t
0  

 

Figure 1.23 
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Mathematically, we have: 

 
 

x t A
t t

T
A

t

T

t

T

A
t

T












  











 










cos cos

cos

2 2 2

2

0 0
  




 

(1.31) 

where  2 0t T .   is the phase of the sinusoid. Note the negative sign in 

the definition of phase, which means a delayed sinusoid has negative phase. 

We note that when t T0 4  we get: 

 

t

A

t
0
=T/4  

 

Figure 1.24 

and: 

 x t A
t

T

A
t

T

 





















cos

sin

2

2
2

 

  

(1.32) 

 

A sinusoid 
expressed in the 
most general 
fashion 



1.31 

PMcL Sinusoids Index    

2015  1 - Signals 

We can thus represent an arbitrary sinusoid as either: 

     x t A t A t   sin cos     or 2  
(1.33) 

Similarly: 

     x t A t A t   cos sin     or 2  (1.34) 

We shall use the cosine form. If a sinusoid is expressed in the sine form, then 

we need to subtract 90  from the phase angle to get the cosine form. 

When the phase of a sinusoid is referred to, it is the phase angle in the cosine 

form (in these lecture notes). 

 

1.7.3 Resolution of an Arbitrary Sinusoid into Orthogonal Functions 

An arbitrary sinusoid can be expressed as a weighted sum of a cos() and 

a -sin() term. Mathematically, we can derive the following: 

 
    

A t A t A t

A t A t

cos cos cos sin sin

cos cos sin sin

     

   

  

    
(1.35) 

 

Phase refers to the 
angle of a 
cosinusoid at t=0 

A sinusoid can be 
broken down into 
two orthogonal 
components 
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EXAMPLE 1.4 Resolving a Sinusoid into Constituent Components 

Lets resolve a simple sinusoid into the above components: 

      
    

2cos 3 15 2cos 15 3 2sin 15
193 3 052

t t t
t t

        
   

cos sin3
. cos . sin3

 

Graphically, this is: 

1.93

cos3t term

-sin3t term0.52

2

 

The cos() and -sin() terms are said to be orthogonal. For our purposes 

orthogonal may be understood as the property that two vectors or functions 

mutually have when one cannot be expressed as a sum containing the other. 

We will look at basis functions and orthogonality more formally later on. 

1.7.4 Representation of a Sinusoid by a Complex Number 

There are three distinct pieces of information about a sinusoid - frequency, 

amplitude and phase. Provided the frequency is unambiguous, two real 

numbers are required to describe the sinusoid completely. Why not use a 

complex number to store these two real numbers? 

Suppose the convention is adopted that: the real part of a complex number is 

the cost  amplitude, and the imaginary part is the sint  amplitude of the 

resolution described by Eq. (1.35). 

Any sinusoid can be 
decomposed into 
two orthogonal 
sinusoids of the 
same frequency, but 
different amplitude 

A quick definition of 
orthogonal 

Three real numbers 
completely specify a 
sinusoid 

Two real numbers 
completely specify a 
sinusoid of a given 
frequency 
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Suppose we call the complex number created in this way the phasor associated 

with the sinusoid. Our notation will be: 

 x t  – time-domain expression 

X  – phasor associated with  x t  

The reason for the bar over X will become apparent shortly. 

EXAMPLE 1.5 Representation of a Sinusoid by a Complex Number 

With the previous example, we had    x t t  2cos 3 15 . Therefore the phasor 

associated with it, using our new convention, is  X j     193 052 2 15. . . 

We can see that the magnitude of the complex number is the amplitude of the 

sinusoid and the angle of the complex number is the phase of the sinusoid. In 

general, the correspondence between a sinusoid and its phasor is: 

     jAeXtAtx  cos  (1.36) 

EXAMPLE 1.6 Phasor Notation 

If    x t t  3 30sin   then we have to convert to our cos notation: 

   x t t  3 120cos  . Therefore X   3 120 . Note carefully that 

 X t  3 120cos  . All we can say is that    x t t  3 120cos   is represented 

by X   3 120 . 

The convenience of complex numbers extends beyond their compact 

representation of the amplitude and phase. The sum of two phasors corresponds 

to the sinusoid which is the sum of the two component sinusoids represented 

by the phasors. That is, if      x t x t x t3 1 2   where  x t1 ,  x t2  and  x t3  are 

sinusoids with the same frequency, then X X X3 1 2  . 

EXAMPLE 1.7 Phasor Notation 

If  x t t t3 2sin cos   then X j3 1 0 2 90 1 2 2 24 63        .  which 

corresponds to    x t t3 2 24cos 63  .  . 

which we store as a 
complex number 
called a phasor 

Time-domain and 
frequency-domain 
symbols 

A phasor can be 
“read off” a time-
domain expression 

The phasor that 
corresponds to an 
arbitrary sinusoid 

Phasors make 
manipulating 
sinusoids of the 
same frequency 
easy 
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1.7.5 Formalisation of the Relationship between Phasor and Sinusoid 

Using Euler’s expansion: 

e jj   cos sin  (1.37) 

we have: 

     Ae e Ae A t jA tj j t j t           


cos sin  (1.38) 

We can see that the sinusoid   tAcos  represented by the phasor 

jAeX  is equal to  tjeX Re . Therefore: 

   x t Xe j tRe 
 (1.39) 

This can be visualised as: 

 



complex plane

Re

Im

X
j t

e
A

j t
eA

j
e=

x  t(  )

 

 

Figure 1.25 

A phasor / time-
domain relationship 

Graphical 
interpretation of 
rotating phasor / 
time-domain 
relationship 
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1.7.6 Euler’s Complex Exponential Relationships for Cosine and Sine 

Euler’s expansion: 

e jj   cos sin  (1.40) 

can be visualized as: 

 



Re

Im

e
j

cos

sinj

 

 

Figure 1.26 

By mirroring the vectors about the real axis, it is obvious that: 

 sincos je j 
 (1.41) 

and: 

 

 Re

Im

e
-j

cos

sin-j

 

 

Figure 1.27 
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By adding Eqs. (1A.45) and (1A.46), we can write: 

2
cos




jj ee 


 

(1.42) 

and: 

 

Re

Im

e
-j

cos

e
j

 

 

Figure 1.28 

By subtracting Eqs. (1A.45) and (1A.46), we can write: 

2
sin

j

ee jj 





 

(1.43) 

and: 

 

Re

Im

e
-j

-e
-j

e
j

sinj

 

 

Figure 1.29 

Cos represented as 
a sum of complex 
exponentials 

Sin represented as 
a sum of complex 
exponentials 
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1.7.7 A New Definition of the Phasor 

To avoid the mathematical “clumsiness” of needing to take the real part, 

another definition of the phasor is often adopted. In circuit analysis we use the 

definition of the phasor as given before. In communication engineering we will 

find it more convenient to use a new definition: 

2
or ,

2

X
Xe

A
X j  

 
(1.44) 

We realise that this phasor definition, although a unique and sufficient 

representation for every sinusoid, is just half of the sinusoid’s full 

representation. Using Euler’s complex exponential expansion of cos, we get: 

 

tjtj

tjjtjj

eXXe

ee
A

ee
A

tA













*

22
cos

 
(1.45) 

The two terms in the summation represent two counter-rotating phasors with 

angular velocities   and   in the complex plane, as shown below: 

 

A /2



complex plane

Re

Im

x  t(  )

X e
j t-*

=X
j t

e
j t

e
A j

e
2

 

 

Figure 1.30 

A new phasor 
definition 

A better phasor / 
time-domain 
relationship 

Graphical 
interpretation of 
counter-rotating 
phasors / time-
domain relationship 
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1.7.8 Graphical Illustration of the Relationship between the Two 
Types of Phasor and their Corresponding Sinusoid 

Consider the first representation of a sinusoid:    x t Xe j tRe  . Graphically, 

 x t  can be “generated” by taking the projection of the rotating phasor formed 

by multiplying X  by e j t , onto the real axis: 

 

X

complex plane time-domain

 

 

Figure 1.31 

A sinusoid can be 
generated by taking 
the real part of a 
rotating complex 
number 
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Now consider the second representation of a sinusoid:  x t Xe X ej t j t   * . 

Graphically,  x t  can be “generated” by simply adding the two complex 

conjugate counter-rotating phasors Xe j t  and X e j t*   . The result will always 

be a real number: 

 

X

complex plane time-domain

X
*

 

 

Figure 1.32 

1.7.9 Negative Frequency 

The phasor X e j t*    rotates with a speed   but in the clockwise direction. 

Therefore, we consider this counter-rotating phasor to have a negative 

frequency. The concept of negative frequency will be very useful when we start 

to manipulate signals in the frequency-domain. 

You should become very familiar with all of these signal types, and you should 

feel comfortable representing a sinusoid as a complex exponential. Being able 

to manipulate signals mathematically, while at the same time imagining what is 

happening to them graphically, is the key to readily understanding signals and 

systems. 

A sinusoid can be 
generated by adding 
up a forward rotating 
complex number 
and its backward 
rotating complex 
conjugate 

Negative frequency 
just means the 
phasor is going 
clockwise 

The link between 
maths and graphs 
should be well 
understood 
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1.8 Common Discrete-Time Signals 

A lot of discrete-time signals are obtained by “sampling” continuous-time 

signals at regular intervals. In these cases, we can simply form a discrete-time 

signal by substituting snTt   into the mathematical expression for the 

continuous-time signal, and then rewriting it using discrete notation. 

EXAMPLE 1.8 Discrete-Time Signal Representation 

Consider the sinusoidal function    tftg 02cos  . If we “sample” this signal at 

discrete times, we get: 

     ssnTt
nTfnTgtg

s
02cos 


 

Since this is valid only at times which are multiples of sT , it is a discrete-time 

signal and can be written as such: 

     nnTfng s  cos2cos 0  

where sTf02  is obviously a constant. A graph of this discrete-time signal 

is given below: 

n

1

-1

g  n[  ]

 

 

This “sampling” process only works when the continuous-time signal is 

smooth and of finite value. Therefore, the discrete-time versions of the 

rectangle and impulse are defined from first principles. 

Superposition is the 
key to building 
complexity out of 
simple parts 
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1.8.1 The Discrete-Time Step Function 

We define the discrete-time step function to be: 

 









0,1

0,0

n

n
nu

 
(1.46) 

Graphically: 

 

1

n

u  n[  ]

0 1 2 3 4-1-2-3-4  

 

Figure 1.33 

Note that this is not a sampled version of the continuous-time step function, 

which has a discontinuity at 0t . We define the discrete-time step to have a 

value of 1 at 0n  (instead of having a value of 21  if it were obtained by 

sampling the continuous-time signal). 

EXAMPLE 1.9 Discrete-Time Step Used to “Turn On” a Signal 

A discrete-time signal has the following graph: 

n

2

g  n[  ]

4

5

3

1

1 2 3 4 50-1-2  

We recognise that the signal is increasing linearly after it “turns on” at 0n . 

Therefore, an expression for this signal is    nnung  . 

 

The discrete-time 
step function 
defined 

and graphed 
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1.8.2 The Unit-Pulse Function 

There is no way to sample an impulse, since its value is undefined. However, 

we shall see that the discrete-time unit-pulse, or Kronecker delta function, 

plays the same role in discrete-time systems as the impulse does in continuous-

time systems. It is defined as: 

 









0,1

0,0

n

n
n

 
(1.47) 

Graphically: 

 

1

n

 [  ]

0 1 2 3 4-1-2-3-4

n

 

 

Figure 1.34 

EXAMPLE 1.10 Discrete-Time Signal as the Sum of Weighted Unit-Pulses 

An arbitrary-looking discrete-time signal has the following graph: 

n

2

g  n[  ]

4

5

3

1

-1

-2

1 2 3 4 5 6

-1-2

-3-4

 

With no obvious formula, we can express the signal as the sum of a series of 

delayed and weighted unit-pulses. Working from left to right, we get: 

             443223122  nnnnnnng  . 

The unit-pulse 
defined 

and graphed 
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1.9 Summary 

 Signals can be characterized with many attributes – continuous or discrete, 

periodic or aperiodic, energy or power, deterministic or random. Each 

characterization tells us something useful about the signal. 

 Signals written mathematically in a standard form will benefit our analysis 

in the future. We use arguments of the form 






 

T

tt 0 . 

 Sinusoids are special signals. They are the only real signals that retain their 

shape when passing through a linear time-invariant system. They are often 

represented as the sum of two complex conjugate, counter-rotating phasors. 

 The phasor corresponding to      tAtx cos  is je
A

X
2

 . 

 Most discrete-time signals can be obtained by “sampling” continuous-time 

signals. The discrete-time step function and unit-pulse are defined from 

first principles. 

1.10 References 

Kamen, E.W. & Heck, B.S.: Fundamentals of Signals and Systems Using 

MATLAB
®

, Prentice-Hall, Inc., 1997. 
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Quiz 

Encircle the correct answer, cross out the wrong answers. [one or none correct] 

1. 
The signal cos( ) sin( )10 3 11 2   t t    has: 

(a) period = 1 s (b) period = 2 s (c) no period 

2. 

0

1

t4

g(t)

8 12-4-8-12
 

The periodic sawtooth 

waveform can be 

represented by: 

(a) 

 
 

g t
t n t

n


 














4

4

2

4
rect  

(b) 

 
 

g t
t n t n

n


 














4

4

2

4
rect  

(c) 

 
 

g t
t t n

n


  














4

4

2 4

4
rect  

3. 

The sinusoid    5 314 80sin t  can be represented by the phasor X : 

(a)   5 80  (b) 5 100   (c) 5 10   

4. 

0

4

t4 8 12-4-8-12

2

-2

-4  

 

The energy of the 

signal shown is: 

(a) 16 (b) 64 (c) 0 

5. 
Using forward and backward rotating phasor notation, X   3 30 . If the 

angular frequency is 1 rads
-1

,  x 2  is: 

(a) 5.994 (b) 5.088 (c) -4.890 

Answers: 1. b   2. x   3. c   4. x   5. c 
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Exercises 

1. 

For each of the periodic signals shown, determine their time-domain 

expressions, their periods and average power: 

1

t0

(  )g t

 2-2

2

t0

(  )g t

21 3 4-1-2

1

t0

(  )g t

2010 30 40-10-20

e
-t / 10

2

t

(  )g t

31 5-1-3

cos 200 t2

(a)

(b)

(c)

(d)
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2. 

For the signals shown, determine their time-domain expressions and calculate 

their energy: 

t
-5

10

(  )g t

1 2-1-2

t

1

(  )g t

/2-/2

cos t

1

t0

(  )g t

21 3 4

t
2

Two identical
cycles

1

t0

(  )g t

21 3 4 5

2

3

(a)

(b)

(c)

(d)

 

3. 

Using the sifting property of the impulse function, evaluate the following 

integrals: 

(i)   t tdt




 2 sin  

(ii)   t e dtt 





 3  

(iii)    1 43 




 t t dt  

(iv)    f t t t t dt1 2 




   

(v)  e t dtj t  




 2  

(vi)    0tttf   
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4. 

Show that:   
t t

T
T t t









  

0

0  

Hint: Show that:     f t
t t

T
dt T f t









 






0

0  

This is a case where common sense does not prevail. At first glance it might 

appear that      t t T t t  0 0  because “you obviously can’t scale 

something whose width is zero to begin with.” However, it is the impulse 

function’s behaviour upon integration that is important, and not its shape! Also 

notice how it conforms nicely to our notion of the impulse function being a 

limit of a narrow rectangle function. If a rectangle function is scaled by T, then 

its area is also T. 

5. 

Complete the following table: 

(a)    x t t  27 100 15cos   X   

(b)    x t t  5 2 80sin  X   

(c)    x t t  100 2 45sin   phasor diagram is: 

(d)    x t t  16 314 30cos  amplitude of  cos 314t  term = 

amplitude of  sin 314t  term = 

(e) X j 27 11  x t   

(f) X   100 60   x t   

(g)      x t t t   4 2 45 2 2cos sin   X   

(h)    x t t  2 30cos  X    X *   

(i) X   3 30 , 1  x 2   

(j) X   3 30  X    X *   
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Leonhard Euler (1707-1783) (Len´ ard Oy´ ler) 

The work of Euler built upon that of Newton and made mathematics the tool of 

analysis. Astronomy, the geometry of surfaces, optics, electricity and 

magnetism, artillery and ballistics, and hydrostatics are only some of Euler’s 

fields. He put Newton’s laws, calculus, trigonometry, and algebra into a 

recognizably modern form. 

Euler was born in Switzerland, and before he was an adolescent it was 

recognized that he had a prodigious memory and an obvious mathematical gift. 

He received both his bachelor’s and his master’s degrees at the age of 15, and 

at the age of 23 he was appointed professor of physics, and at age 26 professor 

of mathematics, at the Academy of Sciences in Russia. 

Among the symbols that Euler initiated are the sigma () for summation 

(1755), e to represent the constant 2.71828…(1727), i for the imaginary 1  

(1777), and even a, b, and c for the sides of a triangle and A, B, and C for the 

opposite angles. He transformed the trigonometric ratios into functions and 

abbreviated them sin , cos  and tan , and treated logarithms and exponents as 

functions instead of merely aids to calculation. He also standardised the use of 

 for 3.14159… 

His 1736 treatise, Mechanica, represented the flourishing state of Newtonian 

physics under the guidance of mathematical rigor. An introduction to pure 

mathematics, Introductio in analysin infinitorum, appeared in 1748 which 

treated algebra, the theory of equations, trigonometry and analytical geometry. 

In this work Euler gave the formula xixeix sincos  . It did for calculus what 

Euclid had done for geometry. Euler also published the first two complete 

works on calculus: Institutiones calculi differentialis, from 1755, and 

Institutiones calculi integralis, from 1768. 

Euler's work in mathematics is vast. He was the most prolific writer of 

mathematics of all time. After his death in 1783 the St Petersburg Academy 

continued to publish Euler's unpublished work for nearly 50 more years! 
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Some of his phenomenal output includes: books on the calculus of variations; 

on the calculation of planetary orbits; on artillery and ballistics; on analysis; on 

shipbuilding and navigation; on the motion of the moon; lectures on the 

differential calculus. He made decisive and formative contributions to 

geometry, calculus and number theory. He integrated Leibniz's differential 

calculus and Newton's method of fluxions into mathematical analysis. He 

introduced beta and gamma functions, and integrating factors for differential 

equations. He studied continuum mechanics, lunar theory, the three body 

problem, elasticity, acoustics, the wave theory of light, hydraulics, and music. 

He laid the foundation of analytical mechanics. He proved many of Fermat’s 

assertions including Fermat’s Last Theorem for the case 3n . He published a 

full theory of logarithms of complex numbers. Analytic functions of a complex 

variable were investigated by Euler in a number of different contexts, including 

the study of orthogonal trajectories and cartography. He discovered the 

Cauchy-Riemann equations used in complex variable theory. 

Euler made a thorough investigation of integrals which can be expressed in 

terms of elementary functions. He also studied beta and gamma functions. As 

well as investigating double integrals, Euler considered ordinary and partial 

differential equations. The calculus of variations is another area in which Euler 

made fundamental discoveries. 

He considered linear equations with constant coefficients, second order 

differential equations with variable coefficients, power series solutions of 

differential equations, a method of variation of constants, integrating factors, a 

method of approximating solutions, and many others. When considering 

vibrating membranes, Euler was led to the Bessel equation which he solved by 

introducing Bessel functions. 

Euler made substantial contributions to differential geometry, investigating the 

theory of surfaces and curvature of surfaces. Many unpublished results by 

Euler in this area were rediscovered by Gauss. 
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Euler considered the motion of a point mass both in a vacuum and in a resisting 

medium. He analysed the motion of a point mass under a central force and also 

considered the motion of a point mass on a surface. In this latter topic he had to 

solve various problems of differential geometry and geodesics. 

He wrote a two volume work on naval science. He decomposed the motion of a 

solid into a rectilinear motion and a rotational motion. He studied rotational 

problems which were motivated by the problem of the precession of the 

equinoxes. 

He set up the main formulas for the topic of fluid mechanics, the continuity 

equation, the Laplace velocity potential equation, and the Euler equations for 

the motion of an inviscid incompressible fluid. 

He did important work in astronomy including: the determination of the orbits 

of comets and planets by a few observations; methods of calculation of the 

parallax of the sun; the theory of refraction; consideration of the physical 

nature of comets. 

Euler also published on the theory of music... 

Euler did not stop working in old age, despite his eyesight failing. He 

eventually went blind and employed his sons to help him write down long 

equations which he was able to keep in memory. Euler died of a stroke after a 

day spent: giving a mathematics lesson to one of his grandchildren; doing some 

calculations on the motion of balloons; and discussing the calculation of the 

orbit of the planet Uranus, recently discovered by William Herschel. 

His last words, while playing with one of his grandchildren, were: “I die.” 
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Introduction 

Modelling of real systems involves approximating the real system to such a 

degree that it is tractable to our mathematics. Obviously the more assumptions 

we make about a system, the simpler the model, and the more easily solved. 

The more accurate we make the model, the harder it is to analyse. We need to 

make a trade-off based on some specification or our previous experience. 

2.1 Linear Differential Equations with Constant Coefficients 

A lot of the time our modelling ends up describing a continuous-time system 

that is linear, time-invariant (LTI) and finite dimensional. In these cases, the 

system is described by the following equation: 
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(2.1) 

where: 

  
 

N

N
N

dt

tyd
ty 

 
(2.2) 

2.1.1 Initial Conditions 

The above equation needs the N initial conditions: 

        0 , ,0 ,0 11 Nyyy   (2.3) 

We take 0  as the time for initial conditions to take into account the possibility 

of an impulse being applied at 0t , which will change the output 

instantaneously. 

Linear differential 
equation 
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2.1.2 First-Order Case 

For the first order case we can express the solution to Eq. (2.1) in a useful (and 

familiar) form. A first order system is given by: 

 
   tbxtay

dt

tdy


 
(2.4) 

To solve, first multiply both sides by an integrating factor equal to ate . This 

gives: 

 
   tbxetay

dt

tdy
e atat 










 
(2.5) 

Thus: 

    tbxetye
dt

d atat 
 

(2.6) 

Integrating both sides gives: 

      0,0
0

  

 tdbxeytye
t

aat 

 
(2.7) 

Finally, dividing both sides by the integrating factor gives: 

        0,0
0

  

 tdbxeyety
t

taat 
 

(2.8) 

Use this to solve the simple revision problem for the case of the unit step. 

The two parts of the response given in Eq. (2.8) have the obvious names zero-

input response (ZIR) and zero-state response (ZSR). It will be shown later that 

the ZSR is given by a convolution between the system’s impulse response and 

the input signal. 

First-order linear 
differential equation 

First glimpse at a 
convolution integral 
– as the solution of 
a first-order linear 
differential equation 
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2.2 System Modelling 

In modelling a system, we are nearly always after the input/output relationship, 

which is a differential equation in the case of continuous-time systems. If we’re 

clever, we can break a system down into a connection of simple components, 

each having a relationship between cause and effect. 

2.2.1 Electrical Circuits 

The three basic linear, time-invariant relationships for the resistor, capacitor 

and inductor are respectively: 

   

 
 

 
 

dt

tdi
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dt

tdv
Cti

tRitv







 

(2.9) 

(2.10) 

(2.11) 

2.2.2 Mechanical Systems 

In linear translational systems, the three basic linear, time-invariant 

relationships for the inertia force, damping force and spring force are 

respectively: 

 
 

 
 

   txktF

dt

tdx
ktF

dt

txd
MtF
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(2.12) 

 

(2.13) 

 

(2.14) 

Where  tx  is the position of the object under study. 

Cause / effect 
relationships for 
electrical systems 

Cause / effect 
relationships for 
mechanical 
translational 
systems 
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For rotational motion, the relationships for the inertia torque, damping torque 

and spring torque are: 

 
 

 
 

   tktT

dt

td
ktT

dt
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ItT
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d
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(2.15) 

(2.16) 

(2.17) 

Finding an input-output relationship for signals in systems is just a matter of 

applying the above relationships to a conservation law: for electrical circuits it 

is one of Kirchhoff’s laws, in mechanical systems it is D’Alembert’s principle. 

2.3 Discrete-time Systems 

A discrete-time signal is one that takes on values only at discrete instants of 

time. Discrete-time signals arise naturally in studies of economic systems – 

amortization (paying off a loan), models of the national income (monthly, 

quarterly or yearly), models of the inventory cycle in a factory, etc. They arise 

in science, e.g. in studies of population, chemical reactions, the deflection of a 

weighted beam. They arise all the time in electrical engineering, because of 

digital control, e.g. radar tracking system, processing of electrocardiograms, 

digital communication (CD, mobile phone, Internet). Their importance is 

probably now reaching that of continuous-time systems in terms of analysis 

and design – specifically because today signals are processed digitally, and 

hence they are a special case of discrete-time signals. 

It is now cheaper and easier to perform most signal operations inside a 

microprocessor or microcontroller than it is with an equivalent analog 

continuous-time system. But since there is a great depth to the analysis and 

design techniques of continuous-time systems, and since most physical systems 

are continuous-time in nature, it is still beneficial to study systems in the 

continuous-time domain. 

Cause / effect 
relationships for 
mechanical 
rotational systems 

Discrete-time 
systems are 
important… 

…especially as 
microprocessors 
play a central role in 
today’s signal 
processing 
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2.4 Linear Difference Equations with Constant Coefficients 

Linear, time-invariant, discrete-time systems can be modelled with the 

difference equation: 
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(2.18) 

2.4.1 Solution by Recursion 

We can solve difference equations by a direct numerical procedure. 

There is a MATLAB
®

 function available for download from the Signals and 

Systems web site called recur that solves the above equation. 

2.4.2 Complete Solution 

By solving Eq. (2.18) recursively it is possible to generate an expression for the 

complete solution  ny  in terms of the initial conditions and the input  nx . 

2.4.3 First-Order Case 

Consider the first-order linear difference equation: 

     nbxnayny  1  (2.19) 

with initial condition  1y . By successive substitution, show that: 

     
       

         21012
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(2.20) 

From the pattern, it can be seen that for 0n , 
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i
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ibxayany

0

1
1

 
(2.21) 

This solution is the discrete-time counterpart to Eq. (2.8). 

Linear time-invariant 
(LTI) difference 
equation 

First-order linear 
difference equation 

First look at a 
convolution 
summation – as the 
solution of a first-
order linear 
difference equation 
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2.5 Discrete-Time Block Diagrams 

An LTI discrete-time system can be represented as a block diagram consisting 

of adders, gains and delays. The gain element is shown below: 

 

x  n[  ] y  n[  ] A=
A

x  n[  ]

 

 

Figure 2.1 

The unit-delay element is shown below: 

 

x  n[  ] y  n[  ] x  n[     ]-1=
D

 

 

Figure 2.2 

Such an element is normally implemented by the memory of a computer, or a 

digital delay line. 

EXAMPLE 2.1 Discrete-Time Block Diagram 

Using these two elements and an adder, we can construct a representation of 

the discrete-time system given by      nbxnayny  1 . The system is shown 

below: 

x  n[  ]

D

b

a

y  n[  ]

y  n[     ]-1

 

 

A discrete-time gain 
element 

A discrete-time unit-
delay element 



2.8 

Index Discretization in Time of Differential Equations PMcL   

2 - Systems  2015 

2.6 Discretization in Time of Differential Equations 

Often we wish to use a computer for the solution of continuous-time 

differential equations. We can: if we are careful about interpreting the results. 

2.6.1 First-Order Case 

Let’s see if we can approximate the first-order linear differential equation 

given by Eq. (2.4) with a discrete-time equation. We can approximate the 

continuous-time derivative using Euler’s approximation, or forward difference: 

     
T

nTyTnTy

dt

tdy

nTt





 

(2.22) 

If T is suitably small and  ty  is continuous, the approximation will be 

accurate. Substituting this approximation into Eq. (2.4) results in a discrete-

time approximation given by the difference equation: 

       111  nbTxnyaTny  (2.23) 

The discrete values  ny  are approximations to the solution  nTy . 

Show that  ny  gives approximate values of the solution  ty  at the times 

nTt   with arbitrary initial condition  1y  for the special case of zero input. 

Approximating a 
derivative with a 
difference 

The first-order 
difference equation 
approximation of a 
first-order differential 
equation 
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2.6.2 Second-order Case 

We can generalize the discretization process to higher-order differential 

equations. In the second-order case the following approximation can be used: 

       
22

2 22

T

nTyTnTyTnTy

dt

tyd

nTt






 (2.24) 

Now consider the second-order differential equation: 

   
 

 
 txb

dt

tdx
btya

dt

tdy
a

dt

tyd
01012

2

  
(2.25) 

Show that the discrete-time approximation to the solution  ty  is given by: 
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nxTbTbnTxb

nyTaTanyTany
 (2.26) 

 

The second-order 
difference equation 
approximation of a 
second-order 
derivative 

An n
th
-order 

differential equation 
can be 
approximated with 
an n

th
-order 

difference equation 
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2.7 Convolution in Linear Time-invariant Discrete-time Systems 

Although the linear difference equation is the most basic description of a linear 

discrete-time system, we can develop an equivalent representation called the 

convolution representation. This representation will help us to determine 

important system properties that are not readily apparent from observation of 

the difference equation.  

One advantage of this representation is that the output is written as a linear 

combination of past and present input signal elements. It is only valid when the 

system’s initial conditions are all zero. 

2.7.1 First-Order System 

We have previously considered the difference equation: 

     nbxnayny  1  (2.27) 

and showed by successive substitution that: 

         





n

i

inn
ibxayany

0

1
1

 
(2.28) 

By the definition of the convolution representation, we are after an expression 

for the output with all initial conditions zero. We then have: 

     





n

i

in
ibxany

0
 

(2.29) 

In contrast to Eq. (2.27), we can see that Eq. (2.29) depends exclusively on 

present and past values of the input signal. One advantage of this is that we 

may directly observe how each past input affects the present output signal. For 

example, an input  ix  contributes an amount    ibxa
in

  to the totality of the 

output at the n
th

 period. 

Linear difference 
equation 

The complete 
response 

The zero-state 
response (ZSR) – a 
convolution 
summation 
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2.7.2 Unit-Pulse Response of a First-Order System 

The output of a system subjected to a unit-pulse response  n  is denoted  nh  

and is called the unit-pulse response, or weighting sequence of the discrete-

time system. It is very important because it completely characterises a system’s 

behaviour. It may also provide an experimental or mathematical means to 

determine system behaviour. 

For the first-order system of Eq. (2.27), if we let    nnx  , then the output of 

the system to a unit-pulse input can be expressed using Eq. (2.29) as: 

     





n

i

in
ibany

0


 

(2.30) 

which reduces to: 

    bany
n

  (2.31) 

The unit-pulse response for this system is therefore given by: 

     nbuanh
n

  (2.32) 

 

2.7.3 General System 

For a general linear time-invariant (LTI) system, the response to a delayed 

unit-pulse  in  must be  inh  . 

Since  nx  can be written as: 

     





0i

inixnx 
 

(2.33) 

 

A discrete-time 
system’s unit-pulse 
response defined 

A first-order 
discrete-time 
system’s unit-pulse 
response 
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and since the system is LTI, the response  nyi  to  inix ][  is given by: 

     inhixnyi   (2.34) 

The response to the sum Eq. (2.33) must be equal to the sum of the  nyi  

defined by Eq. (2.34). Thus the response to  nx  is: 

   





0

][
i

inhixny
 

(2.35) 

This is the convolution representation of a discrete-time system, also written 

as: 

     nxnhny *  (2.36) 

Graphically, we can now represent the system as: 

 

[  ]x  n [  ]y  n
[  ]h  n

 

 

Figure 2.3 

It should be pointed out that the convolution representation is not very efficient 

in terms of a digital implementation of the output of a system (needs lots more 

memory and calculating time) compared with the difference equation. 

Convolution is commutative which means that it is also true to write: 

   





0

][
i

inxihny
 

(2.37) 

Convolution 
summation defined 
for a discrete-time 
system 

Convolution notation 
for a discrete-time 
system 

Graphical notation 
for a discrete-time 
system using the 
unit-pulse response 
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Discrete-time convolution can be illustrated as follows. Suppose the unit-pulse 

response is that of a filter of finite length k. Then the output of such a filter is: 

     

 

           knxkhnxhnxh

inxih

nxnhny

i












110

][

*

0
 

(2.38) 

Graphically, this summation can be viewed as two buffers, or arrays, sliding 

past one another. The array locations that overlap are multiplied and summed 

to form the output at that instant. 
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Figure 2.4 

In other words, the output at time n is equal to a linear combination of past and 

present values of the input signal, x. The system can be considered to have a 

memory because at any particular time, the output is still responding to an 

input at a previous time. 

Graphical view of 
the convolution 
operation in 
discrete-time 
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Discrete-time convolution can be implemented by a transversal digital filter: 

 

h  k[  ]h [0] h [1] h [2]

x  n[  ]
D D D

x  n[  -1] x  n[  -2] x  n  k[  -  ]

y  n[  ]



 

 

Figure 2.5 

MATLAB
®

 can do convolution for us. Use the conv function. 

Transversal digital 
filter performs 
discrete-time 
convolution 
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2.7.4 System Memory 

A system’s memory can be roughly interpreted as a measure of how significant 

past inputs are on the current output. Consider the two unit-pulse responses 

below: 

 

0 1 2 3 4 5 6 18 19 20

h   n[  ]1

n

0 1 2 3 4 5 6 18 19 20 n

h   n[  ]2

 

 

Figure 2.6 

System 1 depends strongly on inputs applied five or six iterations ago and less 

so on inputs applied more than six iterations ago. The output of system 2  

depends strongly on inputs 20 or more iterations ago. System 1 is said to have a 

shorter memory than system 2. 

It is apparent that a measure of system memory is obtained by noting how 

quickly the system unit-pulse response decays to zero: the more quickly a 

system’s weighting sequence goes to zero, the shorter the memory. Some 

applications require a short memory, where the output is more readily 

influenced by the most recent behaviour of the input signal. Such systems are 

fast responding. A system with long memory does not respond as readily to 

changes in the recent behaviour of the input signal and is said to be sluggish. 

System memory 
depends on the unit-
pulse response… 

…specifically - on 
how long it takes to 
decay to zero. 
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2.7.5 System Stability 

A system is stable if its output signal remains bounded in 

response to any bounded signal. 
(2.39) 

If a bounded input (BI) produces a bounded output (BO), then the system is 

termed BIBO stable. This implies that: 

  0lim 


ih
i

 (2.40) 

This is something not readily apparent from the difference equation. A more 

thorough treatment of system stability will be given later. 

What can you say about the stability of the system described by Eq. (2.27)? 

2.8 Convolution in Linear Time-invariant Continuous-
time Systems 

The input / output relationship of a continuous time system can be specified in 

terms of a convolution operation between the input and the impulse response of 

the system. 

Recall that we can consider the impulse as the limit of a rectangle function: 

  









T

t

T
txr rect

1
 

(2.41) 

as 0T . The system response to this input is: 

   tyty r  (2.42) 

and since: 

   ttxr
T


0

lim  (2.43) 

 

BIBO stability 
defined 

Deriving convolution 
for the continuous-
time case 

Start with a 
rectangle input 

and the output 
response. 

As the input 
approaches an 
impulse function 
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then: 

   thtyr
T


0

lim  (2.44) 

Now expressing the general input signal as the limit of a staircase 

approximation as shown in the figure below: 

 

0

x  t,T(    )
~

t
2T 4T 6T2T-4T-

x  t(  )

 

 

Figure 2.7 

we have: 

   Ttxtx
T

,~lim
0

  (2.45) 

where: 

   











 


i T

iTt
iTxTtx rect,~

 
(2.46) 

We can rewrite Eq. (2.46) using Eq. (2.41) as: 

     





i

r iTtTxiTxTtx ,~
 

(2.47) 

then the output 
approaches the 
impulse response 

Treat an arbitrary 
input waveform as a 
sum of rectangles 

which get smaller 
and smaller and 
eventually approach 
the original 
waveform 

The staircase is just 
a sum of weighted 
rectangle inputs… 
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Since the system is time-invariant, the response to  iTtxr   is  iTtyr  . 

Therefore the system response to  Ttx ,~  is: 

     





i

r iTtTyiTxTty ,~
 

(2.48) 

because superposition holds for linear systems. The system response to  tx  is 

just the response: 
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(2.49) 

When we perform the limit,    xiTx  ,     thiTtyr  and dT  . 

Hence the output response can be expressed in the form: 

     





 

 
 dthxty  

(2.50) 

If the input   0tx  for all 0t  then: 

     



 

0 
 dthxty  

(2.51) 

If the input is causal, then   0th  for negative arguments, i.e. when t . 

The upper limit in the integration can then be changed so that: 

      
t

dthxty
 

0 
  

(2.52) 

Once again, it can be shown that convolution is commutative which means that 

it is also true to write (compare with Eq. (2.37)): 

      
t

dtxhty
 

0 
  

(2.53) 

…and we already 
know the output… 

…even in the limit  
as the staircase 
approximation 
approaches the 
original input 

Convolution integral 
for continuous-time 
systems defined 

Convolution integral 
if the input starts at 
time t=0 

Convolution integral 
if the input starts at 
time t=0, and the 
system is causal 

Alternative way of 
writing the 
convolution integral 
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With the convolution operation denoted by an asterisk, “*”, the input / output 

relationship becomes: 

     txthty   (2.54) 

Graphically, we can represent the system as: 

 

(  )h  t

(  )x  t (  )y  t (  )x  t(  )h  t *=

 

 

Figure 2.8 

It should be pointed out, once again, that the convolution relationship is only 

valid when there is no initial energy stored in the system. ie. initial conditions 

are zero. The output response using convolution is just the ZSR. 

 

2.9 Graphical Description of Convolution 

Consider the following continuous-time example which has a causal impulse 

response function. A causal impulse response implies that there is no response 

from the system until an impulse is applied at 0t . In other words,   0th  

for 0t . Let the impulse response of the system be a decaying exponential, 

and let the input signal be the unit-step: 

 

t

1

t

1

(  )h  t (  )x  t

e-t

 

 

Figure 2.9 

Convolution notation 
for a continuous-
time system 

Graphical notation 
for a continuous-
time system using 
the impulse 
response 
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Using graphical convolution, the output  ty  can be obtained. First, the input 

signal is flipped in time about the origin. Then, as the time “parameter” t 

advances, the input signal “slides” past the impulse response – in much the 

same way as the input values slide past the unit-pulse values for discrete-time 

convolution. You can think of this graphical technique as the continuous-time 

version of a digital transversal filter (you might like to think of it as a discrete-

time system and input signal, with the time delay between successive values so 

tiny that the finite summation of Eq. (2.36) turns into a continuous-time 

integration). 

When 0t , there is obviously no overlap between the impulse response and 

input signal. The output must be zero since we have assumed the system to be 

in the zero-state (all initial conditions zero). Therefore   00 y . This is 

illustrated below: 

 



1
e

(  )h 



1

(      )x 0-



1

(      )x 0-(  )h 

Area under the curve y(0)=  

 

Figure 2.10 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=0 
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Letting time “roll-on” a bit further, we take a snapshot of the situation when 

1t . This is shown below: 
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Figure 2.11 

The output value at 1t  is now given by: 
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(2.55) 

 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=1 
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Taking a snapshot at 2t  gives: 
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Figure 2.12 

The output value at 2t  is now given by: 

     

  86.01

22

22 

0 

2 

0 

2 

0 











eede

dxhy

 



 
(2.56) 

 

Graphical illustration 
of continuous-time  - 
“snapshot” at t=2 
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If we keep evaluating the output for various values of t, we can build up a 

graphical picture of the output for all time: 

 

t

(  )y  t

y(2) =

1 2

e-t1-

0.63

0.86
1

y(1) =

y(0) = 0

 

 

Figure 2.13 

In this simple case, it is easy to verify the graphical solution using Eq. (2.53). 

The output value at any time t  is given by: 

     

  t
t

t

eede

dtxhty

 







1
 t

0 

 

0 

 

0 

 



 
(2.57) 

In more complicated situations, it is often the graphical approach that provides 

a quick insight into the form of the output signal, and it can be used to give a 

rough sketch of the output without too much work. 
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2.10 Properties of Convolution 

In the following list of continuous-time properties, the notation    tytx   

should be read as “the input  tx  produces the output  ty ”. Similar properties 

also hold for discrete-time convolution. 

   taytax   (2.58) 

   taytax 
 

(2.59) 

       tytytxtx 2121 
 

(2.60) 

       tyatyatxatxa 22112211 
 

(2.61) 

   00 ttyttx 
 

(2.62) 

Convolution is also associative, commutative and distributive with addition, all 

due to the linearity property. 

 

2.11 Numerical Convolution 

We have already looked at how to discretize a continuous-time system by 

discretizing a system’s input / output differential equation. The following 

procedure provides another method for discretizing a continuous-time system. 

It should be noted that the two different methods produce two different 

discrete-time representations. 

We start by thinking about how to simulate a continuous-time convolution with 

a computer, which operates on discrete-time data. The integral in Eq. (2.53) 

can be discretized by setting nTt  : 

      
nT

dnTxhnTy
 

0 
  

(2.63) 

 

Linearity 

Time-invariance 

Convolution 
properties 

Computers work 
with discrete data 
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By effectively reversing the procedure in arriving at Eq. (2.53), we can break 

this integral into regions of width T: 

     

   

   
 

















 Ti

iT

T

T

T

dnTxh

dnTxh

dnTxhnTy

1 

 

2 

 

 

0 







 

(2.64) 

which can be rewritten using the summation symbol: 

     





n

i

TiT

iT
dnTxhnTy

0

 

 


 (2.65) 

If T is small enough,  h  and  nTx  can be taken to be constant over each 

interval: 

 

0

h (   )iT



h (  )

iT iT +T  

 

Figure 2.14 

That is, apply Euler’s approximation: 

   

   iTnTxnTx

iThh








 (2.66) 
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so that Eq. (2.65) becomes: 

     





n

i

TiT

iT
diTnTxiThnTy

0

 

 


 (2.67) 

Since the integrand is constant with respect to  , it can be moved outside the 

integral which is easily evaluated: 

     



n

i

TiTnTxiThnTy
0

 (2.68) 

Writing in the notation for discrete-time signals, we have the following input / 

output relationship: 

      ,2 ,1 ,0,
0




nTinxihny
n

i
 (2.69) 

This equation can be viewed as the convolution-summation representation of a 

linear time-invariant system with unit-pulse response  nTh , where  nh  is the 

sampled version of the impulse response  th  of the original continuous-time 

system. 

We approximate the 
integral with a 
summation 

Convolution 
approximation for 
causal systems with 
inputs applied at t=0 
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2.12 Convolution with an Impulse 

One very important particular case of convolution that we will use all the time 

is that of convolving a function with a delayed impulse. We can tackle the 

problem three ways: graphically, algebraically, or by using the concept that a 

system performs convolution. Using this last approach, we can surmise what 

the solution is by recognising that the convolution of a function  th  with an 

impulse is equivalent to applying an impulse to a system that has an impulse 

response given by  th : 

 

(  )h  t

(  )y  t (  )h  t *=(  )t (  )t = (  )h  t

t

1

(  )h  t

t

(  )t

t

1

(  )h  t

 

 

Figure 2.15 

The output, by definition, is the impulse response,  th . We can also arrive at 

this result algebraically by performing the convolution integral, and noting that 

it is really a sifting integral: 

         thdththt  




 

 
  (2.70) 

 

Applying an impulse 
to a system creates 
the impulse 
response 
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If we now apply a delayed impulse to the system, and since the system is time-

invariant, we should get out a delayed impulse response: 

 

(  )h  t

(  )y  t (  )h  t *= =

t

1

t t

1

(  )h  t

t
0

t
0

(      )t- t
0

(      )t- t
0

(      )t- t
0

h (      )t- t
0

h (      )t- t
0

 

 

Figure 2.16 

Again, using the definition of the convolution integral and the sifting property 

of the impulse, we can arrive at the result algebraically: 

       

 0

 

 
00

tth

dthtthtt



 





 
(2.71) 

Therefore, in general, we have: 

     00 xxfxxxf   (2.72) 

This can be represented graphically as: 

 

x

(  )f  x

xx
0

(       )x- x
0

x

(        )f  x-

x
0

x
0

 

 

Figure 2.17 

Applying a delayed 
impulse to a system 
creates a delayed 
impulse response 

Convolving a 
function with an 
impulse shifts the 
original function to 
the impulse’s 
location 
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2.13 Summary 

 Systems are predominantly described by differential or difference equations 

– they are the equations of dynamics, and tell us how outputs and various 

states of the system change with time for a given input. 

 Most systems can be derived from simple cause / effect relationships, 

together with a few conservation laws. 

 Discrete-time signals occur naturally and frequently – they are signals that 

exist only at discrete points in time. Discrete-time systems are commonly 

implemented using microprocessors. 

 We can approximate continuous-time systems with discrete-time systems 

by a process known as discretization – we replace differentials with 

differences. 

 Convolution is another (equivalent) way of representing an input / output 

relationship of a system. It shows us features of the system that were 

otherwise “hidden” when written in terms of a differential or difference 

equation. 

 Convolution introduces us to the concept of an impulse response for a 

continuous-time system, and a unit-pulse response for a discrete-time 

system. Knowing this response, we can determine the output for any input, 

if the initial conditions are zero. 

 A system is BIBO stable if its impulse response decays to zero in the 

continuous-time case, or if its unit-pulse response decays to zero in the 

discrete-time case. 

 Convolving a function with an impulse shifts the original function to the 

impulse’s location. 

2.14 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB
®

, Prentice-Hall International, Inc., 1997. 
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Exercises 

1. 

The following continuous-time functions are to be uniformly sampled. Plot the 

discrete signals which result if the sampling period T is (i) s 1.0T , 

(ii) s 3.0T , (iii) s 5.0T , (iv) s 1T . How does the sampling time affect 

the accuracy of the resulting signal? 

(a)   1tx  (b)   ttx 4cos  (c)   ttx 10cos  

2. 

Plot the sequences given by: 

(a)          22112131  nnnnny   

(b)        33242  nnnny   

3. 

From your solution in Question 2, find      nynyna 21  . Show graphically 

that the resulting sequence is equivalent to the sum of the following delayed 

unit-step sequences: 

           43329221113  nunununununa  

4. 

Find      nynyny 21   when: 

 
 







 





,2 ,1 ,0,1

,3 ,2 ,1,0
11

2

n

--n
ny n  

 
  














,2 ,1 ,0,1121

,3 ,2 ,1,0
2

n

--n
ny n  
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5. 

The following series of numbers is known as the Fibonacci sequence: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34… 

(a) Find a difference equation which describes this number sequence  ny  for 

2n , when   00 y  and   11 y . 

(b) By evaluating the first few terms show that the following formula also 

describes the numbers in the Fibonacci sequence: 

     




 

nn

ny 25.15.025.15.0
5

1
 

(c) Using your answer in (a) find  20y  and  25y . Check your results using 

the equation in (b). Which approach is easier? 

6. 

Construct block diagrams for the following difference equations: 

(i)        12  nxnxnyny  

(ii)        43212  nxnynyny  

7. 

(i) Construct a difference equation from the following block diagram: 

D3

-2

y  n[  ]x  n[  ]

D

D D
 

(ii) From your solution calculate  ny  for n = 0, 1, 2 and 3 given   22 y , 

  11 y ,   0nx  for 0n  and    nnx 1  for n = 0, 1, 2 … 
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8. 

(a) Find the unit-pulse response of the linear systems given by the following 

equations: 

(i)         11
2

 nynxnx
T

ny  

(ii)        15.0175.0  nynxnxny  

(b) Determine the first five terms of the response of the equation in (ii) to the 

input: 

 
 



















,2 ,1 ,0,1

1,1

 ,4 ,3 ,2,0

n

n

n

nx
n

 

using (i) the basic difference equation, (ii) graphical convolution and 

(iii) the convolution summation. (Note   0ny  for 2n ). 

9. 

For the single input-single output continuous- and discrete-time systems 

characterized by the following equations, determine which coefficients must be 

zero for the systems to be 

(a) linear 

(b) time invariant 

(i)   xaya
dt

dy
tayaa

dt

yd
a

dt

yd
a 765432

2

2

2

3

3

1 sin 







 

(ii)               nxanyanynanyaanyanya 765432

2

1 1sin23   
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10. 

To demonstrate that nonlinear systems do not obey the principle of 

superposition, determine the first five terms of the response of the system: 

     nxnyny 212   

to the input: 

  













,2 ,1 ,0,1

,3 ,2 ,1,0
1

n

--n
nx  

If  ny1  denotes this response, show that the response of the system to the input 

   nxnx 12  is not  ny12 . 

Can convolution methods be applied to nonlinear systems? Why? 

11. 

A system has the unit-pulse response: 

       422  nunununh  

Find the response of this system when the input is the sequence: 

       321  nnnn   

using (i) graphical convolution and (ii) convolution summation. 
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12. 

For  nx1  and  nx2  as shown below find 

(i)    nxnx 11   (ii)    nxnx 21   (iii)    nxnx 22   

using (a) graphical convolution and (b) convolution summation. 

0 1 2
n

0 1 2
n

3 4 5 6 7 8

2 2

3

x   n
1
[  ] x   n

2
[  ]

 

13. 

Use MATLAB
®
 and discretization to produce approximate solutions to the 

revision problem. 

14. 

Use MATLAB
®
 to graph the output voltage of the following RLC circuit: 

R L

Cvi t(  ) vo t(  )

 

when     10,10,1,2  oo vvCLR   and      tuttvi sin . 

Compare with the exact solution:        0,cos35.0   ttettv t

o . How do 

you decide what value of T to use? 
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15. 

A feedback control system is used to control a room’s temperature with respect 

to a preset value. A simple model for this system is represented by the block 

diagram shown below:  

 

 

t

x  t(  ) K y  t(  )

 

In the model, the signal  tx  represents the commanded temperature change 

from the preset value,  ty  represents the produced temperature change, and t  

is measured in minutes. Find:  

a) the differential equation relating  tx  and  ty , 

b) the impulse response of the system, and 

c) the temperature change produced by the system when the gain K  is 0.5 and 

a step change of 75.0  is commanded at min 4t . 

d) Plot the temperature change produced. 

e) Use MATLAB
®
 and numerical convolution to produce approximate 

solutions to this problem and compare with the theoretical answer. 

16. 

Use MATLAB
®
 and the numerical convolution method to solve Q14. 
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17. 

Sketch the convolution of the two functions shown below. 

t

x(t)

-1

2

40 t

y(t)

0.5

1

0  

18. 

Quickly changing inputs to an aircraft rudder control are smoothed using a 

digital processor. That is, the control signal is converted to a discrete-time 

signal by an A/D converter, the discrete-time signal is smoothed with a 

discrete-time filter, and the smoothed discrete-time signal is converted to a 

continuous-time, smoothed, control signal by a D/A converter. The smoothing 

filter has the unit-pulse response: 

      s 25.0,25.05.0  TnTunTh nn  

Find the zero-state response of the discrete-time filter when the input signal 

samples are: 

    s 25.0,1 ,1 ,1  TnTx  

Plot the input, unit-pulse response, and output for s 5.175.0  t . 
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19. 

A wave staff measures ocean wave height in meters as a function of time. The 

height signal is sampled at a rate of 5 samples per second. These samples form 

the discrete-time signal: 

       5.13.02cos5.01.12.02cos  nTnTnTs   

The signal is transmitted to a central wave-monitoring station. The 

transmission system corrupts the signal with additive noise given by the 

MATLAB
®
 function: 

function n0=drn(n) 

  N=size(n,2); 

  rand(‘seed’, 0); 

  no(1)=rand-0.5; 

  for I=2:N; 

    no(i)=0.2*no(i-1)+(rand-0.5); 

end 

The received signal plus noise,  nTx , is processed with a low-pass filter to 

reduce the noise. 

The filter unit-pulse response is: 

              nTunnnTh
nnn

41.0sin87.0194.041.0cos87.0144.076.0182.0   

Plot the sampled height signal,  nTs , the filter input signal,  nTx , the unit-

pulse response of the filter,  nTh , and the filter output signal  nTy , for 

s 60  t . 
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Gustav Robert Kirchhoff (1824-1887) 

Kirchhoff was born in Russia, and showed an early interest in mathematics. He 

studied at the University of Königsberg, and in 1845, while still a student, he 

pronounced Kirchhoff’s Laws, which allow the calculation of current and 

voltage for any circuit. They are the Laws electrical engineers apply on a 

routine basis – they even apply to non-linear circuits such as those containing 

semiconductors, or distributed parameter circuits such as microwave striplines. 

He graduated from university in 1847 and received a scholarship to study in 

Paris, but the revolutions of 1848 intervened. Instead, he moved to Berlin 

where he met and formed a close friendship with Robert Bunsen, the inorganic 

chemist and physicist who popularized use of the “Bunsen burner”. 

In 1857 Kirchhoff extended the work done by the German physicist Georg 

Simon Ohm, by describing charge flow in three dimensions. He also analysed 

circuits using topology. In further studies, he offered a general theory of how 

electricity is conducted. He based his calculations on experimental results 

which determine a constant for the speed of the propagation of electric charge. 

Kirchhoff noted that this constant is approximately the speed of light – but the 

greater implications of this fact escaped him. It remained for James Clerk 

Maxwell to propose that light belongs to the electromagnetic spectrum. 

Kirchhoff’s most significant work, from 1859 to 1862, involved his close 

collaboration with Bunsen. Bunsen was in his laboratory, analysing various 

salts that impart specific colours to a flame when burned. Bunsen was using 

coloured glasses to view the flame. When Kirchhoff visited the laboratory, he 

suggested that a better analysis might be achieved by passing the light from the 

flame through a prism. The value of spectroscopy became immediately clear. 

Each element and compound showed a spectrum as unique as any fingerprint, 

which could be viewed, measured, recorded and compared. 

Spectral analysis, Kirchhoff and Bunsen wrote not long afterward, promises 

“the chemical exploration of a domain which up till now has been completely 

closed.” They not only analysed the known elements, they discovered new 
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ones. Analyzing salts from evaporated mineral water, Kirchhoff and Bunsen 

detected a blue spectral line – it belonged to an element they christened 

caesium (from the Latin caesius, sky blue). Studying lepidolite (a lithium-

based mica) in 1861, Bunsen found an alkali metal he called rubidium (from 

the Latin rubidius, deepest red). Both of these elements are used today in 

atomic clocks. Using spectroscopy, ten more new elements were discovered 

before the end of the century, and the field had expanded enormously – 

between 1900 and 1912 a “handbook” of spectroscopy was published by 

Kayser in six volumes comprising five thousand pages! 

Kirchhoff’s work on spectrum analysis led on to a study of the composition of 

light from the Sun. He was the first to explain the dark lines (Fraunhofer lines) 

in the Sun's spectrum as caused by absorption of particular wavelengths as the 

light passes through a gas. Kirchhoff wrote “It is plausible that spectroscopy is 

also applicable to the solar atmosphere and the brighter fixed stars.” We can 

now analyse the collective light of a hundred billion stars in a remote galaxy 

billions of light-years away – we can tell its composition, its age, and even how 

fast the galaxy is receding from us – simply by looking at its spectrum! 

As a consequence of his work with Fraunhofer’s lines, Kirchhoff developed a 

general theory of emission and radiation in terms of thermodynamics. It stated 

that a substance’s capacity to emit light is equivalent to its ability to absorb it at 

the same temperature. One of the problems that this new theory created was the 

“blackbody” problem, which was to plague physics for forty years. This 

fundamental quandary arose because heating a black body – such as a metal 

bar – causes it to give off heat and light. The spectral radiation, which depends 

only on the temperature and not on the material, could not be predicted by 

classical physics. In 1900 Max Planck solved the problem by discovering 

quanta, which had enormous implications for twentieth-century science. 

In 1875 he was appointed to the chair of mathematical physics at Berlin and he 

ceased his experimental work. An accident-related disability meant he had to 

spend much of his life on crutches or in a wheelchair. He remained at the 

University of Berlin until he retired in 1886, shortly before his death in 1887. 

“[Kirchhoff is] a 
perfect example of 
the true German 
investigator. To 
search after truth in 
its purest shape and 
to give utterance 
with almost an 
abstract self-
forgetfulness, was 
the religion and 
purpose of his life.” 
– Robert von 
Helmholtz, 1890. 
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3 Fourier Series and Spectra 
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Introduction 

The idea of breaking a complex phenomenon down into easily comprehended 

components is quite fundamental to human understanding. Instead of trying to 

commit the totality of something to memory, and then, in turn having to think 

about it in its totality, we identify characteristics, perhaps associating a scale 

with each characteristic. Our memory of a person might be confined to the 

characteristics gender, age, height, skin colour, hair colour, weight and how 

they rate on a small number of personality attribute scales such as optimist-

pessimist, extrovert-introvert, aggressive-submissive etc. 

We only need to know how to travel east and how to travel north and we can 

go from any point on earth to any other point. An artist (or a television tube) 

needs only three primary colours to make any colour. 

3.1 Orthogonality 

In choosing human characteristics it is most efficient if they are independent, 

as in gender and height for a person. It would waste memory capacity, for 

example, to adopt as characteristics both current age and birthdate, as one 

could be predicted from the other, or all three of total height and height above 

and below the waist. 

Vectors and functions are similarly often best represented, memorised and 

manipulated in terms of a set of magnitudes of independent components. If we 

choose the components in a special way, then there will be no overlap between 

the different components of a vector or function – we have then created a 

system of representation where the base components are orthogonal. 

3.1.1 Orthogonality in Mathematics 

Recall that any vector A  in 3 dimensional space can be expressed in terms of 

any three vectors a , b  and c  which do not lie in the same plane as: 

cbaA 321 AAA   (3.1) 

where A1 , A2  and A3  are appropriately chosen constants. 

The concept of 
breaking the 
complex down into 
the simple 

Independent 
characteristics are 
efficient descriptors 

Specifying a 3D 
vector in terms of 3 
components 
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a b

c

A1 A2

A3

A

 

 

Figure 3.1 

The vectors a , b  and c  are said to be linearly independent for no one of them 

can be expressed as a linear combination of the other two. For example, it is 

impossible to write bac    no matter what choice is made for   and   

(because a linear combination of a and b must stay in the plane of a and b). 

Such a set of linearly independent vectors is said to form a basis set for three 

dimensional vector space. They span three dimensional space in the sense that 

any vector A  can be expressed as a linear combination of them. 

If a , b  and c  are mutually perpendicular they form an orthogonal basis set. 

Orthogonal means that the projection of one component onto another is zero. 

In vector analysis the projection of one vector onto another is given by the dot 

product. 

Thus, for a , b  and c  orthogonal, we have the relations: 

2

2

2

00

00

00

c

b

a







cccbca

bcbbba

acabaa

 
(3.2) 

Here a  is the length of a , b is the length of b , etc.  

Vector in 3D space 
showing 
components 

Basis set described 
as set of linearly 
independent vectors 

Orthogonality 
defined for vectors 
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Hence, if a , b  and c  are orthogonal, when we project the vector A onto each 

of the basis vectors, we get: 

2

1321 aAAAA  acabaaaA  

2

1321 bAAAA  bcbbbabA  

2

1321 cAAAA  cccbcacA  

(3.3) 

We can see that projection of A onto a particular basis vector results in a scalar 

quantity that is proportional to the “amount of A in that direction”. For 

example, when projecting A onto a, we get the quantity 2

1aA , where 1A  is the 

constant that scales a in the original expression cbaA 321 AAA  . 

Hence, if we have no knowledge of the components of A, we have an easy way 

of finding them when the basis set is orthogonal – just project the vector onto 

each of the component vectors in the basis set and “normalise”: 

A
A a

a
A b

b
A c

c








 









 











a b c2 2 2  
(3.4) 

It is straightforward to extend this analysis to an infinite dimensional vector 

space (although hard to imagine in geometrical terms): 

 






 








 








 
 z

zA
b

bA
a

aA
A

222 zba  
(3.5) 

If a 2
, b 2

, c 2
 etc. are 1, the set of vectors are not just orthogonal they are 

orthonormal. 

The above description of a vector in three dimensional space is exactly 

analogous to resolving a colour into three primary (orthogonal) components. In 

this case we project light through red, green and blue filters and find the 

intensity of each of the three components. The original colour can be 

synthesised once again by red, green and blue lights of appropriate intensity. 

Finding the 
components of a 
vector 

A vector described 
in terms of 
orthogonal 
components 

Orthonormal defined 

Orthogonal 
components is a 
general concept with 
wide application 
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3.1.2 The Inner Product 

The definition of the dot product for vectors in space can be extended to any 

general vector space. Consider two n-dimensional vectors: 

 

v

u


 

 

Figure 3.2 

The inner product can be written mathematically as: 

uvvuvu
TT ,  (3.6) 

For example, in 3 dimensions: 

 

cos

,

332211

3

2

1

321

vu

vu























vuvuvu

v

v

v

uuu

 

(3.7) 

If  90  the two vectors are orthogonal and 0, vu . They are linearly 

independent, that is, one vector cannot be written in a way that contains a 

component of the other. 

Two n-dimensional 
vectors 

Inner product for 
vectors defined 
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Real functions such as  tx  and  ty  on a given interval bta   can be 

considered a “vector space”, since they obey the same laws of addition and 

scalar multiplication as spatial vectors. For functions, we can define the inner 

product by the integral: 

   
b

a
dttytxyx

 

 
,  

(3.8) 

This definition ensures that the inner product of functions behaves in exactly 

the same way as the inner product of vectors. Just like vectors, we say that 

“two functions are orthogonal” if their inner product is zero: 

0, yx  (3.9) 

EXAMPLE 3.1 Orthogonality of Sinusoids 

Let    ttx 2sin  and    tty 4sin  over the interval 2121  t : 

t

t

x  t(  )

y  t(  )

-1

1

1

-1

1/2-1/2

-1/2 1/2

 

Then the inner product is (due to odd symmetry of the integrand): 

    04sin2sin,
21 

21 
  dtttyx   

Thus, the functions  tx  and  ty  are orthogonal over the interval 2121  t . 

Inner product for 
functions defined 

Orthogonality for 
functions defined 
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3.1.3 Orthogonality in Power Signals 

Consider a finite power signal,  tx . The average power of  tx  is: 

  xx
T

dttx
T

P
T

x ,
11  

0 

2    
(3.10) 

Now consider two finite power signals,  tx  and  ty . The average value of the 

product of the two signals observed over a particular interval, T, is given by the 

following expression: 

    yx
T

dttytx
T

T

,
11  

0 
  

(3.11) 

This average can also be interpreted as a measure of the correlation between 

 tx  and  ty . If the two signals are orthogonal, then over a long enough 

period, T, the average of the product tends to zero, since 0, yx . In this case, 

when the signals are added together the total power (i.e. the mean square 

value), is: 

    

        

yx

T

T

yx

PP

yy
T

yx
T

xx
T

dttytytxtx
T

dttytx
T

yxyx
T

P

















0

,
1

,
2

,
1

2
1

1

,
1

 

0 

22

 

0 

2

 

(3.12) 

This means that the total power in the combined signal can be obtained by 

adding the power of the individual orthogonal signals. 

The power of a 
signal made up of 
orthogonal 
components is the 
sum of the 
component signal 
powers 
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3.1.4 Orthogonality in Energy Signals 

Consider two finite energy signals in the form of pulses in a digital system. 

Two pulses,  tp1  and  tp2 , are orthogonal over a time interval, T, if: 

    0,
 

0 
 yxdttytx

T

 
(3.13) 

Similar to the orthogonal finite power signals discussed above, the total energy 

of a pulse produced by adding together two orthogonal pulses can be obtained 

by summing the individual energies of the separate pulses. 

    

        

yx

T

T

yx

EE

yyyxxx

dttytytxtx

dttytx

yxyxE

















0

,,2,

2

,

 

0 

22

 

0 

2

 

(3.14) 

For example,  Figure 3.3, illustrates two orthogonal pulses because they occupy 

two completely separate portions of the time interval 0 to T. Therefore, their 

product is zero over the time period of interest which means that they are 

orthogonal. 

 

t

t(  )p
1

1

t

t(  )p
2

1

T0 T0T/2 T/2  

 

Figure 3.3 

The energy of a 
signal made up of 
orthogonal 
components is the 
sum of the 
component signal 
energies 
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3.2 The Trigonometric Fourier Series 

In 1807 Joseph Fourier showed how to represent any periodic function as a 

weighted sum of a family of harmonically related sinusoids. This discovery 

turned out to be just a particular case of a more general concept. We can 

actually represent any periodic function by a weighted sum of orthogonal 

functions – Fourier’s sinusoids are then just a special class of orthogonal 

functions. Thus, in general, we can declare a function to be represented by: 

   





0n

nn tAtg 
 

(3.15) 

where the functions  n t  form an “orthogonal basis set”, just like the vectors 

a, b and c etc. in the geometric vector case. The equivalent of the dot product 

(or the light filter) for obtaining a projection in this case is the inner product 

given by: 

       
2

2

0

0

,
T

T
nn dtttgttg   

(3.16) 

This is the “projection” of  g t  onto  n t , the nth member of the orthogonal 

basis set. Equivalent relationships hold between orthogonal functions as they 

do between orthogonal vectors: 

      n m
T

T

nt t dt c a

n m
   


0

0

2

2
2 2

a a
 

(3.17) 

and: 

      n m
T

T

t t dt

n m
   


0

0

2

2

0 0a b
 

(3.18) 

When cn

2 1  the basis set of functions  n t  (all n) are said to be orthonormal. 

Definition of “inner 
product” for a 
function 

The “projection” of a 
function onto itself 
gives a number 

The “projection” of a 
function onto an 
orthogonal function 
gives zero 
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There are many possible orthogonal basis sets for representing a function over 

an interval of time T0 . For example, the infinite set of Walsh functions shown 

below can be used as a basis set: 

 

8
t(  )

7
t(  )

6
t(  )

5
t(  )

4
t(  )

3
t(  )

2
t(  )

t

t

t

t

t

t

t

t

A

A

A

A A

A

A

A

T
0

T
0

T
0

T
0

T
0

T
0

T
0

T
0

1
t(  )

 

 

Figure 3.4 

We can confirm that the Walsh functions are orthogonal with a few simple 

integrations, best performed graphically. For example with 2n  and 3m : 

2
t(  )

2

tT
0

A
2

 

 

    0

2
 

0 
22

0

TAdttt
T

   

2
t(  )

3
t(  )

t

T
0

A
2

 

 

    0
0 

0 
32 

T

dttt   

Figure 3.5 

Example of an 
orthogonal basis set 
– the Walsh 
functions 
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The trigonometric Fourier series is a very special way of representing periodic 

functions. The basis set chosen for the Fourier series is the set of pairs of sines 

and cosines with frequencies that are integer multiples of f T0 01 : 

   

   tnft

tnft

bn

an

0

0

2sin

2cos









 
(3.19) 

They were chosen for the two reasons outlined in Lecture 1A – for linear 

systems a sinusoidal input yields a sinusoidal output; and they have a compact 

notation using complex numbers. The constant cn

2  in this case is either T0 2  or 

0T , as can be seen from the following relations: 

   















nm

nmT

nmT

dttnftmf
T

T

0

02

0

2cos2cos 0

0
2

2
00

0

0

  

   















nm

nmT

nm

dttnftmf
T

T

0

02

00

2sin2sin 0

2

2
00

0

0

  

   cos sin2 2 00 0
2

2

0

0

 mf t nf t dt m n
T

T

  all ,  

 

(3.20) 

 

(3.21) 

 

(3.22) 

If we choose the orthogonal basis set as in Eq. (3.19), and the representation of 

a function as given by Eq. (3.15), then any periodic function  g t  with period 

T0  can be expressed as a sum of orthogonal components: 

     g t a a nf t b nf tn n
n

  




0 0 0
1

2 2cos sin 
 

(3.23) 

The frequency f T0 01  is the fundamental frequency and the frequency nf 0  is 

the nth harmonic frequency. The right-hand side of Eq. (3.23) is known as a 

Fourier series, with a n  and bn  known as Fourier series coefficients. 

The orthogonal 
functions for the 
Fourier series are 
sinusoids 

The trigonometric 
Fourier series 
defined 
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Now look back at Eqs. (3.5) and (3.17). If we want to determine the 

coefficients in the Fourier series, all we have to do is “project” the function 

onto each of the components of the basis set and normalise by dividing by cn

2 : 

 
2

2
0

0

0

0

1 T

T
dttg

T
a

 

   
2

2
0

0

0

0

2cos
2 T

T
n dttnftg

T
a 

 

   
2

2
0

0

0

0

2sin
2 T

T
n dttnftg

T
b 

 

(3.24) 

 

(3.25) 

 

(3.26) 

Compare these equations with Eq. (3.3). These equations tell us how to “filter 

out” one particular component of the Fourier series. Note that frequency 0 is 

DC, and the coefficient a 0  represents the average, or DC part of the periodic 

signal  g t . 

EXAMPLE 3.2 Fourier Series Coefficients of a Sum of Sinusoids 

The following function: 

  )12sin(2)4cos(34 tttg    

is already written out as a Fourier series. We identify Hz 20 f  and by 

comparison with: 

     g t a a nf t b nf tn n
n

  




0 0 0
1

2 2cos sin   

the Fourier series coefficients are: 

2,3,4 310  baa  

with all other Fourier series coefficients zero. 

How to find the 
trigonometric 
Fourier series 
coefficients 
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EXAMPLE 3.3 Fourier Series Coefficients of a Rectangular Pulse Train 

Find the Fourier series for the rectangular pulse train  g t  shown below: 

t0

g  t( )
A

T0



 

Here the period is T0  and f T0 01 . Using Eqs. (2A.18), we have for the 

Fourier series coefficients: 

  0

0

2

2
0

2

2
0

0

11 0

0

fA
T

A
Adt

T
dttg

T
a

T

T





    

 

   







000

2

2
0

0

sin2sin
2

2cos
2

nfcfAfn
n

A

dttnfA
T

an



 
 

 b
T

A nf t dtn  


2
2 0

0

0
2

2

sin 




 

(3.27) 

 

(3.28) 

 

 

(3.29) 

We can therefore say: 

   A
t nT

A f A f nf nf t
n n

rect sinc








  









 0

0 0

1

0 02 2


   cos  (3.30) 

This expression is quite unwieldy. To visualize what the equation means, we 

usually tabulate or graph the Fourier series coefficients, and think about the 

individual constituent sinusoids. 
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For example, consider the case where  T0 5 . We can draw up a table of the 

Fourier series coefficients as a function of n: 

n an  bn  

0 0.2A 0 

1 0.3742A 0 

2 0.3027A 0 

3 0.2018A 0 

4 0.0935A 0 

5 0 0 

6 -0.0624A 0 

etc. -0.0865A 0 

A more useful representation of the Fourier series coefficients is a graph: 

an

f

0.4A

0.2A

0 2 f
0

4 f
0

6 f
0

8 f
0

10 f
0

12 f
0  

Observe that the graph of the Fourier series coefficients is discrete – the values 

of an  (and bn ) are associated with frequencies that are only multiples of the 

fundamental, 0nf . This graphical representation of the Fourier series 

coefficients lets us see at a glance what the “dominant” frequencies are, and 

how rapidly the amplitudes reduce in magnitude at higher harmonics. 

The trigonometric 
Fourier series 
coefficients can be 
tabled 

but a graph of the 
trigonometric 
Fourier series 
coefficients is better 
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3.3 The Compact Trigonometric Fourier Series 

The trigonometric Fourier series in Eq. (3.23) can be written in a more compact 

and meaningful way as follows: 

   





0

02cos
n

nn tnfAtg 
 

(3.31) 

By expanding  A nf tn ncos 2 0   it is easy to show that: 

nnn

nnn

Ab

Aa





sin

cos





 
(3.32) 

and therefore: 

 nnn

nnn

ab

baA

1

22

tan




 

(3.33) 

(3.34) 

From the compact Fourier series it follows that  g t  consists of sinusoidal 

signals of frequencies 0, f 0 , 2 0f , , nf 0 , etc. The nth harmonic, 

 nn tnfA  02cos , has amplitude An  and phase n . 

We can store the amplitude ( An ) and phase (n )  information at a harmonic 

frequency ( nf 0 ) using our phasor notation of Lecture 1A. We can represent the 

nth harmonic sinusoid by its corresponding phasor: 

nnnn

j

nn jAAeAG n 
sincos   (3.35) 

Gn  can be derived directly from the Fourier series coefficients using 

Eq. (3.32): 

G a jbn n n   (3.36) 

The compact 
trigonometric 
Fourier series 
defined 

and associated 
constants 

Harmonic phasors 
defined 

and related to the 
trigonometric 
Fourier series 
coefficients 
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The negative sign in G a jbn n n   comes from the fact that in the phasor 

representation of a sinusoid the real part of Gn  is the amplitude of the cos 

component, and the imaginary part of Gn  is the amplitude of the -sin 

component. 

Substituting for an  and bn  from Eqs. (3.27) - (3.29) results in: 
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2
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2sin2cos
2

2sin
2

2cos
2
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T

T

T

T

T

T

nnn

T

T

dttnfjtnftg
T

dttnftg
T

jdttnftg
T

jbaG

dttg
T

aG



  

(3.37) 

which can be simplified using Euler’s identity,  sincos je j  , to give: 
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2

0
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2

2

2

0

2

2

2

0

0

0

0

0

0

0

















ndtetg
T

G

ndtetg
T

G

T

T

tnfj

n

T

T

tnfj

n





 

(3.38) 

(3.39) 

The expression for the compact Fourier series, as in Eq. (3.31), can now be 

written as: 

 g t G en

j nf t

n
















Re 2

0

0

 
(3.40) 

Each term in the sum is a phasor rotating at an integer multiple of the 

fundamental’s angular speed, 00 2 nfn   .  g t  is the projection of the 

instantaneous “vector” sum of these phasors onto the real axis. 

 

Obtaining the 
harmonic phasors 
directly 

Fourier series 
expressed as a sum 
of harmonic phasors 
projected onto the 
real axis 
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EXAMPLE 3.4 Compact Trigonometric Fourier Series Coefficients 

Find the compact Fourier series coefficients for the rectangular pulse train  g t  

shown below: 

t0

g  t( )

A

T0



 

Again, the period is T0  and f T0 01 . Using Eqs. (2A.27), we have for the 

average value: 




0

 

0 
0

0

1
AfAdt

T
G    

 

(2A.1) 

which can be seen (and checked) from direct inspection of the waveform. 

The compact Fourier series coefficients (harmonic phasors) are given by: 
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e
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(2A.2) 
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The next step is not obvious. We separate out the term 
 0nfj

e


: 

 


000 nfjnfjnfj

n eee
nj

A
G




 

 

(2A.3) 

and apply Euler’s identity: 

2
sin

j

ee jj 





 

 

(2A.4) 

to give: 

  


0

0sin
2 nfj

n enf
n

A
G




 

 

(2A.5) 

Now remembering that: 
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x
x



sin
sinc 

 

 

(2A.6) 

we get: 
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00
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0
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(2A.7) 

Therefore: 

 





0

00 sinc2

nf

nfAfA

n

n





 

 

(2A.8) 
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3.4 The Spectrum 

Using the compact trigonometric Fourier series, we can formulate an easy-to-

interpret graphical representation of a periodic waveform’s constituent 

sinusoids. The graph below shows a periodic waveform, made up of the first 6 

terms of the expansion of a square wave as a Fourier series, versus time: 

 

 

 

Figure 3.6 

The graph also shows the constituent sinusoids superimposed on the original 

waveform. Let’s now imagine that we can graph each of the constituent 

sinusoids on its own time-axis, and extend these into the z-direction: 

 

 

 

Figure 3.7 
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Each constituent sinusoid exists at a frequency that is harmonically related to 

the fundamental. Therefore, we could set up a graph showing the amplitude of 

the constituent sinusoids, with the horizontal scale set up so that each 

amplitude value is graphed at the corresponding frequency: 

 

 

 

Figure 3.8 

We now have a graph that shows the amplitudes of the constituent sinusoids 

versus frequency: 

 

frequency

amplitude

f
0

3 f
0

5 f
0

7 f
0

9 f
0

11f
0

 

 

Figure 3.9 

This conceptual view now needs to be formalised. 
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In a periodic signal, the constituent sinusoids are given by  nn tnfA  02cos . 

So, amplitude information is not enough – we need to graph phase as well. We 

also know that each constituent sinusoid is completely characterised by its 

corresponding phasor, nj

nn eAG


 . If we plot nG  versus frequency, we have 

what is called a spectrum. However, since nG  is complex, we have to resort to 

two plots. Therefore, for a given periodic signal, we can make a plot of the 

magnitude spectrum  A fn  vs.  and the phase spectrum  n f vs. . 

We can now think of a spectrum as a graph of the phasor value as a function of 

frequency. We call this representation “a single-sided” spectrum, since it only 

involves positive frequencies: 

 

frequency

ampltiude

frequency

phase

time

ampltiude

spectrum

 

 

Figure 3.10 

The spectrum 
defined…as a graph 
of phasor values vs. 
frequency 
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EXAMPLE 3.5 Graph of Fourier Series Coefficients 

The compact Fourier series representation for a rectangular pulse train was 

found in the previous example. A graph of the magnitude and phase spectra 

appear below for the case  T0 5 : 

0.2A

f

0.4A

0 2 f
0

4 f
0

6 f
0

8 f
0

10 f
0

12 f
0

An

 

Note how we can have a negative “magnitude” of a sinusoid as the sinc 

function envelope goes negative. If we wanted to, we could make nA  positive 

(so it relates directly to the amplitude of the corresponding sinusoid) by simply 

adding 180 to n . 

f0
2 f

0
4 f

0
6 f

0
8 f

0
10 f

0
12 f

0

 n

-2

-

 

Note how we can have “phase” even though the amplitude is zero (at 05 f , 

010 f , etc). We could also wrap the phase spectrum around to 0 instead of 

graphing linearly past the 2  point – in fact we could choose any range that 

spans 2  since phase is periodic with period 2 . 
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3.5 The Complex Exponential Fourier Series 

The complex exponential Fourier series is the most mathematically convenient 

and useful representation of a periodic signal. Recall that Euler’s formulas 

relating the complex exponential to cosines and sines are: 

 sincos je j   (3.41) 

2
cos




jj ee 


 

(3.42) 

2
sin

j

ee jj 






 

(3.43) 

Substitution of Eqs. (3.42) and (3.43) into the trigonometric Fourier series, 

Eq. (3.23), gives: 
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(3.44) 
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This can be rewritten in the form: 
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(3.45) 

where: 
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(3.46) 

(3.47) 

(3.48) 

From Eqs. (3.38) and (3.46), we can see that an alternative way of writing the 

Fourier series coefficients, in one neat formula instead of three, is: 
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2

0

0

0

0
1 T

T

tnfj

n dtetg
T

G


 
(3.49) 

Thus, the trigonometric and complex exponential Fourier series are not two 

different series but represent two different ways of writing the same series. The 

coefficients of one series can be obtained from those of the other. 

The complex 
exponential Fourier 
series 

The relationship 
between complex 
exponential and 
trigonometric 
Fourier series 
coefficients 

The complex 
exponential Fourier 
series coefficients 
defined 
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The complex exponential Fourier series can also be viewed as being based on 

the compact Fourier series but uses the fact that we can use the alternative 

phasor definition nG  instead of nG . In this case we remember that 2nn GG   

and that for every forward rotating phasor nG  there is a corresponding 

backward rotating phasor 
*

nG . Eqs. (3.40) and (3.38) - (3.39) then become: 
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neGtg 02
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n dtetg
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(3.50) 

 

(3.51) 

where: 

G Gn n  *
 (3.52) 

Thus, if: 

G G en n

j n 
 

(3.53) 

then: 

G G en n

j n



 
 

(3.54) 

Gn  is the magnitude and n  is the phase of Gn . For a real  g t , G Gn n  , 

and the double-sided magnitude spectrum Gn  vs. f is an even function of f. 

Similarly, the phase spectrum n  vs. f is an odd function of f because   n n . 

The complex 
exponential Fourier 
series… 

Harmonic phasors 
can also have 
negative frequency 

and Fourier series 
coefficients defined 

The symmetry of the 
complex exponential 
Fourier series 
coefficients 

A double-sided 
spectrum shows 
negative frequency 
phasors 



3.26 

Index The Complex Exponential Fourier Series PMcL   

3 - Fourier Series and Spectra  2015 

EXAMPLE 3.6 Complex Fourier Series Coefficients 

Find the complex exponential Fourier series for the rectangular pulse train  g t  

shown below: 

t0

g  t( )
A

T0



 

The period is T0  and f T0 01 . Using Eq. (3.50), we have for the complex 

exponential Fourier series coefficients: 
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(3.55) 

In this case nG  turns out to be a real number (the phase of all the constituent 

sinusoids is 0 or 180). 
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For the case of  T0 5, the double-sided magnitude spectrum is then: 
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For the case of  T0 2 , the spectrum is: 
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Thus, the Fourier series can be represented by spectral lines at all harmonics of 

00 1 Tf  , where each line varies according to the complex quantity nG . In 

particular, for a rectangular pulse train, nG  follows the envelope of a sinc 

function, with amplitude 0TA  and zero crossings at integer multiples of 1 . 

The double-sided 
magnitude spectrum 
of a rectangular 
pulse train 

and for a 50% duty 
cycle square wave 
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Another case of interest, which is fundamental to the analysis of digital 

systems, is when we allow each pulse in a rectangular pulse train to turn into an 

impulse, i.e. 0  and A  such that 1A . In this case, each pulse 

becomes an impulse of unit strength, and  g t  is simply a uniform train of unit 

impulses, as shown below: 

 

t0

g  t( )
1

T0 T02 T03 T04T0-T0-2  

 

Figure 3.11 

The result derived previously for the rectangular pulse train is still valid if we 

take the appropriate limit: 

 G Af nf fn 


lim


 
0

0 0 0sinc  (3.56) 

Thus, with 1A , the amplitude of the sinc  function envelope is 00 fAf  , 

and  when 0 ,     10sincsinc 0 nf . Therefore: 

 

  


















n

tnfj

n

n

tnfj

n

efnTt

eGtg

0

0

2

00

2






 

(3.57) 

 

A uniform train of 
unit impulses, 

its Fourier series, 
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The spectrum has components of frequencies nf 0 , n varying from   to  , 

including 0, all with an equal strength of f 0 , as shown below: 
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Figure 3.12 

The complex exponential Fourier series is so convenient we will use it almost 

exclusively. Therefore, when we refer to the spectrum of a signal, we are 

referring to its double-sided spectrum. It turns out that the double-sided 

spectrum is the easiest to use when describing signal operations in systems. It 

also enables us to calculate the average power of a signal in an easy manner. 

and its spectrum 
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3.6 How to Use MATLAB® to Check Fourier Series Coefficients 

MATLAB® is a software package that is particularly suited to signal 

processing. It has instructions that will work on vectors and matrices. A vector 

can be set up which gives the samples of a signal. Provided the sample spacing 

meets the Nyquist criterion the instruction G=fft(g) returns a vector 

containing N times the Fourier series coefficients, where  G 1  N G0  is the DC 

term,  G 2  N G1 ,  G 3  N G2  etc. and  G N   N G 1 ,  G N-1   N G 2  etc. 

where N is the size of the vector. G=ifft(g)does the inverse Fourier 

transform. 

EXAMPLE 3.7 Fourier Series Coefficients from MATLAB® 

Suppose we want to find the Fourier series coefficients of    g t tcos 2 . Note 

period = 1 s. 

Step 1 

Choose sample frequency - since highest frequency present is 1 Hz, choose 

4 Hz (minimum is > 2 Hz). 

Step 2 

Take samples over one period starting at t0 . Note N 4 . 

 g 1 0 1 0  

Step 3 

Find    G fft g  0 2 0 2 . 

Hence G0 0 , G1 2 4 1 2  , G  1 2 4 1 2 . G2  should be zero if the Nyquist 

criterion is met. These are in fact the Fourier series coefficients of  g t . 
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EXAMPLE 3.8 Fourier Series Coefficients of a Square Wave 

Find the Fourier series coefficients of a 50% duty cycle square wave. 

Step 1 

In this case the spectrum is   so we can never choose f s  high enough. There 

is always some error. Suppose we choose 8 points of one cycle. 

Step 2 

 g 1 1 05 0 0 0 05 1. .  

Note: if samples occur on transitions, input half way point. 

Step 3 

   G fft g  4 2 4142 0 0 4142 0 0 4142 0 2 4142. . . .

 

Therefore G1 2 4142 8 0 3015 . . . The true value is 0.3183. Using 16 points, 

G1 0 3142 . . 

You should read Appendix A – The Fast Fourier Transform, and look at the 

example MATLAB® code in the “FFT - Quick Reference Guide” for more 

complicated and useful examples of setting up and using the FFT. 
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3.7 Symmetry in the Time Domain 

A waveform which is symmetric in the time domain will have a spectrum with 

certain properties. Identification of time-domain symmetry can lead to 

conclusions about the spectrum without doing any calculations – a useful skill 

to possess. 

3.7.1 Even Symmetry 

An even function is one which possesses symmetry about the  g t  axis. 

Mathematically, an even function is such that    g t g t  . An even function 

can be expressed as a sum of cosine waves only (cosines are even functions), 

and therefore all the nG  are real. To see why, we consider the imaginary 

component of   2nnn jbaG  , which must be zero. That is, we look at the 

formula for nb  as given by the trigonometric Fourier series: 

   
2 

2 
0

0

0

0

2sin
2 T

T
n dttnftg

T
b 

 
(3.58) 

When  g t  has even symmetry, the integrand in the formula for nb  is 

oddoddeven  . The limits on the integral span equal portions of negative 

and positive time, and so we get 0nb  after performing the integration. The 

integrand in the formula for na  is eveneveneven  , and will only be zero if 

the function  tg  is zero. Thus we have the property: 

  real  even     nGtg  (3.59) 

The phase of nG  is therefore 0 or 180, depending on whether the real number 

is positive or negative. 

Even symmetry in 
the time-domain 
leads to real Fourier 
series coefficients 
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EXAMPLE 3.9 Even Symmetry 

Find the compact Fourier series coefficients for the cos-shaped pulse train  g t  

shown below: 

t

g  t(  )

-1 210

-2

2

3 4 5

 

The functions is represented by: 
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(3.60) 

and    2 tgtg . 

The period is 20 T  and Hz 211 00  Tf . Using Eq. (3.50), we have for the 

complex exponential Fourier series coefficients: 
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(3.61) 
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Now, combining the exponentials and integrating, we have: 
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(3.62) 

Putting     xxx sinsinc  , we obtain: 

     23sinc
2

1
23sinc

2

1
nnGn 

 
(3.63) 

Now since 00 aG   and   2nnn jbaG   for 1n , we can see that the 

imaginary part is zero (as we expect for an even function) and that: 
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 (3.64) 

and therefore: 
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1
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  (3.65) 

Thus, the Fourier series expansion of the wave contains only cosine terms: 

          





1

cos23sinc23sinc
3

2

n

tnnntg 


 (3.66) 

Recall that   0sinc x  for all integer values of x. So we expect 0nG  for 

every odd term, except 3n  when 13 a . 
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The Fourier series expansion, for the first 5 terms and 10 terms, is shown 

below together with the original wave: 

 

One interesting point to note is that, for even functions, 2nn aG   for 1n , 

and therefore nnnn GaGG  2*
 for 1n . That is, for even functions, the 

complex exponential Fourier series coefficients have even symmetry too! 

A graph of the spectrum in this case looks like: 

0
f

Gn

f
0

2 f
0

3 f
0

4 f
0

- f
0

-2 f
0

-3 f
0

-4 f
0

5 f
0

-5 f
0

 

 

An even symmetric 
waveform has an 
even and real 
spectrum 
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3.7.2 Odd Symmetry 

An odd function is one which possesses rotational symmetry about the origin. 

Mathematically, an odd function is such that    g t g t  . An odd function 

can be expressed as a sum of sine waves only (sine waves are odd functions), 

and therefore all the nG  are imaginary. To see why, we consider the real 

component of   2nnn jbaG  , which must be zero. That is, we look at the 

formula for na  as given by the trigonometric Fourier series: 
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2 
0
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2cos
2 T

T
n dttnftg

T
a 

 
(3.67) 

When  g t  has odd symmetry, the integrand in the formula for na  is 

oddevenodd  . The limits on the integral span equal portions of negative 

and positive time, and so we get 0na  after performing the integration. The 

integrand in the formula for nb  is evenoddodd  , and will only be zero if 

the function  tg  is zero. Thus we have the property: 

  imaginary    odd   nGtg  (3.68) 

The phase of nG  is therefore 90 or -90, depending on whether the imaginary 

number is positive or negative. 

 

Odd symmetry in 
the time-domain 
leads to imaginary 
Fourier series 
coefficients 
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EXAMPLE 3.10 Odd Symmetry 

Find the complex exponential Fourier series coefficients for the sawtooth 

waveform  g t  shown below: 

t

g  t(  )
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2 2
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T
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T
0

 

The period is T0  and f T0 01 . Using Eq. (3.50), we have for the complex 

exponential Fourier series coefficients: 
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(3.69) 

By inspection of the original waveform, the DC component is zero and so: 

00 G  (3.70) 

For 1n , apply integration by parts, where: 
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(3.71) 
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We then have:  
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 (3.72) 

Putting   0sin n  and    nn 1cos   for all integer values of n, we obtain: 

  11  n
n

jA
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n

n
  

(3.73) 

Now since 00 aG   and   2nnn jbaG   for 1n , we can see that the real 

part is zero (as we expect for an odd function) and that: 
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(3.74) 

and therefore: 
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(3.75) 

Thus, the Fourier series expansion of the sawtooth wave contains only sine 

terms: 

     







1

0

1
2sin1

2

n

n
tnf

n

A
tg 

  
(3.76) 
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The Fourier series expansion, for the first 5 terms and 10 terms, is shown 

below together with the original sawtooth wave: 

 

One interesting point to note is that, for odd functions, 2nn bjG  , and 

therefore nnnn GbjGG  2*
. That is, for odd functions, the complex 

exponential Fourier series coefficients have odd symmetry too! 

A graph of the spectrum in this case looks like (the values are imaginary): 
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An odd symmetric 
waveform has an 
odd and imaginary 
spectrum 
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3.7.3 Half-Wave Symmetry 

A half-wave symmetric function is one in which each half-period is the same 

as the one before it, except it is “upside down”. Mathematically, this is 

expressed as    g t g t T  0 2 . Half-wave symmetry is not dependent on our 

choice of origin. An example of a half-wave symmetric function is: 

 

t0

g t( )

 

 

Figure 3.13 

Many half-wave symmetric waveforms occur in electrical engineering – 

examples include the magnetising current of a transformer, the saturated output 

of an amplifier, and any system whose transfer characteristic possesses odd 

symmetry. 

Looking at the formula for the complex exponential Fourier series coefficients: 
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(3.77) 

we split it up into two parts: 
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 (3.78) 

 

A half-wave 
symmetric waveform 
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Now, if  tg  is half-wave symmetric, then: 
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(3.79) 

Letting 20Tt  , we have: 
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(3.80) 

Now since the value of a definite integral is independent of the variable used in 

the integration, and noting that  njne 1  , we can see that: 

  12 1 II
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  (3.81) 

Therefore: 
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(3.82) 

Thus, a half-wave symmetric function will have only odd harmonics – all even 

harmonics are zero. 

Thus we have the property: 

harmonics oddonly   symmetry   wave-half   (3.83) 

Half-wave symmetry 
in the time-domain 
leads to all odd 
harmonics being 
zero 
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EXAMPLE 3.11 Half-Wave Symmetry 

A square pulse train (50% duty cycle square wave) is a special case of the 

rectangular pulse train, for which  T0 2 . For this case  g t  is: 

t0

g t( )
A

T0



 

The period is T0  and f T0 01 . Using   00 sinc nfAfGn   and substituting 

 T0 2 , we have for the complex exponential Fourier series coefficients: 
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(3.84) 

Recalling that   0sinc x  for all integer values of x , we can see that nG  will 

be zero for all even harmonics (except 0G ) . We expect this, since apart from a 

DC component of 2A ,  tg  is half-wave symmetric. The spectrum is: 
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In this case the spacing of the discrete spectral frequencies, 0nf , is such that 

each even harmonic falls on a zero of the sinc function envelope. 

 

A 50% duty cycle 
square wave… 

and its spectrum 
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3.8 Power 

One of the advantages of representing a signal in terms of a set of orthogonal 

components is that it is very easy to calculate its average power. Because the 

components are orthogonal, the total average power is just the sum of the 

average powers of the orthogonal components. 

For example, if the double-sided spectrum is being used, since the magnitude 

of the sinusoid represented by the phasor Gn  is 2 Gn , and the average power 

of a sinusoid of amplitude A is 22AP  , the total power in the signal  g t  is: 

P G G Gn

n

n n

n

 








 
2 *

 
(3.85) 

Note that the DC component only appears once in the sum ( n0 ). Its power 

contribution is G0

2  which is correct. 

Calculating power 
using orthogonal 
components 

Power for a double-
sided spectrum 
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EXAMPLE 3.12 Power in a Rectangular Pulse Train 

How much of the power of a 50% duty cycle rectangular pulse train is 

contained in the first three harmonics? 
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We first find the total power in the time-domain: 
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To find the power in each harmonic, we work in the frequency domain. We 

note that the Fourier series coefficients were derived previously as: 
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and draw the double-sided spectrum: 
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We have for the DC power contribution: 
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which is 50% of the total power. 
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The DC plus fundamental power is: 
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which is 90.5% of the total power. 

The power of the components up to and including the 3rd harmonic is: 
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which is 95% of the total power. Thus, the spectrum makes obvious a 

characteristic of a periodic signal that is not obvious in the time domain. In this 

case, it was surprising to learn that 95% of the power in a square wave is 

contained in the frequency components up to the 3rd harmonic. This is 

important – we may wish to lowpass filter this signal for some reason, but 

retain most of its power. We are now in a position to give the cutoff frequency 

of a lowpass filter to retain any amount of power that we desire. 
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3.9 Filters 

Filters are devices that shape the input signal’s spectrum to produce a new 

output spectrum. They shape the input spectrum by changing the amplitude and 

phase of each component sinusoid. This frequency-domain view of filters has 

been with us implicitly – we specify the filter in terms of a transfer function 

 H s . When evaluated at s j   the transfer function is a complex number. 

The magnitude of this complex number,  H j , multiplies the corresponding 

magnitude of the component phasor of the input signal. The phase of the 

complex number,  jH , adds to the phase of the component phasor. 
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Figure 3.14 

Recall from Lecture 1A that it is the sinusoid that possesses the special 

property with a linear system of “a sinusoid in gives a sinusoid out”. We now 

have a view that “a sum of sinusoids in gives a sum of sinusoids out”, or more 

simply: “a spectrum in gives a spectrum out”. The input spectrum is changed 

by the frequency response of the system to give the output spectrum. 

A filter acts to 
change each 
component sinusoid 
of a periodic 
function 

Visual view of a 
filter’s operation 
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This view of filters operating on individual components of an input signal has 

been implicit in the characterisation of systems via the frequency response. 

Experimentally, we determine the frequency response of a system by 

performing the operations in the top half of Figure 3.14. That is, we apply 

different sinusoids (including DC which can be thought of as a sinusoid of zero 

frequency) to a system and measure the resulting amplitude change and phase 

shift of the output sinusoid. We then build up a picture of  fH  by plotting the 

experimentally derived points on a graph (if log scales are chosen then we have 

a Bode plot). After obtaining the frequency response, we should be able to tell 

what happens when we apply any periodic signal, as shown in the bottom half 

of Figure 3.14. The next example illustrates this process. 

EXAMPLE 3.13 The Effect of a Filter on the Spectrum 

Let’s see what happens to a square wave when it is “passed through” a 3rd 

order Butterworth filter. For the filter, we have: 
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(3.86) 

Here, 0  is the “cutoff” frequency of the filter. It does not represent the 

angular frequency of the fundamental component of the input signal – filters 

know nothing about the signals to be applied to them. Since the filter is linear, 

superposition applies. For each component phasor of the input signal, we 

multiply by     jHjejH  . We then reconstruct the signal by adding up the 

“filtered” component phasors. 

A filter is defined in 
terms of its 
magnitude and 
phase response 
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This is an operation best performed and thought about graphically. For the case 

of the filter cutoff frequency set at twice the input signal’s fundamental 

frequency we have for the output magnitude spectrum: 
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We could perform a similar operation for the phase spectrum. 

Filter output  
magnitude spectrum 
obtained graphically 
using the input 
signal’s magnitude 
spectrum and the 
filter’s magnitude 
response 
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If we now take the output spectrum and reconstruct the time-domain waveform 

it represents, we get: 

g  t( )

t

A

T0 T02  

This looks like a shifted sinusoid (DC + sine wave) with “a touch of 3rd 

harmonic distortion”. With practice, you are able to recognise the components 

of waveforms and hence relate them to their magnitude spectrum. How do we 

know it is 3rd harmonic distortion? Without the DC component the waveform 

exhibits half-wave symmetry, so we know the 2nd  harmonic (an even 

harmonic) is zero. 

If we extend the cutoff frequency to ten times the fundamental frequency of the 

input square wave, the filter has less effect: 

g  t( )

A

T0 T02 t
 

From this example it should be apparent that high frequencies are needed to 

make sharp transitions in the time-domain. 

The output signal in 
the time-domain 
obtained from the 
output spectrum Some features to 
look for in a 
spectrum 

Sharp transitions in 
the time-domain are 
caused by high 
frequencies 
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3.10 Relationships Between the Three Fourier Series Representations 

The table below shows the relationships between the three different 

representations of the Fourier series: 

 Trigonometric Compact Trigonometric Complex Exponential 

Fourier 

Series 
   

 tnfb

tnfaatg

n

n

n

0

1

00

2sin

2cos







 


  
   

























0

2

0

0

0Re

2cos

n

tnfj

n

n

nn

eG

tnfAtg





 

 g t G en

j nf t

n






 2 0
 

Fourier 

Series 

Coefficients 

 a
T

g t dt
T

T

0

0
2

21

0

0


  

   a
T

g t nf t dtn
T

T




2
2

0

0
2

2

0

0

cos   

   b
T

g t nf t dtn
T

T




2
2

0

0
2

2

0

0

sin   

 

 0

1 2

2

2

0

0

0

0



 


n

dtetg
T

G
T

T

tnfj

n



 

 

 0

2 2

2

2

0

0

0

0



 


n

dtetg
T

G
T

T

tnfj

n



 

 G
T

g t e dtn

j nf t

T

T

 


1

0

2

2

2
0

0

0 

 

Spectrum of 

a single 

sinusoid

  tfA 02cos  

f
0

f
0

an

0
f

0

b  n

f

A cos

A sin-

 

A

0
f

0



0
f

0

G  n

f

f

|    |Gn

 

0 f
0



0 f
0

G  n

f

f

A

2

f
0

-

f
0

-

-

|    |Gn

 

Table 3.1 – Relationships Between the Three Fourier Series Representations 
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3.11 Summary 

 All periodic waveforms are made up of a sum of sinusoids – a Fourier 

series. There are three equivalent notations for the Fourier series. 

 The trigonometric Fourier series expresses a periodic signal as a DC (or 

average) term and a sum of harmonically related cosinusoids and sinusoids. 

 The compact trigonometric Fourier series expresses a periodic signal as a 

sum of cosinusoids of varying amplitude and phase. 

 The complex exponential Fourier series expresses a periodic signal as a 

sum of counter-rotating harmonic phasors (“sum of harmonic phasors”). 

 The coefficients of the basis functions in the Fourier series are called 

“Fourier series coefficients”. For the complex exponential Fourier series, 

they are complex numbers, and are just the phasor representation of the 

sinusoid at that particular harmonic frequency. 

 Fourier series coefficients can be found for any periodic waveform by 

taking “projections” of the periodic waveform onto each of the orthogonal 

basis functions making up the Fourier series. 

 A spectrum of a periodic waveform is a graph of the amplitudes and phases 

of constituent basis functions. 

 The most convenient spectrum is the double-sided spectrum. It is graph of 

the complex exponential Fourier series coefficients. We usually have to 

graph a “magnitude” spectrum and “phase” spectrum. 

3.12 References 

Haykin, S.: Communication Systems, John-Wiley & Sons, Inc., New York, 

1994. 

Lathi, B. P.: Modern Digital and Analog Communication Systems, Holt-

Saunders, Tokyo, 1983. 
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Quiz 

Encircle the correct answer, cross out the wrong answers. [one or none correct] 

1. 
The signal 3 2 4 4cos( ) sin( ) t t  has: 

(a) A3 3 , 3 0  (b) G  1 3 2 2  (c) a2 0 , b2 4  

2. 

t

g(t)

 

The Fourier series of 

the periodic signal will 

have no: 

(a) DC term (b) odd harmonics (c) even harmonics 

3. 
The double-sided amplitude spectrum of a real signal always possesses: 

(a) even symmetry (b) odd symmetry (c) no symmetry 

4. 

0
f

|G |
n

1

1.5

1 2 3-1-2-3 (Hz)

2

(V)

 

Amplitude spectrum of 

a signal. The power 

(across 1) is: 

(a) 14.5 W (b) 10 W (c) 15.5 W 

5. 
The phase of the 3rd harmonic component of the periodic signal 

 g t A
t n

n


 













 rect
1 4

0 2.
 is: 

(a) 90  (b)  90  (c) 0  

Answers: 1. c   2. c   3. a   4. c   5. a 
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Exercises 

1. 

A signal      g t t t 2cos 100 100 sin . 

(a) Plot the single-sided magnitude spectrum and phase spectrum. 

(b) Plot the double-sided magnitude spectrum and phase spectrum. 

(c) Plot the real and imaginary components of the double-sided spectrum. 

2. 

What is G  for the sinusoid whose spectrum is shown below. 

0

|G|

100

2

-100 (rads  )
-1 0 100

45°

-100

(rads  )
-1

G

-45°  

3. 

What is  g t  for the signal whose spectrum is sketched below. 

0 100

2

-100 (Hz)f

GnRe{    }

0 100-100 (Hz)f

GnIm{    }

 

4. 

Sketch photographs of the counter rotating phasors associated with the 

spectrum below at t0 , t1  and t2 . 

0

|G|

1

1

-1 (rads  )
-1 0

1

30°

-1 (rads  )
-1

G

-30°  
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5. 

For each of the periodic signals shown, find the complex exponential Fourier 

series coefficients. Plot the magnitude and phase spectra in MATLAB®, 

for 2525  n . 

1

t0

(  )g t

21 3 4-1-2

1

t

(  )g t

31 5-1-3

1

t0

(  )g t



e
-t / 10

-1

2- -2

1

t0

(  )g t

 2-2

rectified sine wave

1

t0

(  )g t

T
0

(a)

(b)

(c)

(d)

(e)

cos(8 t)
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6. 

A voltage waveform  v ti
 with a period of 0.08s is defined by: 

v ti   60 0 0 01 V,  s. ; v ti   0 0 01 0 08 V,  s. . . The voltage vi  is applied as the 

source in the circuit shown below. What average power is delivered to the 

load? 

vo

5

mH

load

vi


16

20

1

40 60 80
f (Hz)

Vo

Vi

0

 

7. 

A periodic signal  g t  is transmitted through a system with transfer function 

 H  . For three different values of T0  ( T0 2 3 3 6   , , and ) find the 

double-sided magnitude spectrum of the output signal. Calculate the power of 

the output signal as a percentage of the power of the input signal  g t . 

t0

g  t( )

1

T0

2

T0

0 12-12

1

H (  )



 

8. 

Estimate the bandwidth B of the periodic signal  g t  shown below if the power 

of all components of  g t  within the band B is to be at least 99.9 percent of the 

total power of  g t . 

t

g  t( )

A
T0

-A
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Joseph Fourier (1768-1830) (Jo´ sef Foor´ yay) 

Fourier is famous for his study of the flow of heat in metallic plates and rods. 

The theory that he developed now has applications in industry and in the study 

of the temperature of the Earth’s interior. He is also famous for the discovery 

that many functions could be expressed as infinite sums of sine and cosine 

terms, now called a trigonometric series, or Fourier series. 

Fourier first showed talent in literature, but by the age of thirteen, mathematics 

became his real interest. By fourteen, he had completed a study of six volumes 

of a course on mathematics. Fourier studied for the priesthood but did not end 

up taking his vows. Instead he became a teacher of mathematics. In 1793 he 

became involved in politics and joined the local Revolutionary Committee. As 

he wrote:-  

As the natural ideas of equality developed it was possible to conceive the 

sublime hope of establishing among us a free government exempt from kings 

and priests, and to free from this double yoke the long-usurped soil of Europe. I 

readily became enamoured of this cause, in my opinion the greatest and most 

beautiful which any nation has ever undertaken. 

Fourier became entangled in the French Revolution, and in 1794 he was 

arrested and imprisoned. He feared he would go to the guillotine but political 

changes allowed him to be freed. In 1795, he attended the Ecole Normal and 

was taught by, among others, Lagrange and Laplace. He started teaching again, 

and began further mathematical research. In 1797, after another brief period in 

prison, he succeeded Lagrange in being appointed to the chair of analysis and 

mechanics. He was renowned as an outstanding lecturer but did not undertake 

original research at this time. 

In 1798 Fourier joined Napoleon on his invasion of Egypt as scientific adviser. 

The expedition was a great success (from the French point of view) until 

August 1798 when Nelson’s fleet completely destroyed the French fleet in the 

Battle of the Nile, so that Napoleon found himself confined to the land he was 

occupying. Fourier acted as an administrator as French type political 
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institutions and administrations were set up. In particular he helped establish 

educational facilities in Egypt and carried out archaeological explorations. 

While in Cairo, Fourier helped found the Institute d'Égypte and was put in 

charge of collating the scientific and literary discoveries made during the time 

in Egypt. Napoleon abandoned his army and returned to Paris in 1799 and soon 

held absolute power in France. Fourier returned to France in 1801 with the 

remains of the expeditionary force and resumed his post as Professor of 

Analysis at the Ecole Polytechnique. 

Napoleon appointed Fourier to be Prefect at Grenoble where his duties were 

many and varied – they included draining swamps and building highways. It 

was during his time in Grenoble that Fourier did his important mathematical 

work on the theory of heat. His work on the topic began around 1804 and by 

1807 he had completed his important memoir On the Propagation of Heat in 

Solid Bodies. It caused controversy – both Lagrange and Laplace objected to 

Fourier’s expansion of functions as trigonometric series. 

…it was in attempting to verify a third theorem that I employed the 

procedure which consists of multiplying by dxx cos  the two sides of the 

equation 

  ...2coscos 210  xaxaax  

and integrating between 0x  and x . I am sorry not to have known the 

name of the mathematician who first made use of this method because I 

would have cited him. Regarding the researches of d’Alembert and Euler 

could one not add that if they knew this expansion they made but a very 

imperfect use of it. They were both persuaded that an arbitrary…function 

could never be resolved in a series of this kind, and it does not seem that 

any one had developed a constant in cosines of multiple arcs 

[i.e. found 1a , 2a ,…, with ...2coscos1 21  xaxa  for 22   x ] 

the first problem which I had to solve in the theory of heat. 

Other people before Fourier had used expansions of the form 

   


r r irtaxf exp~  but Fourier’s work extended this idea in two totally 

new ways. One was the “Fourier integral” (the formula for the Fourier series 

coefficients) and the other marked the birth of Sturm-Liouville theory (Sturm 

and Liouville were nineteenth century mathematicians who found solutions to 

The Institute 
d'Égypte was 
responsible for the 
completely 
serendipitous 
discovery of the 
Rosetta Stone in 
1799. The three 
inscriptions on this 
stone in two 
languages and three 
scripts (hieroglyphic, 
demotic and Greek) 
enabled Thomas 
Young and Jean-
François 
Champollion, a 
protégé of Fourier, 
to invent a method 
of translating 
hieroglyphic writings 
of ancient Egypt in 
1822. 

This extract is from 
a letter found among 
Fourier’s papers, 
and unfortunately 
lacks the name of 
the addressee, but 
was probably 
intended for 
Lagrange. 
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many classes of partial differential equations arising in physics that were 

analogous to Fourier series). 

Napoleon was defeated in 1815 and Fourier returned to Paris. Fourier was 

elected to the Académie des Sciences in 1817 and became Secretary in 1822. 

Shortly after, the Academy published his prize winning essay Théorie 

analytique de la chaleur (Analytical Theory of Heat). In this he obtains for the 

first time the equation of heat conduction, which is a partial differential 

equation in three dimensions. As an application he considered the temperature 

of the ground at a certain depth due to the sun’s heating. The solution consists 

of a yearly component and a daily component. Both effects die off 

exponentially with depth but the high frequency daily effect dies off much 

more rapidly than the low frequency yearly effect. There is also a phase lag for 

the daily and yearly effects so that at certain depths the temperature will be 

completely out of step with the surface temperature. 

All these predictions are confirmed by measurements which show that annual 

variations in temperature are imperceptible at quite small depths (this accounts 

for the permafrost, i.e. permanently frozen subsoil, at high latitudes) and that 

daily variations are imperceptible at depths measured in tenths of metres. A 

reasonable value of soil thermal conductivity leads to a prediction that annual 

temperature changes will lag by six months at about 2–3 metres depth. Again 

this is confirmed by observation and, as Fourier remarked, gives a good depth 

for the construction of cellars. 

As Fourier grew older, he developed at least one peculiar notion. Whether 

influenced by his stay in the heat of Egypt or by his own studies of the flow of 

heat in metals, he became obsessed with the idea that extreme heat was the 

natural condition for the human body. He was always bundled in woollen 

clothing, and kept his rooms at high temperatures. He died in his sixty-third 

year, “thoroughly cooked”. 

References 

Körner, T.W.: Fourier Analysis, Cambridge University Press, 1988. 



4.1 

PMcL Contents Index     

2015  4 - The Fourier Transform 

4 The Fourier Transform 
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Introduction 

The Fourier series is used to represent a periodic function as a weighted sum of 

sinusoidal (or complex exponential) functions. We would like to extend this 

result to functions that are not periodic. Such an extension is possible by what 

is known as the Fourier transform representation of a function. 

4.1 The Fourier Transform 

To derive the Fourier transform, we start with an aperiodic signal  g t : 

 

t

g t( )

 

 

Figure 4.1 

Now we construct a new periodic signal  g tp  consisting of the signal  g t  

repeating itself every T0  seconds: 

 

t0

T0T0

( )g  t
p

 

 

Figure 4.2 

The period T0  is made long enough so that there is no overlap between the 

repeating pulses. This new signal  g tp  is a periodic signal and so it can be 

represented by an exponential Fourier series. 

Developing the 
Fourier transform 

Make an artificial 
periodic waveform 
from the original 
aperiodic waveform 
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In the limit, if we let T0  become infinite, the pulses in the periodic signal repeat 

after an infinite interval, and: 

   lim
T

pg t g t
0

  (4.1) 

Thus, the Fourier series representing  g tp  will also represent  g t , in the 

limit T0 . 

The exponential Fourier series for  g tp  is: 

 g t G ep n

j nf t

n






 2 0

 

 



2 

2 

2

0

0

0

0
1 T

T

tnfj

pn dtetg
T

G


 

(4.2a) 

 

(3.2b) 

In the time-domain, as 0T , the pulse train becomes a single non-periodic 

pulse located at the origin, as in Figure 4.1. 

In the frequency-domain, as T0  becomes larger, f 0  becomes smaller and the 

spectrum becomes “denser” (the discrete frequencies are closer together). In 

the limit as 0T , the fundamental frequency dff 0  and the harmonics 

become infinitesimally close together. The individual harmonics no longer 

exist as they form a continuous function of frequency. In other words, the 

spectrum exists for every value of f and is no longer a discrete function of f but 

a continuous function of f. 

The Fourier series 
for our artificial 
periodic waveform 
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As seen from Eq. (3.2b), the amplitudes of the individual components become 

smaller, too. The shape of the frequency spectrum, however, is unaltered (all 

nG ’s are scaled by the same amount, 0T ). In the limit as T0 , the 

magnitude of each component becomes infinitesimally small, until they 

eventually vanish! 

Clearly, it no longer makes sense to define the concept of a spectrum as the 

amplitudes and phases of certain harmonic frequencies. Instead, a new concept 

is introduced called spectral density. 

To illustrate, consider a rectangular pulse train, for which we know: 

  00 sinc nfAfGn   (4.3) 

The spectrum for  1 5 s  and T0 1  s  looks like: 

 

f

0.2A

0 2

Gn

4

6 8

10 12-2-4

-6-8

-10-12

 

 

Figure 4.3 
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For T0 5  s  we have: 

 

f

0.04 A

0 2

Gn

4

6 8

10 12-2-4

-6-8

-10-12

 

 

Figure 4.4 

The envelope retains the same shape (it was never a function of T0  anyway), 

but the amplitude gets smaller and smaller with increasing T0 . The spectral 

lines get closer and closer with increasing T0 . In the limit, it is impossible to 

draw the magnitude spectrum as a graph of Gn  because the amplitudes of the 

harmonic phasors have reduced to zero. 

It is possible, however, to graph a new quantity: 

 



2 

2 

2

0

0

0

0
T

T

tnfj

pn dtetgTG


 
(4.4) 

which is just a rearrangement of Eq. (3.2b). We suspect that the product G Tn 0  

will be finite as T0 , in the same way that the area remained constant as 

0T  in the family of rect functions we used to “explain” the impulse 

function. 

As T0 , the frequency of any “harmonic” nf 0  must now correspond to the 

general frequency variable which describes the continuous spectrum. 

As the period 
increases, the 
spectral lines get 
closer and closer, 
but smaller and 
smaller 
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In other words, n must tend to infinity as f 0  approaches zero, such that the 

product is finite: 

nf f T0 0 ,  (4.5) 

With the limiting process as defined in Eqs. (4.1) and (4.5), Eq. (4.4) becomes: 

 





 

 

2

0 dtetgTG ftj

n


 

(4.6) 

The right-hand side of this expression is a function of f (and not of t), and we 

represent it by: 

   





 

 

2 dtetgfG ftj 
 

(4.7) 

Therefore,   0
0

lim TGfG n
T 

  has the dimensions amplitude per unit frequency, 

and  fG  can be called the spectral density. 

To express  g t  in the time-domain using frequency components, we apply the 

limiting process to Eq. (4.2a). Here, we now notice that: 

f df T0 0 ,  (4.8) 

That is, the fundamental frequency becomes infinitesimally small as the period 

is made larger and larger. This agrees with our reasoning in obtaining 

Eq. (4.5), since there we had an infinite number, n, of infinitesimally small 

discrete frequencies, f df0  , to give the finite continuous frequency f.  

The Fourier 
transform defined 
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In order to apply the limiting process to Eq. (4.2a), we multiply the summation 

by T f0 0 1 : 

  





n

tnfj

np feTGtg 0

2

0
0

 
(4.9) 

and use Eq. (4.8) and the new quantity   0TGfG n . In the limit the 

summation becomes an integral, fndfnf 0 ,    tgtg p  , and: 

   





 

 

2 dfefGtg ftj 
 

(4.10) 

Eqs. (4.7) and (4.10) are collectively known as a Fourier transform pair. The 

function  G f  is the Fourier transform of  g t , and  g t  is the inverse 

Fourier transform of  G f . 

To recapitulate, we have shown that: 

   





 

 

2 dfefGtg ftj 
 

   





 

 

2 dtetgfG ftj 
 

(4.11a) 

 

(3.11b) 

These relationships can also be expressed symbolically by a Fourier transform 

pair: 

   g t G f  (4.12) 

The inverse Fourier 
transform defined 

The Fourier 
transform and 
inverse transform 
side-by-side 

Notation for a 
Fourier transform 
pair 
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4.2 Continuous Spectra 

The concept of a continuous spectrum is sometimes bewildering because we 

generally picture the spectrum as existing at discrete frequencies and with 

finite amplitudes. The continuous spectrum concept can be appreciated by 

considering a simple analogy. 

Consider a beam loaded with weights of G G G Gn1 2 3, , ,  ,  kilograms at 

uniformly spaced points x x x xn1 2 3, , ,  ,   as shown in (a) below: 

 

(a)

G1 G2 G3 Gn

x1 x2 x3 xn x1 xn

G x(  )

(b)  

 

Figure 4.5 

The beam is loaded at n discrete points, and the total weight W on the beam is 

given by: 

W Gi

i

n





1

 
(4.13) 

Now consider the case of a continuously loaded beam, as shown in Figure 

4.5(b) above. The loading density  G x , in kilograms per meter, is a function 

of x. The total weight on the beam is now given by a continuous sum of the 

infinitesimal weights at each point- that is, the integral of  G x  over the entire 

length: 

 
nx

x
dxxGW

 

 1
 

(4.14) 

Making sense of a 
continuous 
spectrum 

We can have either 
individual finite 
weights 

or continuous 
infinitesimal weights 
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In the discrete loading case, the weight existed only at discrete points. At other 

points there was no load. On the other hand, in the continuously distributed 

case, the loading exists at every point, but at any one point the load is zero. The 

load in a small distance dx, however, is given by  G x dx . Therefore  G x  

represents the relative loading at a point x. 

An exactly analogous situation exists in the case of a signal and its frequency 

spectrum. A periodic signal can be represented by a sum of discrete 

exponentials with finite amplitudes (harmonic phasors): 

 g t G en

j nf t

n






 2 0

 
(4.15) 

For a nonperiodic signal, the distribution of exponentials becomes continuous; 

that is, the spectrum exists at every value of f. At any one frequency f, the 

amplitude of that frequency component is zero. The total contribution in an 

infinitesimal interval df is given by  G f e dfj ft2 , and the function  g t  can be 

expressed in terms of the continuous sum of such infinitesimal components: 

   





 

 

2 dfefGtg ftj 
 

(4.16) 

An electrical analogy could also be useful: just replace the discrete loaded 

beam with an array of filamentary conductors, and the continuously loaded 

beam with a current sheet. The analysis is the same. 

We can get a signal 
from infinitesimal 
sinusoids – if we 
have an infinite 
number of them! 
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4.3 Existence of the Fourier Transform 

Dirichlet (1805-1859) investigated the sufficient conditions that could be 

imposed on a function  tg  for its Fourier transform to exist. These so-called 

Dirichlet conditions are: 

1. On any finite interval: 

 a)  tg  is bounded 

 b)  tg  has a finite number of maxima and minima 

 c)  tg  has a finite number of discontinuities. 

2.  tg  is “absolutely integrable”, i.e.   




 

 
dttg  

(4.17a) 

 

 

 

 

(3.17b) 

Note that these are sufficient conditions and not necessary conditions. Use of 

the Fourier transform for the analysis of many useful signals would be 

impossible if these were necessary conditions. 

Any signal with finite energy: 

   




 

 

2
dttgE  

(4.18) 

is absolutely integrable, and so all energy signals are Fourier transformable. 

Many signals of interest to electrical engineers are not energy signals and are 

therefore not absolutely integrable. These include the step function and all 

periodic functions. It can be shown that signals which have infinite energy but 

which contain a finite amount of power and meet Dirichlet condition 1 do have 

valid Fourier transforms. 

For practical purposes, for the signals or functions we may wish to analyse as 

engineers, we can use the rule of thumb that if we can draw a picture of the 

waveform  tg , then it has a Fourier transform  fG . 

The Dirichlet 
conditions are 
sufficient but not 
necessary 
conditions for the FT 
to exist 
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4.4 Fourier Transform of a rect Function 

Let’s find the spectrum of the following rectangular pulse: 

 

t

g t( )
A

T /2-T /2  

 

Figure 4.6 

We note that    g t A t T rect . We then have: 
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(4.19) 

Therefore, we have the Fourier transform pair: 

 A
t

T
AT fTrect sinc











 
(4.20) 

A common and 
useful signal… 

and its transform 
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We can also state this graphically: 
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Figure 4.7 

There are a few interesting observations we can make in general by considering 

this result. One is that a time limited function has frequency components 

approaching infinity. Another is that compression in time (by making T 

smaller) will result in an expansion of the frequency spectrum (“wider” sinc 

function in this case). Another is that the Fourier transform is a linear operation 

– multiplication by A in the time domain results in the spectrum being 

multiplied by A. 

Letting A=1 and T=1 in Eq. (4.20) results in what we shall call a “standard” 

transform: 

   rect sinct f  (4.21) 

It is standard in the sense that we cannot make any further simplifications. It 

expresses a fundamental relationship between the rect and sinc functions 

without any complicating factors. 

Time and frequency 
characteristics 
reflect an inverse 
relationship 

One of the most 
common transform 
pairs – commit it to 
memory! 
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4.5 Linearity and Time-Scaling Properties of the 
Fourier Transform 

We may now state our observations more formally. We see that the linearity 

property of the Fourier transform pair can be defined as: 

   ag t aG f  (4.22) 

We can also generalise the time scaling property to: 

 fTGT
T

t
g 








 

(4.23) 

Thus, expansion in time corresponds to compression in frequency and vice 

versa. 

We could (and should in future) derive our Fourier transforms by starting with 

a standard Fourier transform and then applying appropriate Fourier transform 

pair properties. For example, we could arrive at Eq. (4.20) without integration 

by the following: 

   rect sinct f (standard transform) 

 rect sinc
t

T
T fT









 

(scaling property) 

 A
t

T
AT fTrect sinc









 

(linearity) 
(4.24) 

We now only have to derive enough standard transforms and discover a few 

Fourier transform properties to be able to handle almost any signal and system 

of interest. 

Linearity is obeyed 
by transform pairs 

Time scaling 
property of 
transform pairs 

Applying standard 
properties to derive 
a Fourier transform 
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4.6 Symmetry between the Time-Domain and 
Frequency-Domain 

From the definition of the inverse Fourier transform: 

   





 

 

2 dfefGtg ftj 
 

(4.25) 

we can make the transformations ft   and xf   to give: 

   





 

 

2 dxexGfg xfj 
 

(4.26) 

Now since the value of a definite integral is independent of the variable of 

integration, we can make the change of variable tx   to give: 

   





 

 

2 dtetGfg tfj 
 

(4.27) 

Notice that the right-hand side is precisely the definition of the Fourier 

transform of the function  tG . Thus, there is an almost symmetrical 

relationship between the transform and its inverse. This is summed up in the 

duality property: 

   fgtG   (4.28) 

 

Duality property of 
transform pairs 



4.15 

PMcL Symmetry between the Time-Domain and Frequency-Domain Index     

2015  4 - The Fourier Transform 

EXAMPLE 4.1 Fourier Transform of a sinc Function 

Consider a rectangular pulse in the frequency-domain. This represents the 

frequency response of an ideal low-pass filter, with a cut-off frequency of B. 

f

G  f(  )
1

B-B  

We are interested in finding the inverse Fourier transform of this function. 

Using the duality property, we know that if    rect sinct f  then 

   ft  rectsinc . Since the rect function is symmetric, this can also be 

written as    ft rectsinc  . But our frequency-domain transform is 

   BffG 2rect , so we need to apply the time-scale property in reverse to 

arrive at: 

   BfBtB 2rect2sinc2   

Graphically: 

f

g -f(   )
1

Bt

G  t(  )

1

B

1 3

B

2 5-1

B

-1-3

B

-2-5 -B

B2

B2 B2 B2B2B2B2  

 

Fourier transform of 
a sinc function 
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4.7  Fourier Transform of an Impulse  

We wish to find the Fourier transform of the impulse function   t . We can 

find by direct integration (using the sifting property of the impulse function): 

    1
 

 

2  




 dtetfG ftj   
(4.29) 

That is, we have another standard Fourier transform pair: 

  t 1 (4.30) 

It is interesting to note that we could have obtained the same result using 

Eq. (4.20). Let the height be such that the area AT is always equal to 1, then we 

have from Eq. (4.20): 

 
1

T

t

T
fTrect sinc











 
(4.31) 

Now let T0  so that the rectangle function turns into the impulse function 

  t . Noting that  sinc 0  is unity, we arrive at Eq. (4.30). Graphically, we 

have: 

 

t

g t( )
1

0 f

G  f(  )
1

 

 

Figure 4.8 

This result says that an impulse function is composed of all frequencies from 

DC to infinity, and all contribute equally. 

Fourier transform of 
an impulse function 
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The method used in finding the Fourier transform of the impulse highlights one 

very important feature of finding Fourier transforms - there is usually more 

than one way to find them, and it is up to us (with experience and ability) to 

find the easiest way. However, once the Fourier transform has been obtained 

for a function, it is unique - this serves as a check for different methods. 

EXAMPLE 4.2 Fourier Transform of a Constant 

We wish to find the Fourier transform of the constant 1 (if it exists), which is a 

DC signal. Choosing the path of direct evaluation of the integral, we get: 

  





 

 

21 dtefG ftj 
 

which appears intractable. However, we can approach the problem another 

way. If we let our rectangular function of Figure 4.6 take on infinite width, it 

becomes a DC signal. As the width of the rectangular pulse becomes larger and 

larger, the sinc function becomes narrower and narrower, and its amplitude 

increases. Eventually, with infinite pulse width, the sinc function has no width 

and infinite height – an impulse function. Using Eq. (4.20) with T , and 

noting that the area under the sinc function is 1 T , we therefore have: 

 1 f  

Yet another way to arrive at this result is through recognising that a certain 

amount of symmetry exists in equations for the Fourier transform and inverse 

Fourier transform. Applying the duality property to Eq. (4.30) gives: 

 1  f  

Since the impulse function is an even function, we get: 

 1 f  

which is the same result as before. Again, two different methods converged on 

the same result, and one method (direct integration) seemed impossible! It is 

therefore advantageous to become familiar with the properties of the Fourier 

transform. 

Fourier transform of 
a constant (one) 
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4.8 Time Shifting 

A time shift to the right of 0t  seconds (i.e. a time delay) can be represented by 

 0ttg  . A time shift to the left of 0t  seconds can be represented by  0ttg  . 

The Fourier transform of a time shifted function to the right is: 

   





 

 

 

2

00 dtettgttg ftj 
 

(4.32) 

Letting 0ttx   then dtdx   and 0txt   and we have: 

     

    0

0

2

0

 

 

2

0

ftj

txfj

efGttg

dxexgttg

















 
 

(4.33) 

Therefore, a time shift to the right of 0t  seconds in the time-domain is 

equivalent to multiplication by 02 ftj
e


 in the frequency-domain. Thus, a time 

delay simply causes a linear phase change in the spectrum – the magnitude 

spectrum is left unaltered. For example, the Fourier transform of 

  






 


T

Tt
Atg

2
rect  is     fTjefTATfG  sinc  and is shown below: 
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Figure 4.9 

Time shift property 
defined 

Time shifting a 
function just 
changes the phase 
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4.9 Frequency Shifting 

Similarly to the last section, a spectrum  fG  can be shifted to the right, 

 0ffG  , or to the left,  0ffG  . This property will be used to derive 

several standard transforms and is particularly important in communications 

where it forms the basis for modulation and demodulation. 

The inverse Fourier transform of a frequency shifted function to the right is: 

   0

 

 

2

0 ffGdfeffG ftj  






 
(4.34) 

Letting 0ffx   then dfdx   and 0fxf   and we have: 

     

   0

2

0

 

 

2

0

0

ffGetg

ffGdxexG

tfj

tfxj




















 
(4.35) 

Therefore, a frequency shift to the right of 0f  Hertz in the frequency-domain is 

equivalent to multiplication by 02 ftj
e


 in the time-domain. Similarly, a shift to 

the left by 0f  Hertz in the frequency-domain is equivalent to multiplication by 

02 ftj
e


 in the time-domain. The sign of the exponent in the shifting factor is 

opposite to that with time shifting – this can also be explained in terms of the 

duality property.  

For example, consider “amplitude modulation”, making use of the of the Euler 

expansion for a cosine: 

      

   cc

tfjtfj

c

ffGffG

eetgtftg cc











2

1

2

1

2

2

12

2

12cos


 

(4.36) 

 

Frequency shift 
property defined 

Multiplication by a 
sinusoid in the time-
domain shifts the 
original spectrum up 
and down by the 
carrier frequency 
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4.10 The Fourier Transform of Sinusoids 

Using the transform pair  1 f  derived previously and the frequency 

shifting property, we can write: 

 

 0

2

0

2

0

0

ffe

ffe

tfj

tfj


















 

(4.37a) 

 

(3.37b) 

Therefore, by substituting into Euler’s relationship for the cosine and sine: 

  tfjtfj
eetf 00 2

2

12

2

1
02cos

 
  

 
tfjjtfjj

tfj

j

tfj

j

ee

eetf

00
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2

2

2

12

2

1
02sin













 

(4.38a) 

 

 

 

(3.38b) 

we get the following transform pairs: 

     

     000

000

22
2sin

2

1

2

1
2cos

ff
j

ff
j

tf

fffftf













 

 

(4.39a) 

 

 

(3.39b) 

Graphically: 
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Figure 4.10 

Standard transforms 
for cos and sin 

Spectra for cos and 
sin 
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4.11 Relationship between the Fourier Series and 
Fourier Transform 

From the definition of the Fourier series, we know we can express any periodic 

waveform as a sum of harmonic phasors: 

 g t G en

j nf t

n






 2 0

 
(4.40) 

This sum of harmonic phasors is just a linear combination of complex 

exponentials. From Eq. (4.37a), we already know the transform pair: 

 0

2 0 nffe
tnfj

 
 (4.41) 

We therefore expect, since the Fourier transform is a linear operation, that we 

can easily find the Fourier transform of any periodic signal. Scaling 

Eq. (4.41) by a complex constant, nG , we have: 

 0

2 0 nffGeG n

tnfj

n  
 (4.42) 

Summing over all harmonically related exponentials, we get: 

 











n

n

n

tnfj

n nffGeG 0

2 0 

 
(4.43) 

Therefore, in words: 

The spectrum of a periodic signal is a weighted train of 

impulses – each weight is equal to the Fourier series 

coefficient at that frequency, nG  

(4.44) 
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EXAMPLE 4.3 Fourier Transform of a Rectangular Pulse Train 

Find the Fourier transform of the rectangular pulse train  g t  shown below: 

t0

g  t( )
A

T0



 

We have already found the Fourier series coefficients for this waveform: 

  00 sinc nfAfGn   

For the case of  T0 5, the spectrum is then a weighted train of impulses, with 

spacing equal to the fundamental of the waveform, 0f : 

-10 f
0 f

0.2A

0 2 f
0

4 f
0

6 f
0

8 f
0

10f
0

12f
0

-2 f
0

-4 f
0

-6 f
0

-8 f
0

-12 f
0

Gnweights = 

(  )G  f

 

This should make intuitive sense – the spectrum is now defined as “spectral 

density”, or a graph of infinitesimally small phasors spaced infinitesimally 

close together. If we have an impulse in the spectrum, then that must mean a 

finite phasor at a specific frequency, i.e. a sinusoid (we recognise that a single 

sinusoid has a pair of impulses for its spectrum – see Figure 4.10). 

The double-sided 
magnitude spectrum 
of a rectangular 
pulse train is a 
weighted train of 
impulses 

Pairs of impulses in 
the spectrum 
correspond to a 
sinusoid in the time-
domain 
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4.12 The Fourier Transform of a Uniform Train of Impulses 

We will encounter a uniform train of impulses frequently in our analysis of 

communication systems: 

 

t0

g  t( )
1

T0 T02 T03T0-T0-2  

 

Figure 4.11 

To find the Fourier transform of this waveform, we simply note that it is 

periodic, and so Eq. (4.43) applies. We have already found the Fourier series 

coefficients of the uniform train of impulses as the limit of a rectangular pulse 

train: 

0fGn   (4.45) 

Using Eq. (4.43), we therefore have the following Fourier transform pair: 

    t kT f f nf
k n

  








 0 0 0  
(4.46) 

Graphically: 
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Figure 4.12 

The Fourier 
transform of a 
uniform train of 
impulses is a 
uniform train of 
impulses 
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4.13 Standard Fourier Transforms 
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4.14 Fourier Transform Properties 

Assuming    g t G f . 

   ag t aG f  
(F.6) 

 fTGT
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Time-shifting 
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Duality 
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4.15 Summary 

 Aperiodic waveforms do not have a Fourier series – they have a Fourier 

transform. Periodic waveforms also have a Fourier transform if we allow 

for the existence of impulses in the transform. 

 A spectrum, or spectral density, of any waveform is a graph of the 

amplitude and phase of the Fourier transform of the waveform. 

 To find the Fourier transform of a signal, we start with a known Fourier 

transform pair, and apply any number of Fourier transform pair properties 

to arrive at the solution. We can check if necessary by using the definition 

of the Fourier transform and its inverse. 

 The Fourier transform of a periodic signal is a weighted train of impulses – 

each impulse occurs at a harmonic of the fundamental and is weighted by 

the corresponding Fourier series coefficient at that frequency. 
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Exercises 

1. 

Write an expression for the time domain representation of the voltage signal 

with double sided spectrum given below: 

f

X ( f )

1000-1000

2 -30°2 30°

 

What is the power of the signal? 

2. 

Use the integration and time shift rules to express the Fourier transform of the 

pulse below as a sum of exponentials. 

t

x(t)

2-1

2

40  
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3. 

Find the Fourier transforms of the following functions: 

t
-5

10

(  )g t

1 2-1-2

t

1

(  )g t

/2-/2

cos t

1

t0

(  )g t

21 3 4

t
2

Two identical
cycles

1

t0

(  )g t

21 3 4 5

2

3

(a)

(b)

(c)

(d)

 

4. 

Show that: 

 22 2

2

fa

a
e

ta
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5. 

The Fourier transform of a pulse  tp  is  fP . Find the Fourier transform of 

 tg  in terms of  fP . 

t

p t( )

1

1

g t( )

t

1

-1.5

2

 

6. 

Show that: 

       000 2cos2 ftfGttgttg   

7. 

Use  fG1  and  fG2  to evaluate    tgtg 21   for the signals shown below: 

t

a

t

1

(  )g  t
1

(  )g  t
2

ae-at
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8. 

Find    fGfG 21   for the signals shown below: 

f

G   f(  )

A

f
0

1

-f
0

f
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k

f
0

2

-f
0  

9. 

Determine signals  tg  whose Fourier transforms are shown below: 

(a) 
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10. 

Using the time-shifting property, determine the Fourier transform of the signal 

shown below: 

t

g  t(  )

A

T

-T

-A
 

11. 

Using the time-differentiation property, determine the Fourier transform of the 

signal below: 

t

g  t(  )

A

2

-2

-A
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William Thomson (Lord Kelvin) (1824-1907) 

William Thomson was probably the first true electrical engineer. His 

engineering was firmly founded on a solid bedrock of mathematics. He 

invented, experimented, advanced the state-of-the-art, was entrepreneurial, was 

a businessman, had a multi-disciplinary approach to problems, held office in 

the professional body of his day (the Royal Society), published papers, gave 

lectures to lay people, strived for an understanding of basic physical principles 

and exploited that knowledge for the benefit of mankind. 

William Thomson was born in Belfast, Ireland. His father was a professor of 

engineering. When Thomson was 8 years old his father was appointed to the 

chair of mathematics at the University of Glasgow. By age 10, William 

Thomson was attending Glasgow University. He studied astronomy, chemistry 

and natural philosophy (physics, heat, electricity and magnetism). Prizes in 

Greek, logic (philosophy), mathematics, astronomy and physics marked his 

progress. In 1840 he read Fourier’s The Analytical Theory of Heat and wrote: 

…I had become filled with the utmost admiration for the splendour and poetry 

of Fourier… I took Fourier out of the University Library; and in a fortnight I 

had mastered it - gone right through it. 

At the time, lecturers at Glasgow University took a strong interest in the 

approach of the French mathematicians towards physical science, such as 

Lagrange, Laplace, Legendre, Fresnel and Fourier. In 1840 Thomson also read 

Laplace’s Mécanique Céleste and visited Paris. 

In 1841 Thomson entered Cambridge and in the same year he published a 

paper on Fourier's expansions of functions in trigonometrical series. A more 

important paper On the uniform motion of heat and its connection with the 

mathematical theory of electricity was published in 1842. 

The examinations in Cambridge were fiercely competitive exercises in problem 

solving against the clock. The best candidates were trained as for an athletics 

contest. Thomson (like Maxwell later) came second. A day before he left 

Cambridge, his coach gave him two copies of Green’s Essay on the 
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Application of Mathematical Analysis to the Theories of Electricity and 

Magnetism. 

After graduating, he moved to Paris on the advice of his father and because of 

his interest in the French approach to mathematical physics. Thomson began 

trying to bring together the ideas of Faraday, Coulomb and Poisson on 

electrical theory. He began to try and unify the ideas of “action-at-a-distance”, 

the properties of the “ether” and ideas behind an “electrical fluid”. He also 

became aware of Carnot’s view of heat. 

In 1846, at the age of twenty two, he returned to Glasgow on a wave of 

testimonials from, among others, De Morgan, Cayley, Hamilton, Boole, 

Sylvester, Stokes and Liouville, to take up the post of professor of natural 

philosophy. In 1847-49 he collaborated with Stokes on hydrodynamic studies, 

which Thomson applied to electrical and atomic theory. In electricity Thomson 

provided the link between Faraday and Maxwell. He was able to mathematise 

Faraday’s laws and to show the formal analogy between problems in heat and 

electricity. Thus the work of Fourier on heat immediately gave rise to theorems 

on electricity and the work of Green on potential theory immediately gave rise 

to theorems on heat flow. Similarly, methods used to deal with linear and 

rotational displacements in elastic solids could be applied to give results on 

electricity and magnetism. The ideas developed by Thomson were later taken 

up by Maxwell in his new theory of electromagnetism. 

Thomson’s other major contribution to fundamental physics was his 

combination of the almost forgotten work of Carnot with the work of Joule on 

the conservation of energy to lay the foundations of thermodynamics. The 

thermodynamical studies of Thomson led him to propose an absolute 

temperature scale in 1848 (The Kelvin absolute temperature scale, as it is now 

known, was defined much later after conservation of energy was better 

understood). 
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The Age of the Earth 

In the first decades of the nineteenth century geological evidence for great 

changes in the past began to build up. Large areas of land had once been under 

water, mountain ranges had been thrown up from lowlands and the evidence of 

fossils showed the past existence of species with no living counterparts. Lyell, 

in his Principles of Geology, sought to explain these changes “by causes now 

in operation”. According to his theory, processes – such as slow erosion by 

wind and water; gradual deposition of sediment by rivers; and the cumulative 

effect of earthquakes and volcanic action – combined over very long periods of 

time to produce the vast changes recorded in the Earth’s surface. Lyell’s so-

called ‘uniformitarian’ theory demanded that the age of the Earth be measured 

in terms of hundreds of millions and probably in terms of billions of years. 

Lyell was able to account for the disappearance of species in the geological 

record but not for the appearance of new species. A solution to this problem 

was provided by Charles Darwin (and Wallace) with his theory of evolution by 

natural selection. Darwin’s theory also required vast periods of time for 

operation. For natural selection to operate, the age of the Earth had to be 

measured in many hundreds of millions of years. 

Such demands for vast amounts of time run counter to the laws of 

thermodynamics. Every day the sun radiates immense amounts of energy. By 

the law of conservation of energy there must be some source of this energy. 

Thomson, as one of the founders of thermodynamics, was fascinated by this 

problem. Chemical processes (such as the burning of coal) are totally 

insufficient as a source of energy and Thomson was forced to conclude that 

gravitational potential energy was turned into heat as the sun contracted. On 

this assumption his calculations showed that the Sun (and therefore the Earth) 

was around 100 million years old. 
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However, Thomson’s most compelling argument concerned the Earth rather 

than the Sun. It is well known that the temperature of the Earth  increases with 

depth and 

this implies a continual loss of heat from the interior, by conduction 

outwards through or into the upper crust. Hence, since the upper crust does 

not become hotter from year to year there must be a…loss of heat from the 

whole earth. It is possible that no cooling may result from this loss of heat 

but only an exhaustion of potential energy which in this case could scarcely 

be other than chemical. 

Since there is no reasonable mechanism to keep a chemical reaction going at a 

steady pace for millions of years, Thomson concluded “…that the earth is 

merely a warm chemically inert body cooling”. Thomson was led to believe 

that the Earth was a solid body and that it had solidified at a more or less 

uniform temperature. Taking the best available measurements of the 

conductivity of the Earth and the rate of temperature change near the surface, 

he arrived at an estimate of 100 million years as the age of the Earth 

(confirming his calculations of the Sun’s age). 

The problems posed to Darwin’s theory of evolution became serious as 

Thomson’s arguments sank in. In the fifth edition of The Origin of Species, 

Darwin attempted to adjust to the new time scale by allowing greater scope for 

evolution by processes other than natural selection. Darwin was forced to ask 

for a suspension of judgment of his theory and in the final chapter he added 

With respect to the lapse of time not having been sufficient since our planet 

was consolidated for the assumed amount of organic change, and this 

objection, as argued by [Thomson], is probably one of the gravest yet 

advanced, I can only say, firstly that we do not know at what rate species 

change as measured by years, and secondly, that many philosophers are not 

yet willing to admit that we know enough of the constitution of the universe 

and of the interior of our globe to speculate with safety on its past duration. 

(Darwin, The Origin of Species, Sixth Edition, p.409) 
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The chief weakness of Thomson’s arguments was exposed by Huxley 

…this seems to be one of the many cases in which the admitted accuracy of 

mathematical processes is allowed to throw a wholly inadmissible 

appearance of authority over the results obtained by them. Mathematics 

may be compared to a mill of exquisite workmanship, which grinds you stuff 

of any degree of fineness; but nevertheless, what you get out depends on 

what you put in; and as the grandest mill in the world will not extract 

wheat-flour from peascods, so pages of formulae will not get a definite 

result out of loose data. 

(Quarterly Journal of the Geological Society of London, Vol. 25, 1869) 

However, Thomson’s estimates were the best available and for the next thirty 

years geology took its time from physics, and biology took its time from 

geology. But Thomson and his followers began to adjust his first estimate 

down until at the end of the nineteenth century the best physical estimates of 

the age of the Earth and Sun were about 20 million years whilst the minimum 

the geologists could allow was closer to Thomson’s original 100 million years. 

Then in 1904 Rutherford announced that the radioactive decay of radium was 

accompanied by the release of immense amounts of energy and speculated that 

this could replace the heat lost from the surface of the Earth. 

The discovery of the radioactive elements…thus increases the possible limit 

of the duration of life on this planet, and allows the time claimed by the 

geologist and biologist for the process of evolution. 

(Rutherford quoted in Burchfield, p.164) 

A problem for the geologists was now replaced by a problem for the physicists. 

The answer was provided by a theory which was just beginning to be gossiped 

about. Einstein’s theory of relativity extended the principle of conservation of 

energy by taking matter as a form of energy. It is the conversion of matter to 

heat which maintains the Earth’s internal temperature and supplies the energy 

radiated by the sun. The ratios of lead isotopes in the Earth compared to 

meteorites now leads geologists to give the Earth an age of about 4.55 billion 

years. 

A variant of the 
adage: 
“Garbage in equals 
garbage out”. 
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The Transatlantic Cable 

The invention of the electric telegraph in the 1830s led to a network of 

telegraph wires covering England, western Europe and the more settled parts of 

the USA. The railroads, spawned by the dual inventions of steam and steel, 

were also beginning to crisscross those same regions. It was vital for the 

smooth and safe running of the railroads, as well as the running of empires, to 

have speedy communication. 

Attempts were made to provide underwater links between the various separate 

systems. The first cable between Britain and France was laid in 1850. The 

operators found the greatest difficulty in transmitting even a few words. After 

12 hours a trawler accidentally caught and cut the cable. A second, more 

heavily armoured cable was laid and it was a complete success. The short lines 

worked, but the operators found that signals could not be transmitted along 

submarine cables as fast as along land lines without becoming confused. 

In spite of the record of the longer lines, the American Cyrus J. Fields proposed 

a telegraph line linking Europe and America. Oceanographic surveys showed 

that the bottom of the Atlantic was suitable for cable laying. The connection of 

existing land telegraph lines had produced a telegraph line of the length of the 

proposed cable through which signals had been passed extremely rapidly. The 

British government offered a subsidy and money was rapidly raised. 

Faraday had predicted signal retardation but he and others like Morse had in 

mind a model of a submarine cable as a hosepipe which took longer to fill with 

water (signal) as it got longer. The remedy was thus to use a thin wire (so that 

less electricity was needed to charge it) and high voltages to push the signal 

through. Faraday’s opinion was shared  by the electrical adviser to the project, 

Dr Whitehouse (a medical doctor). 

Thomson’s researches had given him a clearer mathematical picture of the 

problem. The current in a telegraph wire in air is approximately governed by 

the wave equation. A pulse on such a wire travels at a well defined speed with 

no change of shape or magnitude with time. Signals can be sent as close 

together as the transmitter can make them and the receiver distinguish them. 
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In undersea cables of the type proposed, capacitive effects dominate and the 

current is approximately governed by the diffusion (i.e. heat) equation. This 

equation predicts that electric pulses will last for a time that is proportional to 

the length of the cable squared. If two or more signals are transmitted within 

this time, the signals will be jumbled at the receiver. In going from submarine 

cables of 50 km length to cables of length 2400 km, retardation effects are 

2500 times worse. Also, increasing the voltage makes this jumbling (called 

intersymbol interference) worse. Finally, the diffusion equation shows that the 

wire should have as large a diameter as possible (small resistance). 

Whitehouse, whose professional reputation was now involved, denied these 

conclusions. Even though Thomson was on the board of directors of Field’s 

company, he had no authority over the technical advisers. Moreover the 

production of the cable was already underway on principles contrary to 

Thomson’s. Testing the cable, Thomson was astonished to find that some 

sections conducted only half as well as others, even though the manufacturers 

were supplying copper to the then highest standards of purity. 

Realising that the success of the enterprise would depend on a fast, sensitive 

detector, Thomson set about to invent one. The problem with an ordinary 

galvanometer is the high inertia of the needle. Thomson came up with the 

mirror galvanometer in which the pointer is replaced by a beam of light. 

In a first attempt in 1857 the cable snapped after 540 km had been laid. In 

1858, Europe and America were finally linked by cable. On 16 August it 

carried a 99-word message of greeting from Queen Victoria to President 

Buchanan. But that 99-word message took 16½ hours to get through. In vain, 

Whitehouse tried to get his receiver to work. Only Thomson’s galvanometer 

was sensitive enough to interpret the minute and blurred messages coming 

through. Whitehouse ordered that a series of huge two thousand volt induction 

coils be used to try to push the message through faster – after four weeks of 

this treatment the insulation finally failed; 2500 tons of cable and £350 000 of 

capital lay useless on the ocean floor. 
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In 1859 eighteen thousand kilometres of undersea cable had been laid in other 

parts of the world, and only five thousand kilometres were operating. In 1861 

civil war broke out in the United States. By 1864 Field had raised enough 

capital for a second attempt. The cable was designed in accordance with 

Thomson’s theories. Strict quality control was exercised: the copper was so 

pure that for the next 50 years ‘telegraphist’s copper’ was the purest available. 

Once again the British Government supported the project – the importance of 

quick communication in controlling an empire was evident to everybody. The 

new cable was mechanically much stronger but also heavier. Only one ship 

was large enough to handle it and that was Brunel’s Great Eastern. She was 

fives time larger than any other existing ship. 

This time there was a competitor. The Western Union Company had decided to 

build a cable along the overland route across America, Alaska, the Bering 

Straits, Siberia and Russia to reach Europe the long way round. The 

commercial success of the cable would therefore depend on the rate at which 

messages could be transmitted. Thomson had promised the company a rate of 

8 or even 12 words a minute. Half a million pounds was being staked on the 

correctness of the solution of a partial differential equation. 

In 1865 the Great Eastern laid cable for nine days, but after 2000 km the cable 

parted. After two weeks of unsuccessfully trying to recover the cable, the 

expedition left a buoy to mark the spot and sailed for home. Since 

communication had been perfect up until the final break, Thomson was 

confident that the cable would do all that was required. The company decided 

to build and lay a new cable and then go back and complete the old one. 

Cable laying for the third attempt started on 12 July 1866 and the cable was 

landed on the morning of the 27
th

. On the 28
th

 the cable was open for business 

and earned £1000. Western Union ordered all work on their project to be 

stopped at a loss of $3 000 000. 
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On 1 September after three weeks of effort the old cable was recovered and on 

8 September a second perfect cable linked America and Europe. A wave of 

knighthoods swept over the engineers and directors. The patents which 

Thomson held made him a wealthy man. 

For his work on the transatlantic cable Thomson was created Baron Kelvin of 

Largs in 1892. The Kelvin is the river which runs through the grounds of 

Glasgow University and Largs is the town on the Scottish coast where 

Thomson built his house. 

Other Achievements 

Thomson worked on several problems associated with navigation – sounding 

machines, lighthouse lights, compasses and the prediction of tides. Tides are 

primarily due to the gravitational effects of the Moon, Sun and Earth on the 

oceans but their theoretical investigation, even in the simplest case of a single 

ocean covering a rigid Earth to a uniform depth, is very hard. Even today, the 

study of only slightly more realistic models is only possible by numerical 

computer modelling. Thomson recognised that the forces affecting the tides 

change periodically. He then approximated the height of the tide by a 

trigonometric polynomial – a Fourier series with a finite number of terms. The 

coefficients of the polynomial required calculation of the Fourier series 

coefficients by numerical integration – a task that “…required not less than 

twenty hours of calculation by skilled arithmeticians.” To reduce this labour 

Thomson designed and built a machine which would trace out the predicted 

height of the tides for a year in a few minutes, given the Fourier series 

coefficients. 

Thomson also built another machine, called the harmonic analyser, to perform 

the task “which seemed to the Astronomer Royal so complicated and difficult 

that no machine could master it’ of computing the Fourier series coefficients 

from the record of past heights. This was the first major victory in the struggle 

“to substitute brass for brain” in calculation. 

There are many 
other factors 
influencing local 
tides – such as 
channel width – 
which produce 
phenomena akin to 
resonance in the 
tides. One example 
of this is the narrow 
Bay of Fundy, 
between Nova 
Scotia and New 
Brunswick, where 
the tide can be as 
high as 21m. In 
contrast, the 
Mediterranean Sea 
is almost tideless 
because it is a 
broad body of water 
with a narrow 
entrance. 

Michelson (of 
Michelson-Morley 
fame) was to build a 
better machine that 
used up to 80 
Fourier series 
coefficients. The 
production of ‘blips’ 
at discontinuities by 
this machine was 
explained by Gibbs 
in two letters to 
Nature. These ‘blips’ 
are now referred to 
as the “Gibbs 
phenomenon”. 
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Thomson introduced many teaching innovations to Glasgow University. He 

introduced laboratory work into the degree courses, keeping this part of the 

work distinct from the mathematical side. He encouraged the best students by 

offering prizes. There were also prizes which Thomson gave to the student that 

he considered most deserving. 

Thomson worked in collaboration with Tait to produce the now famous text 

Treatise on Natural Philosophy which they began working on in the early 

1860s. Many volumes were intended but only two were ever written which 

cover kinematics and dynamics. These became standard texts for many 

generations of scientists. 

In later life he developed a complete range of measurement instruments for 

physics and electricity. He also established standards for all the quantities in 

use in physics. In all he published over 300 major technical papers during the 

53 years that he held the chair of Natural Philosophy at the University of 

Glasgow. 

During the first half of Thomson's career he seemed incapable of being wrong 

while during the second half of his career he seemed incapable of being right. 

This seems too extreme a view, but Thomson's refusal to accept atoms, his 

opposition to Darwin's theories, his incorrect speculations as to the age of the 

Earth and the Sun, and his opposition to Rutherford's ideas of radioactivity, 

certainly put him on the losing side of many arguments later in his career. 

William Thomson, Lord Kelvin, died in 1907 at the age of 83. He was buried 

in Westminster Abbey in London where he lies today, adjacent to Isaac 

Newton. 
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5 Filtering and Sampling 
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Introduction 

Since we can now represent signals in terms of a Fourier series (for periodic 

signals) or a Fourier transform (for aperiodic signals), we seek a way to 

describe a system in terms of frequency. That is, we seek a model of a linear, 

time-invariant system governed by continuous-time differential equations that 

expresses its behaviour with respect to frequency, rather than time. The 

concept of a signal’s spectrum and a system’s frequency response will be seen 

to be of fundamental importance in the frequency-domain characterisation of a 

system. 

The power of the frequency-domain approach will be seen as we are able to 

determine a system’s output given almost any input. Fundamental signal 

operations can also be explained easily – such as sampling / reconstruction and 

modulation / demodulation – in the frequency domain that would otherwise 

appear bewildering in the time domain. 

 

5.1 Response to a Sinusoidal Input 

We have already seen that the output of a LTI system is given by: 

     txthty   (5.1) 

if initial conditions are zero. 

Suppose the input to the system is: 

     tAtx 0cos  (5.2) 

We have a 
description of 
signals in the 
frequency domain -
we need one for 
systems 

Starting with a 
convolution 
description of a 
system 

We apply a sinusoid 



5.3 

PMcL Response to a Sinusoidal Input Index     

2015  5 - Filtering and Sampling 

We have already seen that this can be expressed (thanks to Euler) as: 
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Where X is the phasor representing  tx . Inserting this into Eq. (5.1) gives: 
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(5.4) 

This rather unwieldy expression can be simplified. First of all, if we take the 

Fourier transform of the impulse response, we get: 

   





 

 
dtethH tj  

(5.5) 

where obviously f 2 . Now Eq. (5.4) can be written as: 

      tjtj
eXHXeHty 00 *

00

  
  (5.6) 

If  th  is real, then: 

    *HH   (5.7) 

which should be obvious by looking at the definition of the Fourier transform. 

Now let: 

 XHY 0  (5.8) 

A sinusoid is just a 
sum of two complex 
conjugate counter-
rotating phasors 

The Fourier 
transform of the 
impulse response 
appears in our 
analysis… 

…and relates the 
output phasor with 
the input phasor! 
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This equation is of fundamental importance! It says that the output phasor to a 

system is equal to the input phasor to the system, scaled in magnitude and 

changed in angle by an amount equal to  0H  (a complex number). Also: 

    *

0

*

0

** XHXHY    (5.9) 

Eq. (5.6) can now be written as: 

  tjtj
eYYety 00 *  

  (5.10) 

which is just another way of writing the sinusoid: 

      000 cos  HtHAty   (5.11) 

Hence the response resulting from the sinusoidal input      tAtx 0cos  is 

also a sinusoid with the same frequency 0 , but with the amplitude scaled by 

the factor  0H  and the phase shifted by an amount  0H . 

The function  H  is termed the frequency response.  H  is called the 

magnitude response and  H  is called the phase response. Note that the 

system impulse response and the frequency response form a Fourier transform 

pair: 

   fHth   (5.12) 

We now have an easy way of analysing systems with sinusoidal inputs: simply 

determine  fH  and apply  XfHY 0 . 

There are two ways to get  fH . We can find the system impulse response 

 th  and take the Fourier transform, or we can find it directly from the 

differential equation describing the system. 

The magnitude and 
phase of the input 
sinusoid change – 
according to the 
Fourier transform of 
the impulse 
response 

The impulse 
response and 
frequency response 
form a Fourier 
transform pair 

Frequency, 
magnitude and 
phase response 
defined 

Two ways to find the 
frequency response 
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EXAMPLE 5.1 Finding the Frequency Response of an RC Circuit 

For the simple RC circuit below, find the forced response to an arbitrary 

sinusoid (this is also termed the sinusoidal steady-state response). 

v i

R

voC

 

The input/output differential equation for the circuit is: 

 
   tv

RC
tv

RCdt

tdv
io

o 11
  

which is obtained by KVL. Since the input is a sinusoid, which is really just a 

sum of conjugate complex exponentials, we know from Eq. (5.6) that if the 

input is 
  


tj

i AeV 0  then the output is     


tj

o AeHV 0

0 . Note that iV  and 

oV  are complex numbers, and if the factor 
tj

e 0  were suppressed they would be 

phasors. The differential equation above then becomes: 

              


tjtjtj
Ae

RC
AeH

RC
AeH

dt

d
000

11
00  

and thus: 

           


tjtjtj
Ae

RC
AeH

RC
AeHj 000

11
000  

 

Finding the 
frequency response 
of a simple system 
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Dividing both sides by 
  


tj

i AeV 0  gives: 

   
RC

H
RC

Hj
11

000    

and therefore: 

 
RCj

RC
H

1

1

0

0





  

which yields for an arbitrary frequency: 

 
RCj

RC
H

1

1





  

This is the frequency response for the simple RC circuit. As a check, we know 

that the impulse response is: 

   tueRCth RCt1  

Using your standard transforms, show that the frequency response is the 

Fourier transform of the impulse response. 

The magnitude function is: 

 
 22 1

1

RC

RC
H





  

and the phase function is: 

   RCH  1tan  

 

Frequency response 
of a lowpass RC 
circuit 

Impulse response of 
a lowpass RC circuit 

Magnitude response 
of a lowpass RC 
circuit 

Phase response of a 
lowpass RC circuit 
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Plots of the magnitude and phase function are shown below: 
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-90 º

H (   )  

The behaviour of the RC circuit is summarized by noting that it passes low 

frequency signals without any significant attenuation and without producing 

any significant phase shift. As the frequency increases, the attenuation and the 

phase shift become larger. Finally as the frequency increases to  , the RC 

circuit completely “blocks” the sinusoidal input. As a result of this behaviour, 

the circuit is an example of a lowpass filter. The frequency RC10   is 

termed the cutoff frequency. The bandwidth of the filter is also equal to 0 . 

 

A graph of the 
frequency response 
– in this case as 
magnitude and 
phase 

The system’s 
behaviour described 
in terms of 
frequency 

Filter terminology 
defined 
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5.2 Response to an Arbitrary Input 

Since we can readily establish the response of a system to a single sinusoid, we 

should be able to find the response of a system to a sum of sinusoids. That is,  

“a spectrum in gives a spectrum out”, with the relationship between the output 

and input spectra given by the frequency response. For periodic inputs, the 

spectrum is effectively given by the Fourier series, and for aperiodic inputs, we 

use the Fourier transform. The system in both cases is described by its 

frequency response. 

5.2.1 Periodic Inputs 

For periodic inputs, we can express the input signal by a complex exponential 

Fourier series: 

  





n

tjn

n
oeXtx



 
(5.13) 

It follows from the previous section that the output response resulting from the 

complex exponential input 
tjn

neX 0  is equal to   tjn

neXnH 0

0

 . By linearity, 

the response to the periodic input  tx  is: 

   





n

tjn

n
oeXnHty

0  
(5.14) 

Since the right-hand side is a complex exponential Fourier series, the output 

 ty  must be periodic, with fundamental frequency equal to that of the input, 

i.e. the output has the same period as the input. 

It can be seen that the only thing we need to determine is new Fourier series 

coefficients, given by: 

  nn XnHY 0  (5.15) 

 

If we can do one 
sinusoid, we can do 
an infinite number… 

which is just a 
Fourier series for a 
periodic signal 

The frequency 
response simply 
multiplies the input 
Fourier series 
coefficients to 
produce the output 
Fourier series 
coefficients 
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The output magnitude spectrum is just: 

  nn XnHY 0  (5.16) 

and the output phase spectrum is: 

  nn XnHY  0  (5.17) 

These relationships describe how the system “processes” the various complex 

exponential components comprising the periodic input signal. In particular, 

Eq. (5.16) determines if the system will pass or attenuate a given component of 

the input. Eq. (5.17) determines the phase shift the system will give to a 

particular component of the input. 

5.2.2 Aperiodic Inputs 

Taking the Fourier transform of both sides of the time domain input/output 

relationship of an LTI system: 

     txthty   (5.18) 

we get: 

      





 

 
dtetxthfY tj

 
(5.19) 

Substituting the definition of convolution, we get: 

      







 



 

 

 

 

 
dtedtxhfY tj

 
(5.20) 

This can be rewritten in the form: 

      














 

 

 

 

 
  ddtetxhfY tj

 
(5.21) 

Don’t forget – the 
frequency response 
is just a frequency 
dependent complex 
number 

If we can do finite 
sinusoids, we can 
do infinitesimal 
sinusoids too! 

Start with the 
convolution integral 
again 

and transform to the 
frequency domain 
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Using the change of variable   t  in the second integral gives: 

       
 
















 

 

 

 
  ddexhfY j

 
(5.22) 

Factoring out je  from the second integral, we can write: 

     









 











 

 

 

 
  dexdehfY jj

 
(5.23) 

which is: 

     fXfHfY   (5.24) 

This is also a proof of the “convolution in time property” of Fourier transforms. 

Eq. (5.24) is the frequency-domain version of the equation given by Eq. (5.18). 

It says that the spectrum of the output signal is equal to the product of the 

frequency response and the spectrum of the input signal. 

The output magnitude spectrum is: 

     fXfHfY   (5.25) 

and the output phase spectrum is: 

     fXfHfY   (5.26) 

Note that the frequency-domain description applies to all inputs that can be 

Fourier transformed, including sinusoids if we allow impulses in the spectrum. 

Periodic inputs are then a special case of Eq. (5.24). 

By similar arguments together with the duality property of the Fourier 

transform, it can be shown that convolution in the frequency-domain is 

equivalent to multiplication in the time-domain. 

Convolution in the 
time-domain is 
multiplication in the 
frequency-domain 

The output spectrum 
is obtained by 
multiplying the input 
spectrum by the 
frequency response 

The magnitude 
spectrum is scaled 

The phase spectrum 
is added to 

Convolution in the 
frequency-domain is 
multiplication in the 
time-domain 
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5.3 Ideal Filters 

Now that we have a feel for the frequency-domain description and behaviour of 

a system, we will briefly examine a very important application of electronic 

circuits – that of frequency selection, or filtering. Here we will examine ideal 

filters – the topic of real filter design is rather involved. 

Ideal filters pass sinusoids within a given frequency range, and reject 

(completely attenuate) all other sinusoids. An example of an ideal lowpass 

filter is shown below: 

 

Vi Vo



|H|

1

0
0 0

ideal

filter

Cutoff

Pass Stop

 

 

Figure 5.1 

Other basic types of filters are highpass, bandpass and bandstop. All have 

similar definitions as given in Figure 5.1. Frequencies that are passed are said 

to be in the passband, while those that are rejected lie in the stopband. The 

point where passband and stopband meet is called 0 , the cutoff frequency. 

The term bandwidth as applied to a filter corresponds to the width of the 

passband. 

An ideal lowpass filter with a bandwidth of B Hz has a magnitude response: 

  









B

f
KfH

2
rect

 
(5.27) 

 

A first look at 
frequency-domain 
descriptions - filters 

Filter types 
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5.3.1 Phase Response of an Ideal Filter 

Most filter specifications deal with the magnitude response. In systems where 

the filter is designed to pass a particular “wave shape”, phase response is 

extremely important. For example, in a digital system we may be sending 1’s 

and 0’s using a specially shaped pulse that has “nice” properties, e.g. its value 

is zero at the centre of all other pulses. At the receiver it is passed through a 

lowpass filter to remove high frequency noise. The filter introduces a delay of 

D seconds, but the output of the filter is as close as possible to the desired pulse 

shape. 

This is illustrated below: 

 

0 1 0 1 1.5

Filter
Lowpass

delay

v i vo

vo
vi

D

tt  

 

Figure 5.2 

To the pulse, the filter just looks like a delay. We can see that distortionless 

transmission through a filter is characterised by a constant delay of the input 

signal: 

   v t Kv t Do i   (5.28) 

In Eq. (5.28) we have also included the fact that all frequencies in the passband 

of the filter can have their amplitudes multiplied by a constant without 

affecting the wave shape. Also note that Eq. (5.28) applies only to frequencies 

in the passband of a filter - we do not care about any distortion in a stopband. 

A particular phase 
response is crucial 
for retaining a 
signal’s “shape” 

A filter introducing 
delay, but retaining 
signal “shape” 

Distortionless 
transmission defined 
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We will now relate these distortionless transmission requirements to the phase 

response of the filter. From Fourier analysis we know that any periodic signal 

can be decomposed into an infinite summation of sinusoidal signals. Let one of 

these be: 

 v A ti  cos    (5.29) 

From Eq. (5.28), the output of the filter will be: 

  
 

v KA t D

KA t D

o   

  

cos

cos

 

  
 

(5.30) 

The input and output signals differ only by the gain K and the phase angle 

which is: 

  D  (5.31) 

That is, the phase response must be a straight line with negative slope that 

passes through the origin. 

In general, the requirement for the phase response in the passband to achieve 

distortionless transmission through the filter is: 

d

d
D




   

(5.32) 

The delay D in this case is referred to as the group delay. (This means the 

group of sinusoids that make up the wave shape have a delay of D). 

The ideal lowpass filter can be expressed completely as: 

  fDje
B

f
KfH 2

2
rect 











 
(5.33) 

Distortionless 
transmission 
requires a linear 
phase 

Group delay defined 
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5.3.2 Distortion in Real Circuits 

We would like to determine the maximum frequency for which transmission is 

practically distortionless in the following simple filter: 

 

C

R

1k

1 nF 
0 RC

1
=

 

 

Figure 5.3 

We would also like to know the group delay caused by this filter. 

We know the magnitude and phase response already: 

 
 201

1





H

 (5.34) 

   0

1tan  H  (5.35) 

 

Model of a short 
piece of co-axial 
cable, or twisted pair 
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These responses are shown below: 
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Figure 5.4 

Suppose we can tolerate a deviation in the magnitude response of 1% in the 

“passband”. We then have: 

 

1

1
0 99

01425

0

2

0






 

 

.

.
 

(5.36) 

Also, suppose we can tolerate a deviation in the delay of 1% in the “passband”. 

We first find an expression for the delay: 

 
D

d

d
  





   

1

1

1

0

2

0
 (5.37) 

 

The deviation from 
linear phase and 
constant magnitude 
for a simple first-
order filter 
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and then impose the condition that the delay be within 1% of the delay at DC: 

 

1

1
0 99

01005

0

2

0






 

 

.

.
 

(5.38) 

We can see from Eqs. (5.36) and (5.38) that we must have   01 0.  for 

practically distortionless transmission. The delay for   01 0. , according to 

Eq. (5.37), is approximately given by: 

D 
1

0  (5.39) 

For the values shown in Figure 5.4, the group delay is approximately μs 1 . In 

practice, variations in the magnitude transfer function up to the half-power 

frequency are considered tolerable (this is the bandwidth, BW, of the filter). 

Over this range of frequencies, the phase deviates from the ideal linear 

characteristic by at most   2146.014   radians (see Figure 5.4). 

Frequencies well below  0  are transmitted practically without distortion, but 

frequencies in the vicinity of  0  will suffer some distortion. 

The ideal filter is unrealizable. To show this, take the inverse Fourier transform 

of the ideal filter’s frequency response, Eq. (5.33): 

    DtBBKth  2sinc2  (5.40) 

It should be clear that the impulse response is not zero for 0t , and the filter 

is therefore not causal (how can there be a response to an impulse at 0t  

before it is applied?). One way to design a real filter is simply to multiply 

Eq. (5.40) by  tu , the unit step. 

Approximate group 
delay for a first-
order lowpass circuit 

An ideal filter is 
unrealizable 
because it is non-
causal 
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5.4 What does a Filter do to a Signal? 

Passing a periodic signal through a filter will distort the signal (so called linear 

distortion) because the filter will change the relative amplitudes and phases of 

the sinusoids that make up its Fourier series. Once we can calculate the 

amplitude change and phase shift that the filter imposes on an arbitrary 

sinusoid we are in a position to find out how each sinusoid is affected, and 

hence synthesise the filtered waveform. In general, the output Fourier 

transform is just the input Fourier transform multiplied by the filter frequency 

response  fH . 

(  )

R

H fx t(  ) y t(  ) eg. j     f C
1

2
(  )H f =

1

+1j     f RC2

 

 

Figure 5.5 

     fXfHfY   (5.41) 

For a periodic signal: 

   





n

n nffXfX 0
 

(5.42) 

and therefore: 

     





n

n nffXnfHfY 00 
 

(5.43) 

 

Filtering a periodic 
signal 

Spectrum of a 
filtered periodic 
signal 
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EXAMPLE 5.2 Finding the Output Spectrum of a Filter using Tables 

A periodic signal has a Fourier series as given in the following table: 

Input Fourier series table 

n Amplitude Phase 

0 1  

1 2 -30° 

2 3 -90° 

What is the Fourier series of the output if the signal is passed through a filter 

with frequency response   fjfH 4 ? The period is 2 seconds. 

There are 3 components in the input signal with frequencies 0, 0.5 Hz and 

1 Hz. The complex gain of the filter at each frequency is: 

Filter gain table 

n  fH  Gain Phase shift 

0 0 0  

1 j4 05 .  2  90° 

2 j4 1  4  90° 

Hence, the output Fourier series table is: 

Output Fourier series table 

n Amplitude Phase 

0 0  

1 4  60° 

2 12  0° 
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EXAMPLE 5.3 Finding the Output Spectrum of a Filter using Graphs 

Suppose the same signal was sent through a filter with transfer function as 

sketched: 

0.5 f0

1

1-1 -0.5

(  )|f|H

0.5

0.5 f0



1-1 -0.5

(  )fH



 

From the graph, we can find the complex gain of the filter at each of the input 

frequencies: 

Filter gain table 

f  fH  Gain Phase shift 

0 1 1  

0.5 2je  1 -90° 

1 je5.0  0.5 -180° 

After multiplying the input amplitudes with the corresponding gains, and 

adding the phase shift to the incoming phase, we get the output Fourier series: 

Output Fourier series table 

n Amplitude Phase 

0 1  

1 2 -120° 

2 1.5 -270° 
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5.5 Sampling 

Sampling is one of the most important operations we can perform on a signal. 

Samples can be quantized and then operated upon digitally (digital signal 

processing). Once processed, the samples are turned back into a continuous-

time waveform. (e.g. CD, mobile phone!) Here we demonstrate how, if certain 

parameters are right, a sampled signal can be reconstructed from its samples 

almost perfectly. 

Ideal sampling involves multiplying a waveform by a uniform train of 

impulses. The result is a weighted train of impulses. Weights of the impulses 

are the sample values to be used by a digital signal processor (computer). An 

ideal sampler is shown below: 

 

(  )g  t

(  )p  t

(  )p  t(  )g  t

T T2T-2 T- 0

(  )g   t= s

sss s  

 

Figure 5.6 

The period sT  of the sampling waveform  tp  is called the sample period or 

sampling interval. The inverse of the sample period is ss Tf 1  and is called 

the sample rate or sampling frequency. It is usually expressed in samples per 

second (Sa/s), or simply Hz. 

Sampling is one of 
the most important 
things we can do to 
a continuous-time 
signal – because we 
can then process it 
digitally 

An ideal sampler 
multiplies a signal 
by a uniform train of 
impulses 
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Let  g t  be a time domain signal. If we multiply it by    





k

skTttp   we 

get an ideally sampled version: 

     g t g t t kTs s

k

  





 

(5.44) 

 Graphically, in the time-domain, we have: 

 

 

sampled signal

(  )g  t

0 t

1

0 t

(  )p  t

Ts
2Ts-Ts

-2Ts

0 t1/B 2/B-1 /B-2 /B

(  )g  t

s
(  )g   t

1/B 2/B-1 /B-2 /B

 
 

Figure 5.7 

That is, for ideal sampling, the original signal forms an envelope for the train of 

impulses, and we have simply generated a weighted train of impulses, where 

each weight takes on the signal value at that particular instant of time. 

Note that is it physically impossible to ideally sample a waveform, since we 

cannot create a real function containing impulses. In practice, we use an 

analog-to-digital converter to get actual values of a signal (e.g. a voltage). 

Then, when we perform digital signal processing (DSP) on the signal, we 

understand that we should treat the sample value as the weight of an impulse. 

To practically sample a waveform using analog circuitry, we have to use finite 

value pulses. It will be shown later that it doesn’t matter what pulse shape is 

used for the sampling waveform – it could be rectangular, triangular, or indeed 

any shape. 

An ideal sampler 
produces a train of 
impulses - each 
impulse is weighted 
by the original signal 
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Taking the Fourier transform of both sides of Eq. (5.44): 

     

 














n

ss

n

sss

nffGf

nffffGfG 

 

(5.45) 

Graphically, in the frequency-domain, we have: 
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0 fs- fs fs+B-Bfs+B- fs-B- fs B-B
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Figure 5.8 

Thus the Fourier transform of the sampled waveform,  fGs ,  is a scaled 

replica of the original, periodically repeated along the frequency axis. Spacing 

between repeats is equal to the sampling frequency, sf  (the inverse of the 

sampling interval). 

A sampled signal’s 
spectrum is a scaled 
replica of the 
original, periodically 
repeated 
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5.5.1 Sampling and Periodicity 

If we ideally sample a continuous Fourier transform  G f , by multiplying it 

with  





n

nff 0 , then we have      





n

nfffGfS 0 : 

 
(  )S  f

0
f

f0 8 f04 f0-8 f0 -4 f0

(  )G  f

 
 

Figure 5.9 

Now taking the inverse Fourier transform we get: 

      




 
k

kTtTtgfS 00

1 F
 

(5.46) 

which is a periodic repeat of a weighted version of the original signal: 

 

 

t

(  )s  t

0 T0T0-  
 

Figure 5.10 

Thus, sampling in the frequency-domain results in periodicity in the time 

domain. We already know this! We know a periodic time-domain signal can be 

synthesised from sinusoids with frequencies nf 0 , i.e. has a transform consisting 

of impulses at frequencies nf 0 . 

We now see the general pattern: 

Sampling in one domain implies periodicity in the other. 

An ideally sampled 
spectrum is a train 
of impulses - each 
impulse is weighted 
by the original 
spectrum 

Sampling in one 
domain implies 
periodicity in the 
other 
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5.6 Reconstruction 

If a sampled signal  tg s  is applied to an ideal lowpass filter of bandwidth B, 

the only component of the spectrum  fGs  that is passed is just the original 

spectrum  fG . 

 

lowpass

filter

s
(   )G   f (   )G  f

 

 

Figure 5.11 

Graphically, in the frequency-domain: 
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Figure 5.12 

Hence the time-domain output of the filter is equal to  tg , which shows that 

the original signal can be completely and exactly reconstructed from the 

sampled waveform  tg s . 

We recover the 
original spectrum by 
lowpass filtering 

Lowpass filtering a 
sampled signal’s 
spectrum results in 
the original signal’s 
spectrum… an 
operation that is 
easy to see in the 
frequency-domain! 
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Graphically, in the time-domain: 
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Figure 5.13 

There are some limitations to perfect reconstruction though. One is that time-

limited signals are not bandlimited (e.g. a rect time-domain waveform has a 

spectrum which is a sinc function which has infinite frequency content). Any 

time-limited signal therefore cannot be perfectly reconstructed, since there is 

no sample rate high enough to ensure repeats of the original spectrum do not 

overlap. However, many signals are essentially bandlimited, which means 

spectral components higher than, say B, do not make a significant contribution 

to either the shape or energy of the signal. 

A weighted train of 
impulses turns back 
into the original 
signal after lowpass 
filtering…an 
operation that is not 
so easy to see in the 
time-domain! 

We can’t sample 
and reconstruct 
perfectly, but we can 
get close! 
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5.7 Aliasing 

We saw that sampling in one domain implies periodicity in the other. If the 

function being made periodic has an extent that is smaller than the period, there 

will be no resulting overlap and hence it will be possible to recover the 

continuous (unsampled) function by windowing out just one period from the 

domain displaying periodicity. 

Nyquist’s sampling criterion is the formal expression of the above fact: 

Perfect reconstruction of a sampled signal is possible if the 

sampling rate is greater than twice the bandwidth of the 

signal being sampled 

Bf s 2  

(5.47) 

To avoid aliasing, we have to sample at a rate Bf s 2 . The frequency 2sf  is 

called the spectral fold-over frequency, and it is determined only by the 

selected sample rate, and it may be selected independently of the 

characteristics of the signal being sampled. The frequency B is termed the 

Nyquist frequency, and it is a function only of the signal and is independent of 

the selected sampling rate. Do not confuse these two independent entities! The 

Nyquist frequency is a lower bound for the fold-over frequency in the sense 

that failure to select a fold-over frequency at or above the Nyquist frequency 

will result in spectral aliasing and loss of the capability to reconstruct a 

continuous-time signal from its samples without error. The Nyquist frequency 

for a signal which is not bandlimited is infinity; that is, there is no finite sample 

rate that would permit errorless reconstruction of the continuous-time signal 

from its samples. 

The Nyquist rate is defined as BfN 2 , and is not to be confused with the 

similar term Nyquist frequency. The Nyquist rate is B2 , whereas the Nyquist 

frequency is B. To prevent aliasing, we need to sample at a rate greater than the 

Nyquist rate, i.e. Ns ff  . 

We have to ensure 
no spectral overlap 
when sampling 

Nyquist’s sampling 
criterion 

Fold-over frequency 
defined 

Nyquist frequency 
defined 

Nyquist rate defined 
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To illustrate aliasing, consider the case where we have failed to select the 

sample rate higher than twice the bandwidth, B, of a lowpass signal. The 

sampled spectrum is shown below, where the repeats of the original spectrum 

now overlap: 

 

 

0 f

(  )X   fs

- B

folded-over high-frequency
components

fs- fs B

fs /2 = fold-over frequency  
 

Figure 5.14 

If the sampled signal  txs  is lowpass filtered with cutoff frequency 2sf , the 

output spectrum of the filter will contain high-frequency components of  tx  

folded-over to low-frequency components, and we will not be able to perfectly 

reconstruct the original signal: 

 

 

0 f

(  )X   fr

- B B 0 f

(  )X   f

- B B

original"reconstructed"  
 

Figure 5.15 

To summarise – we can avoid aliasing by either: 

1. Selecting a sample rate higher than twice the bandwidth of the signal 

(equivalent to saying that the fold-over frequency is greater than the 

bandwidth of the signal); or 

2. By bandlimiting (using a filter) the signal so that its bandwidth is less than 

half the sample rate. 

An illustration of 
aliasing in the 
frequency-domain 

How to avoid 
aliasing 
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5.8 Practical Sampling and Reconstruction 

To prevent aliasing, practical systems are constructed so that the signal-to-be-

sampled is guaranteed to meet Nyquist’s sampling criterion. They do this by 

passing the original signal through a lowpass filter, known as an anti-alias 

filter (AAF), to ensure that no frequencies are present above the fold-over 

frequency, 2sf : 
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Figure 5.16 

If the system is designed correctly, then the high frequency components of the 

original signal that are rejected by the AAF are “not important” in that they 

carry little energy and/or information (e.g. noise). Sampling then takes place at 

a rate of sf  Sa/s. The reconstruction filter has the same bandwidth as the AAF, 

but a different passband magnitude to correct for the sampling process. 

A practical sampling scheme is shown below: 
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Figure 5.17 

We have to ensure 
no spectral overlap 
when sampling 
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5.9 Summary of the Sampling and Reconstruction Process 
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Figure 5.18 

The sampling and 
reconstruction 
process in both the 
time-domain and 
frequency-domain 
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5.10 Finding the Fourier Series of a Periodic Function 
from the Fourier Transform of a Single Period 

It is usually easier to find the Fourier transform of a single period than 

performing the integration needed to find Fourier series coefficients (because 

all the standard Fourier properties can be used). This method allows the Fourier 

series coefficients to be determined directly from the Fourier transform, 

provided the period is known. Don’t forget, only periodic functions have 

Fourier series representation. 

Suppose we draw one period of a periodic waveform: 

 

t0

1

g  t( )
1

1T

 

 

Figure 5.19 

We can create the periodic version by convolving  g t1  with a train of unit 

impulse functions with spacing equal to the period, T0 : 

 

t0 T0

1

2T0
T0--2T0  

 

Figure 5.20 

The quick way to 
determine Fourier 
series coefficients 

A single period 

Convolved with a 
uniform impulse 
train 



5.31 

PMcL Finding the Fourier Series of a Periodic Function from the Fourier Transform of a Single Period Index     

2015  5 - Filtering and Sampling 

That is, we need to convolve  g t1  with   t kT
k






 0 . Thus,  g tp , the 

periodic version is: 

     g t g t t kTp
k

  




1 0
 

(5.48) 
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Figure 5.21 

Using the convolution multiplication rule: 
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(5.49) 

In words, the Fourier transform of the periodic signal consists of impulses 

located at harmonics of f T0 01 , whose weights are: 

 G f G nfn  0 1 0  (5.50) 

These are the Fourier series coefficients. 

In Figure 5.21 we have: 

 G f T nf T en

j nf T 

0 1 0 1
0 1sinc 

 (5.51) 

gives the periodic 
waveform 

Fourier series 
coefficients from the 
Fourier transform of 
one period 
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Graphically, the operation indicated by Eq. (5.49) takes the original spectrum 

and multiplies it by a train of impulses – effectively creating a weighted train 

of impulses: 
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Figure 5.22 

According to Eq. (5.50), the Fourier series coefficients are just the weights of 

the impulses in the spectrum of the periodic function. To get the n
th

 Fourier 

series coefficient, use the weight of the impulse located at nf 0 . 

This is in perfect agreement with the concept of a continuous spectrum. Each 

frequency has an infinitesimal amplitude sinusoid associated with it. If an 

impulse exists at a certain frequency, then there is a finite amplitude sinusoid at 

that frequency. 

Sampling in the 
frequency domain 
produces a periodic 
waveform in the 
time-domain 

Remember that 
pairs of impulses in 
a spectrum 
represent a sinusoid 
in the time-domain 
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5.11 Windowing in the Time Domain 

Often we wish to deal with only a segment of a signal, say from t0  to t T . 

Sometimes we have no choice, as this is the only part of the signal we have 

access to - our measuring instrument has restricted us to a “window” of 

duration T beginning at t0 . Outside this window the signal is forced to be 

zero. How is the signal’s Fourier transform affected when the signal is viewed 

through a window? 

Windowing in the time domain is equivalent to multiplying the original signal 

 g t  by a function which is non-zero over the window interval and zero 

elsewhere. So the Fourier transform of the windowed signal is the original 

signal convolved with the Fourier transform of the window. 

EXAMPLE 5.4 Windowing with a Rectangle 

Find the Fourier transform of  sin 2t  when it is viewed through a rectangular 

window from 0 to 1 second: 

1 t0

1

 

The viewed signal is: 

     g t t tw  sin rect .2 05  

Some practical 
effects of looking at 
signals over a finite 
time 

Windowing defined 

A rectangular 
window applied to a 
sinusoid 
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The Fourier transform will be: 

     

     

       11 1sinc
2

1sinc
2

sinc1
2

1
2

5.0rectF2sinF






















fjfj

fj

ef
j

ef
j

eff
j

f
j

tt







 

Graphically, the magnitude spectrum of the windowed signal is: 

f

G   f(   )

0

1/2 -90°1/2 90°

f

f

1-1

10-1-2-3-4 2 3 4

10-1-2-3-4 2 3 4

0.5

1

 

Spectrum of a 
rectangular 
windowed sinusoid 
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If the window were changed to 4 seconds, we would then have: 

f

G   f(   )

0

1/2 -90°1/2 90°

f

f

1-1

10-1-2-3-4 2 3 4

10-1-2-3-4 2 3 4

2

4

 

Obviously, the longer the window, the more accurate the spectrum becomes. 

The longer we look, 
the better the 
spectrum 
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EXAMPLE 5.5 Windowing with a Rectangle 

Find the Fourier transform of  sinc t  when it is viewed through a window from 

-2 to 2 seconds: 

1 t0

1

2-2 -1

g   t
w
(  )

 

We have: 

     g t t tw sinc rect 4  

and: 

      fftgw 4sinc4rect F  

Viewing a sinc 
function through a 
rectangular window 
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Graphically: 

0.5 f0

4

1-1 -0.5

0.5 f0

1

1-1 -0.5

f0.50

1

1-1 -0.5
 

We see that windowing in the time domain by T produces ripples in the 

frequency domain with an approximate spacing of 2 T  between peaks. (In a 

magnitude spectrum, there would be a peak every 1 T ). 

Ripples in the 
spectrum caused by 
a rectangular 
window 
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5.12  Practical Multiplication and Convolution 

Two physical operations we can do on signals are multiplication (with another 

signal) and filtering (with a filter with a defined frequency response). 

5.12.1 Practical Multiplication 

Multiplying a signal in the time-domain has the effect of convolving in the 

frequency domain: 

Multiplication in time domain  convolution in frequency domain 

You can buy a “4 quadrant multiplier” as an IC from any electronics supplier. 

Depending on the bandwidth of the signal they can handle, the price varies 

from several dollars to over a hundred dollars. They have a pair of terminals 

for the two signals to be multiplied together. At higher frequencies any non-

linear device can be used for multiplication. 

 

tx (  )

ty (  )

tx (  ) ty (  )

 

 

Figure 5.23 

Time domain output is x(t) multiplied with y(t) (5.52) 

Frequency domain output is X(f) convolved with Y(f) (5.53) 

 

Multiplication in the 
time-domain is 
convolution in the 
frequency-domain 
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5.12.2 Practical Convolution 

What do we need to physically do to our signal to perform an operation 

equivalent to multiplying it by some function in the frequency domain? We 

need to convolve in the time-domain: 

Convolution in time domain  multiplication in frequency domain 

You can design a network, either passive or active that performs as a filter. Its 

characteristics can be specified by its frequency response (a plot of magnitude 

vs. frequency and a second plot of phase vs. frequency or a complex expression 

of frequency) or equivalently by its impulse response which is the inverse 

Fourier transform of the frequency response. 

 

tx (  ) th (  )ty (  ) tx (  )*=
Filter
specified by

th (  )f(   )H or
 

 

Figure 5.24 

Time domain output is x(t) convolved with h(t) (5.54) 

Frequency domain output is X(f) multiplied with H(f) (5.55) 

Convolution in the 
time-domain is 
multiplication in the 
frequency-domain 
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5.13  Summary 

 Sinusoidal inputs to linear time-invariant systems yield sinusoidal outputs. 

The output sinusoid is related to the input sinusoid by a complex-valued 

function known as the frequency response,  fH . 

 The frequency response of a system is just the Fourier transform of the 

impulse response of the system. That is, the impulse response and the 

frequency response form a Fourier transform pair:    fHth  . 

 The frequency response of a system can be obtained directly by performing 

analysis in the frequency domain. 

 The output of an LTI system due to any input signal is obtained most easily 

by considering the spectrum:      fXfHfY  . This expresses the 

important property: convolution in the time-domain is equivalent to 

multiplication in the frequency-domain. 

 Filters are devices best thought about in the frequency-domain. They are 

frequency selective devices, changing both the magnitude and phase of 

frequency components of an input signal to produce an output signal. 

 Linear phase is desirable in filters because it produces a constant delay, 

thereby preserving wave shape. 

 Sampling is the process of converting a continuous-time signal into a 

discrete-time signal. It is achieved, in the ideal case, by multiplying the 

signal by a train of impulses. 

 Reconstruction is the process of converting signal samples back into a 

continuous-time signal. It is achieved by passing the samples through a 

lowpass filter. 

 Aliasing is an effect of sampling where spectral overlap occurs, thus 

destroying the ability to later reconstruct the signal. It is caused by not 

meeting the Nyquist criterion: Bf s 2 . 
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 Fourier series coefficients can be obtained from the Fourier transform of 

one period of the signal by the formula:  010 nfGfGn  . 

 Using finite-duration signals in the time-domain is called windowing. 

Windowing affects the spectrum of the original signal. 
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Quiz 

Encircle the correct answer, cross out the wrong answers. [one or none correct] 

1. 
The convolution of  x t  and  y t  is given by: 

(a)    





 

 
 dtyx  (b)    






 

 
 dtyx  (c)    






 

 
 dfYX  

2. 

0

vo

t0

vi

t

v i vo

Filter
Ideal

 

The Fourier transform 

of the impulse response 

of the filter resembles: 

(a) f

|H( f )|

 (b) t

h (t)

 (c) f

|H( f )|

 

3. 
The Fourier transform of one period of a periodic waveform is G(f). The 

Fourier series coefficients, Gn , are given by: 

(a)  nf G f0 0  (b)  G nf0  (c)  f G nf0 0  

4. 

t t

x t( ) y t( )

 

The peak value of the 

convolution is: 

(a) 9 (b) 4.5 (c) 6 

5. 
The scaling property of the Fourier transform is: 

(a)  g at G
f

a










  (b)    g at

a
G f

1
 (c)    ag t aG f  

Answers: 1. a   2. c   3. c   4. x   5. x 
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Exercises 

1. 

Calculate the magnitude and phase of the 4 kHz component in the spectrum of 

the periodic pulse train shown below. The pulse repetition rate is 1 kHz. 

x(t)

10

t0.10

0.4

0.5

0.6

0.9 1 (ms)

-5
 

2. 

By relating the triangular pulse shown below to the convolution of a pair of 

identical rectangular pulses, deduce the Fourier transform of the triangular 

pulse: 

x(t)
A

t0   

3. 

The pulse      x t B Bt Bt 2 2 8sinc rect  has ripples in the amplitude spectrum. 

What is the spacing in frequency between positive peaks of the ripples? 

4. 

A signal is to be sampled with an ideal sampler operating at 8000 samples per 

second. Assuming an ideal low pass anti-aliasing filter, how can the sampled 

signal be reconstituted in its original form, and under what conditions? 
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5. 

A train of impulses in one domain implies what in the other? 

6. 

The following table gives information about the Fourier series of a periodic 

waveform,  g t , which has a period of 50 ms. 

Table 1 

Harmonic # Amplitude Phase (º) 

0 1  

1 3 -30 

2 1 -30 

3 1 -60 

4 0.5 -90 

(a) Give the frequencies of the fundamental and the 2nd harmonic. What is 

the signal power, assuming that  g t  is measured across 50  ? 

(b) Express the third harmonic as a pair of counter rotating phasors. What is 

the value of the third harmonic at t  20 ms ? 

(c) The periodic waveform is passed through a filter with transfer function 

 H f  as shown below. 

|H( f )|
1

50 100 f (Hz)

0.5

-50-100

H( f )

50 100 f (Hz)-50-100





 

 Draw up a table in the same form as Table 1 of the Fourier series of the 

output waveform. Is there a DC component in the output of the 

amplifier? 
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7. 

A signal, bandlimited to 1 kHz, is sampled by multiplying it with a rectangular 

pulse train with repetition rate 4 kHz and pulse width 50 s. Can the original 

signal be recovered without distortion, and if so, how? 

8. 

A signal is to be analysed to identify the relative amplitudes of components 

which are known to exist at 9 kHz and 9.25 kHz. To do the analysis a digital 

storage oscilloscope takes a record of length 2 ms and then computes the 

Fourier series. The 18
th

 harmonic thus computed can be non-zero even when no 

9 kHz component is present in the input signal. Explain. 

9. 

Use MATLAB
®
 to determine the output of a simple RC lowpass filter 

subjected to a square wave input given by: 

   





n

nttx 2rect  

for the cases: 11 RC , 101 RC , 1001 RC . Plot the time domain from 

3t  to 3 and Fourier series coefficients up to the 50
th

 harmonic for each 

case. 
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6 Amplitude Modulation 
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Introduction 

The modern world cannot exist without communication systems. The purpose 

of a communication system is to transmit information-bearing signals through a 

communication channel separating the transmitter from the receiver. There a 

variety of ways to transmit information – we will examine the simplest, called 

amplitude modulation. 

6.1 Communication Systems 

A model of a typical communication system is: 

 

Input

transducer

Source
Transmitted
signal

Message
signal

Transmitter Channel

Received
signal

Receiver

Output
signal Output

transducer

Distortion
and

noise

Destination

 

 

Figure 6.1 

The source originates the message, such as a human voice, a television picture, 

or data. If the data is nonelectrical, it must be converted by an input transducer 

into an electrical waveform referred to as the baseband signal or the message 

signal.  

The transmitter modifies the baseband signal for efficient transmission. 

The channel is a medium – such as a twisted pair, coaxial cable, a waveguide, 

an optical fibre, or a radio link – through which the transmitter output is sent. 

The receiver processes the signal from the channel by undoing the signal 

modifications made at the transmitter and by the channel. 

The receiver output is fed to the output transducer, which converts the 

electrical signal to its original form. 

The destination is the thing to which the message is communicated. 

A communication 
system 
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6.1.1 The Communication Channel 

A channel acts partly as a filter – it attenuates the signal and distorts the 

waveform. Attenuation of the signal increases with channel length. The 

waveform is distorted because of different amounts of attenuation and phase 

shift suffered by different frequency components of the signal. This type of 

distortion, called linear distortion, can be partly corrected at the receiver  by an 

equalizer with gain and phase characteristics complementary to those of the 

channel. 

The channel may also cause nonlinear distortion through attenuation that varies 

with the signal amplitude. Such distortion can also be partly corrected by a 

complementary equalizer at the receiver. 

The signal is not only distorted by the channel, but it is also contaminated along 

the path by undesirable signals lumped under the broad term noise which are 

random and unpredictable signals from causes external and internal. External 

noise includes interference from signals transmitted on nearby channels, 

human-made noise generated by electrical equipment (such as motor drives, 

combustion engine ignition radiation, fluorescent lighting) and natural noise 

(electrical storms, solar and intergalactic radiation). Internal noise results from 

thermal motion of electrons in conductors, diffusion or recombination of 

charged carriers in electronic devices, etc. Noise is one of the basic factors that 

sets a limit on the rate of communication. 

The communication 
channel attenuates 
and distorts the 
signal, and adds 
noise 



6.4 

Index Modulation PMcL   

6 - Amplitude Modulation  2015 

6.1.2 Analog and Digital Messages 

Messages are analog or digital. In an analog message, the waveform is 

important and even a slight distortion or interference in the waveform will 

cause an error in the received signal. On the other hand, digital messages are 

transmitted by using a finite set of electrical waveforms. Easier message 

extraction (in the presence of noise), and regeneration of the original digital 

signal means that digital communication can transmit messages with a greater 

accuracy than an analog system in the presence of distortion and noise. This is 

the reason why digital communication is so prevalent, and analog 

communication is all but obsolete. 

6.1.3 Baseband and Carrier Communication 

Some baseband signals produced by various information sources are suitable 

for direct transmission over a given communication channel – this is called 

baseband communication.  

Communication that uses modulation to shift the frequency spectrum of a 

signal is known as carrier communication. In this mode, one of the basic 

parameters (amplitude, frequency or phase) of a high frequency sinusoidal 

carrier is varied in proportion to the baseband signal  tm . 

6.2 Modulation 

Baseband signals produced by various information sources are not always 

suitable for direct transmission over a given channel. These signals are 

modified to facilitate transmission. This conversion process is known as 

modulation. In this process, the baseband signal is used to modify some 

parameter of a high-frequency carrier signal. 

A carrier is a sinusoid of high frequency, and one of its parameters – such as 

amplitude, frequency, or phase – is varied in proportion to the baseband signal 

 tm . Accordingly, we have amplitude modulation (AM), frequency 

modulation (FM), or phase modulation (PM). FM and PM are similar, in 

essence, and are grouped under the name angle modulation. 

Modulation is the 
process of modifying 
a high-frequency 
sinusoid’s 
amplitude, 
frequency, or phase 
by a message signal 
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The figure below shows a baseband signal  tm  and the corresponding AM and 

FM waveforms: 

 

Modulating (baseband) signal

v

t

v

t

Carrier

v

t

Amplitude-modulated wave

Frequency-modulated wave

v

t

 

 

Figure 6.2 

At the receiver, the modulated signal must pass through a reverse process 

called demodulation in order to retrieve the baseband signal. 

Examples of AM and 
FM modulated 
waveforms 
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Modulation facilitates the transmission of information for the following 

reasons. 

6.2.1 Ease of Radiation 

For efficient radiation of electromagnetic energy, the radiating antenna should 

be of the order of one-tenth of the wavelength of the signal radiated. For many 

baseband signals, the wavelengths are too large for reasonable antenna 

dimensions. We  modulate a high-frequency carrier, thus translating the signal 

spectrum to the region of carrier frequencies that corresponds to a much 

smaller wavelength. 

6.2.2 Simultaneous Transmission of Several Signals 

We can translate many different baseband signals into separate “channels” by 

using different carrier frequencies. If the carrier frequencies are chosen 

sufficiently far apart in frequency, the spectra of the modulated signals will not 

overlap and thus will not interfere with each other. At the receiver, a tuneable 

bandpass filter is used to select the desired signal. This method of transmitting 

several signals simultaneously is known as frequency-division multiplexing 

(FDM). A type of FDM, known as orthogonal frequency-division multiplexing 

(OFDM) is at the heart of Wi-Fi – and was invented at the CSIRO! 

Modulation is used 
for ease of radiation 
(broadcasting)… 

…and to 
simultaneously 
transmit messages 
through a single 
channel 



6.7 

PMcL Double-Sideband, Suppressed-Carrier (DSB-SC) Modulation Index     

2015  6 - Amplitude Modulation 

6.3 Double-Sideband, Suppressed-Carrier (DSB-SC) Modulation 

Let  tx  be a signal such as an audio signal that is to be transmitted through a 

cable or the atmosphere. In amplitude modulation (AM), the signal modifies 

(or modulates) the amplitude of a carrier sinusoid  tccos . In one form of 

AM transmission, the signal  tx  and the carrier  tccos  are simply multiplied 

together. The process is illustrated below: 

 

Local

Oscillator
cos(2       ) f

ct

(  )x  t cos(2       ) f
ct(  )x  t

Signal multiplier

= modulated signal(  )y  t =

 

 

Figure 6.3 

The local oscillator in Figure 6.3 is a device that produces the sinusoidal signal 

 tccos . The multiplier is implemented with a non-linear device, and is 

usually an integrated circuit at low frequencies. 

By the multiplication property of Fourier transforms, the output spectrum is 

obtained by convolving the spectrum of  tx  with the spectrum of  tfc2cos . 

We now restate a very important property of convolution involving an impulse: 

     00 ffXfffX   (6.1) 

 

Double side-band – 
suppressed carrier 
(DSB-SC) 
modulation 
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The output spectrum of the modulator is therefore: 

        

    cc

cc

ffXffX

fffffXfY





2

1

2

1


 
(6.2) 

The spectrum of the modulated signal is a replica of the signal spectrum but 

“shifted up” in frequency. If the signal has a bandwidth equal to B then the 

modulated signal spectrum has an upper sideband from cf  to Bfc   and a 

lower sideband from Bfc   to cf , and the process is therefore called double-

sideband transmission, or DSB transmission for short. An example of 

modulation is given below in the time-domain: 

 

cos(2       ) f
ct

(  )x  t

Signal multiplier

modulated signal

cos(2       ) f
ct(  )x  t(  )y  t =

1

1 2
0

-1-2 t

1

1 2
0

-1-2 t

(  )y  t
1

1 20-1-2 t

(  )x  t

Local
Oscillator

 

 

Figure 6.4 

DSB-SC up-
translates the 
baseband spectrum 

DSB-SC in the time-
domain 
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And in the frequency domain: 

 

Local

Oscillator

(  )X  f
1

1 20-1-2 f

(  )X  f  fY      cc ffXffX 
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1

    c cffff 
2

1
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0 f
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1/2
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Figure 6.5 

The higher frequency range of the modulated signal makes it possible to 

achieve good propagation in transmission through a cable or the atmosphere. It 

also allows the “spectrum” to be shared by independent users – e.g. radio, TV, 

mobile phone etc. 

DSB-SC in the 
frequency-domain 

Modulation lets us 
share the spectrum, 
and achieves 
practical 
propagation 
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6.3.1 Demodulation 

The reconstruction of  tx  from    ttx ccos  is called demodulation. There are 

many ways to demodulate a signal, here we will consider one common method 

called synchronous or coherent demodulation. 

 

cos(2       ) f
ct(  )x  t  t

lowpass

filter

cos (2       )f
c

2
(  )x  t (  )x  t

Local

Oscillator
cos(2       ) f

ct
 

 

Figure 6.6 

The first stage of the demodulation process involves applying the modulated 

waveform    ttx ccos  to a multiplier. The other signal applied to the 

multiplier is a local oscillator which is assumed to be synchronized with the 

carrier signal  tccos , i.e. there is no phase shift between the carrier and the 

signal generated by the local oscillator. 

The output of the multiplier is: 

         

      cc

cccc

ffXffXfX

ffffffXffX

22
4

1

2

1

2

1

2

1



 

 (6.3) 

 tx can be “extracted” from the output of the multiplier by lowpass filtering 

with a cutoff frequency of B Hz and a gain of 2. 

Coherent 
demodulation of a 
DSB-SC signal 

Coherent 
demodulation 
requires a carrier at 
the receiver that is 
synchronized with 
the transmitter 
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Another way to think of this is in the time-domain: 

        tftxtftx cc  4cos1
2

1
2cos2 

 
(6.4) 

Therefore, it is easy to see that lowpass filtering, with a gain of 2, will produce 

 tx . An example of demodulation in the time-domain is given below: 
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Figure 6.7 

The operation of demodulation is best understood in the frequency domain: 
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Figure 6.8 

Demodulation in the 
time-domain 

Demodulation in the 
frequency-domain 
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6.3.2 Summary of DBS-SC Modulation and Demodulation 
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Figure 6.9 

The DSB-SC 
modulation and 
demodulation 
process in both the 
time-domain and 
frequency-domain 
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6.4 Amplitude Modulation (AM) 

Let  tg  be a message signal such as an audio signal that is to be transmitted 

through a cable or the atmosphere. In amplitude modulation (AM), the message 

signal modifies (or modulates) the amplitude of a carrier sinusoid  tfc2cos . 

In one form of AM transmission, a constant bias A is added to the message 

signal  tg  prior to multiplication by a carrier  tfc2cos . The process is 

illustrated below: 

 

Local

oscillator

cos(2       ) f
ct

(  )g     t

Multiplier

= modulated signal(  )g  t+A

A

(  )g  t

+

+

Adder

AM

 

 

Figure 6.10 

The local oscillator in Figure 6.10 is a device that produces the sinusoidal 

signal  tfc2cos . The multiplier is implemented with a non-linear device, and 

is usually an integrated circuit at low frequencies. The adder is a simple op-

amp circuit. 

The spectrum of the modulated signal should show a replica of the signal 

spectrum but “shifted up” in frequency. Ideally, there should also be a pair of 

impulses representing the carrier sinusoid. If  fG , the spectrum of  tg , is 

bandlimited to B  Hz, then the modulated signal spectrum has an upper 

sideband from cf  to Bfc   and a lower sideband from Bfc   to cf . Since the 

appearance of the modulated signal in the time domain is that of a sinusoid 

with a time-varying amplitude proportional to the message signal, this 

modulation technique is called amplitude modulation, or AM  for short. 

AM modulation 
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6.4.1 Envelope Detection 

There are several ways to demodulate the AM signal. One way is coherent (or 

synchronous) demodulation. If the magnitude of the signal  tg  never exceeds 

the bias A, then it is possible to demodulate the AM signal using a very simple 

and practical technique called envelope detection. 

 

(  )g     t
AM R C

RC= 0 1/

(  )g  tA+

 

 

Figure 6.11 

As long as the “envelope” of the signal  tgA  is non-negative, the message 

 tg  appears to “ride” on top of the half-wave rectified version of  tgAM . The 

half-wave rectified  tgAM  can be smoothed with a capacitor so that the output 

closely approximates  tgA . The time constant of the RC smoothing circuit 

is not extremely critical, so long as cffB  0 . 

The “envelope detector” can be thought of as a rectifier followed by a lowpass 

filter: 

 

(   )g      t
AM lowpass

filter

(  )g   t
r

(  )g   t
d

precision

rectifier  

 

Figure 6.12 

An AM envelope 
detector used for 
demodulation 



6.15 

PMcL Single Sideband (SSB) Modulation Index     

2015  6 - Amplitude Modulation 

6.5 Single Sideband (SSB) Modulation 

In so far as the transmission of information is concerned, only one sideband is 

necessary, and if the carrier and the other sidebands are suppressed at the 

transmitter, no information is lost. When only one sideband is transmitted, the 

modulation system is referred to as a single-sideband (SSB) system. 

A method for the creation of an SSB signal is illustrated below: 

 


(  )g  t

cos(2        )t f
c

sin(2        )t f
c

AdderMultiplier

Local Oscillators

(  )g      t

modulated

SSB

-90°
phase-
shifter

signal

 

 

Figure 6.13 

The local oscillators in Figure 6.13 are devices that produce sinusoidal signals. 

One oscillator is  tfc2cos . The other oscillator has a phase which is said to be 

in quadrature, or a phase of 2  with respect to the first oscillator, to give 

 tfc2sin . The multiplier is implemented with a non-linear device and the 

adder is a simple op-amp circuit (for input signals with a bandwidth less than 1 

MHz). The “-90° phase-shifter” is a device that shifts the phase of all positive 

frequencies by –90° and all negative frequencies by +90°. It is more commonly 

referred to as a Hilbert transformer. Note that the local oscillator  tfc2sin  can 

be generated from  tfc2cos  by passing it through a Hilbert transformer. 

SSB modulation 
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6.6 Quadrature Amplitude Modulation (QAM) 

In one form of AM transmission, two messages that occupy the same part of 

the spectrum can be sent by combining their spectra in quadrature. If the first 

message signal  tg1  is multiplied by a carrier  tfc2cos , then the second 

message signal  tg2  is multiplied by  tfc2sin . The process is illustrated 

below: 

 


(  )g   t

1

cos(2        )t f
c

(  )g   t
2

sin(2        )t f
c

AdderMultiplier

Local
Oscillators

(  )g       t = modulated signal
QAM

 

 

Figure 6.14 

The local oscillators in Figure 6.14 are devices that produce sinusoidal signals. 

One oscillator is  tfc2cos . The other oscillator has a phase which is said to be 

in quadrature, or a phase of 2  with respect to the first oscillator, to give 

 tfc2sin . The multiplier is implemented with a non-linear device and the 

adder is a simple op-amp circuit (for input signals with a bandwidth less than 1 

MHz). 

QAM modulation 



6.17 

PMcL Quadrature Amplitude Modulation (QAM) Index     

2015  6 - Amplitude Modulation 

The spectrum of the modulated signal has two parts in quadrature. Each part is 

a replica of the original message spectrum but “shifted up” in frequency. The 

parts do not “interfere” since the first message forms the real (or in-phase, I) 

part of the modulated spectrum and the second message forms the imaginary 

(or quadrature, Q) part. An abstract view of the spectrum showing its real and 

imaginary parts is shown below: 

 

original message spectra

QAM spectrum

(  )G       f
QAM

(  )G   f
1

f

(  )G   f
2

f

f

Re

Im
f
c

-f
c

(I)

(Q)

 

 

Figure 6.15 

Normally, we represent a spectrum by its magnitude and phase, and not its real 

and imaginary parts, but in this case it is easier to picture the spectrum in 

“rectangular coordinates” rather than “polar coordinates”. 

If the spectrum of both message signals is bandlimited to B  Hz, then the 

modulated signal spectrum has an upper sideband from cf  to Bfc   and a 

lower sideband from Bfc   to cf . 

The appearance of the modulated signal in the time domain is that of a sinusoid 

with a time-varying amplitude and phase, but since the amplitude of the 

quadrature components (cos and sin) of the carrier vary in proportion to the 

message signals, this modulation technique is called quadrature amplitude 

modulation, or QAM  for short. 
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6.6.1 Coherent Demodulation 

There are several ways to demodulate the QAM signal - we will consider a 

simple analog method called coherent (or synchronous) demodulation. 
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Figure 6.16 

The first stage of the demodulation process involves applying the modulated 

waveform  tgQAM  to two separate multipliers. The other signals applied to 

each multiplier are local oscillators (in quadrature again) which are assumed to 

be synchronized with the modulator, i.e. the frequency and phase of the 

demodulator’s local oscillators are exactly the same as the frequency and phase 

of the modulator’s local oscillators. The signals  tg1  and   tg2  can be 

“extracted” from the output of each multiplier by lowpass filtering. 

Coherent QAM 
demodulation 
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6.7 Summary 

 Modulation shifts a baseband spectrum to a higher frequency range. It is 

achieved in many ways – the simplest being the multiplication of the signal 

by a carrier sinusoid. 

 Demodulation is the process of returning a modulated signal to the 

baseband. Modulation and demodulation form the basis of modern 

communication systems. 
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Exercises 

1. 

Sketch the Fourier transform of the waveform       g t t t 1 2 20cos sin  . 

2. 

A scheme used in stereophonic FM broadcasting is shown below: 







cos(2       ) f
ct

A

B

C
L

R

 

The input to the left channel (L) is a 1 kHz sinusoid, the input to the right 

channel (R) is a 2 kHz sinusoid. Draw the spectrum of the signal at points A, B 

and C if f c  38 kHz . 

3. 

Draw a block diagram of a scheme that could be used to recover the left (L) and 

right (R) signals of the system shown in Question 2 if it uses the signal at C as 

the input. 
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7 The Laplace Transform 
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Introduction 

There are two reasons why we seek an alternative to the Fourier transform: 

1. There are some important signals, such as the unbounded ramp function 

   ttutr  , which do not have a Fourier transform. Also, unstable systems, 

such as     0,  atueth at , do not have a Fourier transform. In both 

cases the time-domain function is such that   




 

 
dttg . 

2. We wish to determine a system’s response from the application of an input 

signal at 0t , and include any initial conditions in the system’s response. 

The Laplace transform generalises the Fourier transform to broaden the class 

of functions which can be transformed to the frequency domain, thus 

overcoming some of the problems outlined in point 1 above. It also allows us 

to fulfil the second objective of determining the output of a system which takes 

into account both the applied input and the system’s initial state. 

7.1 The Laplace Transform 

If we multiply a time-domain function by an exponential convergence factor, 

te  , before taking the Fourier transform, then we guarantee convergence of 

the Fourier transform for a broader class of functions. For example, if we 

multiply the ramp    ttutr   by te  , then for   “sufficiently large”, the 

decay of the exponential will be greater than the increase of the ramp as 

t : 

 

t t

1
e -   t

t

t e -   tt

 

 

Figure 7.1 

The need for the 
Laplace transform 
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In other words, the factor te   is used to try and force the overall function to 

zero for large values of t in an attempt to achieve convergence of the Fourier 

transform (note that this is not always possible). 

After multiplying the original function by an exponential convergence factor, 

the Fourier transform is:  

     

   



















 

 

 

 

dtetx

dteetxetx

tj

tjtt



F

 
(7.1) 

The resulting integral is a function of  j , and so we can write: 

     






 

 
dtetxjX tj  

(7.2) 

Letting  js  , this becomes: 

   





 

 
dtetxsX st

 
(7.3) 

which is called the two-sided Laplace transform. 

By making the integral only valid for time 0t , we can incorporate initial 

conditions into the s-domain description of signals and systems. That is, we 

assume that signals are only applied at 0t  and impulse responses are causal 

and start at 0t . The lower limit in the Laplace transform can then be 

replaced with zero. The result is termed the one-sided Laplace transform, 

which we will refer to simply as “the Laplace transform”: 

   







 

0 
dtetxsX st

 
(7.4) 

The two-sided 
Laplace transform 

The one-sided 
Laplace transform 
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The Laplace transform variable, s , is termed complex frequency – it is a 

complex number and can be graphed on a complex plane: 

 



j

0

s=   + j

Re s

Im s

 

 

Figure 7.2 

The inverse Laplace transform can be obtained by considering the inverse 

Fourier transform of   jX  : 

   




 
 

 2

1




 dejXetx tjt

 
(7.5) 

where we have used the fact that dfd  2 . We then have: 

     






 

 2

1




 dejXtx tj

 
(7.6) 

But  js   (  fixed) and so jdds  . We then get: 

   





jc

jc

stdsesX
j

tx
 

 2

1

  
(7.7) 

It is common practice to use a bidirectional arrow to indicate a Laplace 

transform pair, as follows: 

   sXtx   (7.8) 

The inverse Laplace 
transform 

The Laplace 
transform pair 
defined 
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7.1.1 Region of Convergence (ROC) 

The region of convergence (ROC) for the Laplace transform  sX , is the set of 

values of s  (the region in the complex plane) for which the integral in 

Eq. (7.4) converges. 

7.1.2 Laplace Transform of a Decaying Exponential 

To find the Laplace transform of a signal    tuetx at  and its ROC, we 

substitute into the definition of the Laplace transform: 

   







 

0 
dtetuesX stat

 
(7.9) 

Because   0tu  for 0t  and   1tu  for 0t , 

   

 






















  

0

 

0 

 

0 

1 tas

tasstat

e
as

dtedteesX

 

(7.10) 

Note that s  is complex and as t , the term  tase   does not necessarily 

vanish. Here we recall that for a complex number  jz  , 

  tjttjzt eeee     (7.11) 

Now 1 tje   regardless of the value of t . Therefore, as t , 0zte  

only if 0 , and zte  if 0 . Thus: 

0Re

0Re0
lim












 z

z
e zt

t  
(7.12) 
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Clearly: 

   
  0Re

0Re0
lim












 as

as
e tas

t  
(7.13) 

Use of this result in Eq. (7.10) yields: 

    0Re
1




 as
as

sX
 

(7.14) 

or: 

  as
as

tue at 


 Re
1

 
(7.15) 

The ROC of  sX  is as Re , as shown in the shaded area below: 

 



j

c0

c+j

c-j
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Region of convergenceSignal x  t(  )

0

e
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u  t(  )

t

1

 

 

Figure 7.3 

This fact means that the integral defining  sX  in Eq. (7.10) exists only for the 

values of s  in the shaded region in Figure 7.3. For other values of s , the 

integral does not converge. 

A signal and the 
region of 
convergence of its 
Laplace transform in 
the s-plane 
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The ROC is required for evaluating the inverse Laplace transform, as defined 

by Eq. (7.7). The operation of finding the inverse transform requires integration 

in the complex plane. The path of integration is along jc , with   varying 

from   to  . This path of integration must lie in the ROC for  sX . For the 

signal  tue at , this is possible if ac  . One possible path of integration is 

shown (dotted) in Figure 7.3. We can avoid this integration by compiling a 

table of Laplace transforms. 

If all the signals we deal with are restricted to 0t , then the inverse transform 

is unique, and we do not need to specify the ROC. 

 

7.2 Finding a Fourier Transform using a Laplace 
Transform 

If the function  tx  is zero for all 0t , and the Laplace transform exists along 

the imaginary axis of the s-plane ( js  ), then: 

   



js

sXX


  (7.16) 

That is, the Fourier transform  X  is just the Laplace transform  sX  with 

js  . 

EXAMPLE 7.1 Finding a Fourier Transform using a Laplace Transform 

To find the Fourier transform of a signal    tuetx t3 , we substitute js   

into its Laplace transform: 

 
fjjs

X
js 


 23

1

3

1

3

1











 

(7.17) 

A quick check from our knowledge of the Fourier transform shows this to be 

correct (because the Laplace transform includes the j  axis in its region of 

convergence). 

The ROC is needed 
to establish the 
convergence of the 
Laplace transform 

The ROC is not 
needed if we deal 
with causal signals 
only 

The Fourier 
transform from the 
Laplace transform 
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7.3 Geometric View of the Laplace Transform 

We can also view the Laplace transform geometrically, if we are willing to 

split the transform into its magnitude and phase (remember  sX  is a complex 

number). The magnitude of    31  ssX  can be visualised by graphing 

 sX  as the height of a surface spread out over the s-plane: 
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Figure 7.4 

There are several things we can notice about the plot above. First, note that the 

surface has been defined only in the ROC, i.e. for 3Re s . Secondly, the 

surface approaches an infinite value at the point 3s . Such a point is termed 

a pole, in obvious reference to the surface being analogous to a tent (a zero is a 

point where the surface has a value of zero). 

The graph of the 
magnitude of the 
Laplace transform 
over the s-plane 
forms a surface with 
poles and zeros 
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We can completely specify  sX , apart from a constant gain factor, by 

drawing a so-called pole-zero plot: 

 



j

-3

-planes  

 

Figure 7.5 

A pole-zero plot locates all the critical points in the s-plane that completely 

specify the function  sX  (to within an arbitrary constant), and it is a useful 

analytic and design tool. 

Thirdly, one cut of the surface has been fortuitously placed along the imaginary 

axis. If we graph the height of the surface along this cut against  , we get a 

picture of the magnitude of the Fourier transform vs.  : 

 

X|    |



1/3

0

magnitude of

(   )X 
1

j3+ 
=

 

 

Figure 7.6 

With these ideas in mind, it should be apparent that a function that has a 

Laplace transform with a ROC in the right-half plane does not have a Fourier 

transform (because the Laplace transform surface will never intersect the  

j -axis). 

A pole-zero plot is a 
shorthand way of 
representing a 
Laplace transform 

The Fourier 
transform is 
obtained from the 

j-axis of a plot of 
the Laplace 
transform over the 
entire s-plane 
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7.4 Finding Laplace Transforms 

Like the Fourier transform, it is only necessary from a practical viewpoint to 

find Laplace transforms for a few standard signals, and then formulate several 

properties of the Laplace transform. Then, finding a Laplace transform of a 

function will consist of starting with a known transform and successively 

applying known transform properties. 

7.4.1 Laplace Transform of the Impulse 

To find the Fourier transform of a signal    ttx  , we substitute into the 

Laplace transform definition: 

   







 

0 
dtetsX st  

(7.18) 

Recognising this as a sifting integral, we arrive at a standard transform pair: 

  1t  (7.19) 

Thus, the Laplace transform of an impulse is 1, just like the Fourier transform. 

7.4.2 Laplace Transform of the Unit-Step 

To find the Laplace transform of the unit-step, just substitute 0a  into 

Eq. (7.15). The result is: 

 
s

tu
1


 

(7.20) 

This is a frequently used transform in the study of electrical circuits and control 

systems. 

The Laplace 
transform of an 
impulse 

The Laplace 
transform of a unit-
step 
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7.4.3  Laplace Transform of the Sinusoid 

To find the Laplace transform of    tut0cos  , we recognise that: 

       tueetut
tjtj 00

2

1
cos 0

 


 
(7.21) 

From Eq. (7.15), it follows that: 
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00
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jsjs
tuee

tjtj

 

(7.22) 

and so we have another standard transform: 

   
2

0

20cos






s

s
tut

 
(7.23) 

A similar derivation can be used to find the Laplace transform of    tut0sin  . 

Most of the Laplace transform properties are inherited generalisations of 

Fourier transform properties. There are a few important exceptions, based on 

the fact that the Laplace transform is one-sided (from 0 to  ), whereas the 

Fourier transform is double-sided (from   to  ) and the Laplace transform 

is more general in the sense that it covers the entire s-plane, not just the 

j -axis. 
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7.4.4 Differentiation Property 

One of the most important properties of the Laplace transform is the 

differentiation property. It enables us to directly transform a differential 

equation into an algebraic equation in the complex variable s. It is much easier 

to solve algebraic equations than differential equations! 

The Laplace transform of the derivative of a function is given by: 















  

0 
dte

dt

dx

dt

dx stL
 

(7.24) 

Integrating by parts, we obtain: 

   
















  

0 0
dtetxsetx

dt

dx ststL
 

(7.25) 

For the Laplace integral to converge [i.e. for  sX  to exist], it is necessary that 

  0stetx  as t  for the values of s  in the ROC for  sX . Thus: 

      0xssXtx
dt

d
 

(7.26) 

 

The Laplace 
transform 
differentiation 
property 
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7.5 Standard Laplace Transforms 
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7.6 Laplace Transform Properties 

Assuming    sXtx  . 

   saXtax   (L.6) 

 sTXT
T

t
x 
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     sXectuctx cs  (L.8) 
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       sXsXtxtx 2121   (L.13) 

   ssXx
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 lim0  
(L.14) 

   ssXtx
st 0
limlim


  
(L.15) 

 

Linearity 

Scaling 

Time shifting 

Multiplication by 
exponential 

Multiplication by t 

Differentiation 

Integration 

Convolution 

Initial-value theorem 

Final-value theorem 



7.15 

PMcL Evaluation of the Inverse Laplace Transform Index     

2015  7 - The Laplace Transform 

7.7 Evaluation of the Inverse Laplace Transform 

Finding the inverse Laplace transform requires integration in the complex 

plane, which is normally difficult and time consuming to compute. Instead, we 

can find inverse transforms from a table of Laplace transforms. All we need to 

do is express  sX  as a sum of simpler functions of the forms listed in the 

table. Most of the transforms of practical interest are rational functions, that is, 

ratios of polynomials in s. Such functions can be expressed as a sum of simpler 

functions by using partial fraction expansion. 

7.7.1 Rational Laplace Transforms 

A rational Laplace transform of degree N can be expressed as: 
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(7.27) 

This can also be written: 
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(7.28) 

where the ip  are called the poles of  sX . If the poles are all distinct, then the 

partial fraction expansion of Eq. (7.28) is: 
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(7.29) 

We call the coefficients ic  “residues”, which is a term derived from complex 

variable theory. They are given by: 

    
ipsii sXpsc


  (7.30) 

Rational Laplace 
transforms written in 
terms of poles 

Residues defined 
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Taking the inverse Laplace transform of Eq. (7.29) using standard transform 

(L.3) and property (L.7), gives us: 

  0,...21

21  tececectx
tp

N

tptp N

 (7.31) 

Note that the form of the time-domain expression is determined only by the 

poles of  sX ! 

EXAMPLE 7.2 Finding the Inverse Laplace Transform 

Find the inverse Laplace transform of: 
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s
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By expansion into partial fractions we have: 
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To find 1c , multiply both sides of the above equation by  2s : 
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s

sc
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s

s
 

As this equation must be true for all values of s, set 2s  to remove 2c : 

 
 

1
42

122
1 




c  

An equivalent way to find 1c , without performing algebraic manipulation by 

hand, is to mentally cover up the factor  2s  on the left-hand side, and then 

evaluate the left-hand side at a value of s that makes the factor   02 s , 

i.e. at 2s . This mental procedure is known as Heaviside’s cover-up rule. 

The time-domain 
form depends only 
on the poles 

Heaviside’s 
cover-up rule 
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Applying Heaviside’s cover-up rule for 2c  results in the mental equation: 

 
 

3
24

142
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c  

Therefore, the partial fraction expansion is: 
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ss
sY  

The inverse Laplace transform can now be easily evaluated using standard 

transform (L.3) and property (L.7): 

  0,3 42   teety tt  

Note that the continual writing of  tu  after each function has been replaced by 

the more notationally convenient condition of 0t  on the total solution. 

If there is a pole  jp 1 , then the complex conjugate  jp 

1  is also 

a pole (that’s how we get real coefficients in the polynomial). In this case the 

residues of the two poles are complex conjugate and: 

 
N

N

ps

c

ps

c

ps

c

ps

c
sX

















...
3

3

11

1

1

1

 
(7.32) 

The inverse transform is: 

  0,...11

11 


 tececectx
tp

N

tptp N

 
(7.33) 

which can be expressed as: 

    0,...cos2 3

311  tececctectx
tp

N

tpt N
 (7.34) 

Complex-conjugate 
poles lead to a 
sinusoidal response 
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Now suppose the pole 1p  of  sX  is repeated r times. Then the partial fraction 

expansion of Eq. (7.28) is: 

 
       N

N

r

r

r

r

ps

c

ps

c

ps

c

ps

c

ps

c
sX


















 ......
1

1

1

2

1

2

1

1  (7.35) 

The residues are given by Eq. (7.30) for the distinct poles Nir 1  and: 

   
1

1
!

1

ps

r

i

i

ir sXps
ds

d

i
c



 









 
(7.36) 

for the repeated poles 10  ri . 

EXAMPLE 7.3 Finding the Inverse Laplace Transform 

Find the inverse Laplace transform of: 

 
  221

4






ss

s
sY  

Expanding into partial fractions we have: 

    2
321

2
22121

4














s

c

s

c

s

c

ss

s
 

Find 1c  by multiplying both sides by  1s  and setting 1s  (Heaviside’s 

cover-up rule): 

 
3

21

41
12





c  

To find 3c , multiply throughout by  22s  and set 2s : 

 
2

12

42
3 




c  

Partial fraction 
expansion with 
repeated poles 

Residue defined for 
repeated poles 
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Note that Heaviside’s cover-up rule only applies to the repeated partial fraction 

with the highest power. To find 2c , we have to use Eq. (7.36). Multiplying 

throughout by  22s  gives: 

    32

21 22
11

4
cscs

s

c

s

s








 

Now to get rid of 3c , differentiate with respect to s: 

 
  2

1

2

1

4
2

2

1 
























sc

ds

d

s

sc

ds

d

s

s

ds

d
 

The differentiation of the quotients can be obtained using: 

2v

dx

dv
u

dx

du
v

v

u

dx

d










 

Therefore, the LHS of our problem becomes: 

   
   22

1

3

1

41

1

4























ss

ss

s

s

ds

d
 

The second term on the RHS becomes: 

   22 2 csc
ds

d
  

Differentiation of the 1c  term will result in an  2s  multiplier. Therefore, if s 

is set to 2  in the equation after differentiation, we can resolve 2c : 

 
3

12

3
22 




c  

Therefore, the partial fraction expansion is: 

 
 22

2

2

3

1

3










sss
sY  
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The inverse Laplace transform can now be easily evaluated using (L.3), (L.7) 

and (L.10): 

  0,233 22   tteeety ttt  

A multiple pole will, in general, produce a coefficient of the exponential term 

which is a polynomial in t. 

MATLAB
®
 can be used to obtain the poles and residues for a given rational 

function  sX . 

EXAMPLE 7.4 Finding the Inverse Laplace Transform using MATLAB
®
 

Given: 

 
243

12
23

2






sss

ss
sX  

calculate  tx . 

Using MATLAB
®
 we just do: 

num = [1 –2 1]; 

den = [1 3 4 2]; 

[r,p] = residue(num,den); 

which returns vectors of the residues and poles in r and p respectively. 

In summary, there are three types of response from an LTI system: 

 Real poles: the response is a sum of exponentials. 

 Complex poles: the response is a sum of exponentially damped 

sinusoids. 

 Multiple poles: the response is a sum of exponentials but the 

coefficients of the exponentials are polynomials in t. 

Thus, we see that any high-order rational function  sX  can be decomposed 

into a combination of first-order factors. 

Multiple poles 
produce coefficients 
that are polynomials 
of t 
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7.8 Transforms of Differential Equations 

The time-differentiation property of the Laplace transform sets the stage for 

solving linear differential equations with constant coefficients. Because 

 sYsdtyd kkk  , the Laplace transform of a differential equation is an 

algebraic equation that can be readily solved for  sY . Next we take the inverse 

Laplace transform of  sY  to find the desired solution  ty . 

 

difficult?
differential

equation

time-domain

solution

algebaric

equation solution

-domainseasy!

LT ILT
time-domain

frequency-domain

 

 

Figure 7.7 

 

EXAMPLE 7.5 Solving a Differential Equation with the Laplace Transform 

Solve the second-order linear differential equation: 

       txDtyDD 1652   

for the initial conditions   20 y  and   10 y  and the input    tuetx t4 . 

The equation is: 

x
dt

dx
y

dt

dy

dt

yd
 65

2

2
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Let    sYty  . Then from property (L.11): 

     

        1200

20

22

2

2









ssYsysysYs
dt

yd

ssYyssY
dt

dy



 

Also, for    tuetx t4 , we have: 

     
4

0
4

0and
4

1








 

s

s

s

s
xssX

dt

dx

s
sX  

Taking the Laplace transform of the original differential equation, we obtain: 

       
4

1

4
625122







ss

s
sYssYssYs  

Collecting all the terms of  sY  and the remaining terms separately on the left-

hand side, we get: 

     
4

1
112652






s

s
ssYss  

so that: 

     




sinput term
termscondition  initial

2  
4

1
  112 65





s

s
ssYss  

Therefore: 

 
  













































4

23

3

2

2

21

3

5

2

7

 
654

1
  

65

112
 

component state-zero

2

componentinput -zero

2

sssss

sss

s

ss

s
sY
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Taking the inverse transform yields: 

 

0,3

 2  57 

4

2
332

2
13

response state-zero

4

2
332

2
1

responseinput -zero

32









tee-e

eeee-ety

ttt-

ttttt-

  
 

The Laplace transform method gives the total response, which includes 

zero-input and zero-state components. The initial condition terms give rise to 

the zero-input response. The zero-state response terms are exclusively due to 

the input. 

Consider the N
th

 order input/output differential equation: 

     








M

i
i

i

i

N

i
i

i

iN

N

dt

txd
b

dt

tyd
a

dt

tyd

0

1

0
 

(7.37) 

If we take the Laplace transform of this equation using (L.11), assuming zero 

initial conditions, we get: 

   sX
asasas

bsbsbsb
sY

N

N

N

M

M

M

M

01

1

1

01

1

1

...

...














 
(7.38) 

Now define: 

     sXsHsY   (7.39) 

The function  sH  is called the transfer function of the system since it 

specifies the transfer from the input to the output in the s-domain (assuming no 

initial energy). This is true for any system. For the case described by 

Eq. (7.37), the transfer function is a rational polynomial given by: 

 
01

1

1

01

1

1

...

...

asasas

bsbsbsb
sH

N

N

N

M

M

M

M














 
(7.40) 

Systems described 
by differential 
equations 

transform into 
rational functions of 
s 

Transfer function 
defined 



7.24 

Index The System Transfer Function PMcL   

7 - The Laplace Transform  2015 

7.9 The System Transfer Function 

For a linear time-invariant system described by a convolution integral, we can 

take the Laplace transform and get: 

     sXsHsY   (7.41) 

which shows us that: 

   sHth   (7.42) 

The transfer function is 

the Laplace transform 

 of the impulse response! 

 

Instead of writing  sH  as in Eq. (7.40), it can be expressed in the factored 

form: 

 
    

    N

MM

pspsps

zszszsb
sH










21

21

 
(7.43) 

where the z’s are the zeros of the system and the p’s are the poles of the 

system. This shows us that apart from a constant factor Mb , the poles and zeros 

determine the transfer function completely. They are often displayed on a pole-

zero diagram, which is a plot in the s-domain showing the location of all the 

poles (marked by x) and all the zeros (marked by o). 

You should be familiar with direct construction of the transfer function for 

electric circuits from previous subjects. 

The relationship 
between time-
domain and 
frequency-domain 
descriptions of a 
system 

Transfer function 
factored to get zeros 
and poles 
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7.10 Block Diagrams 

Systems are often represented as interconnections of s-domain “blocks”, with 

each block containing a transfer function. 

EXAMPLE 7.6 Block Diagram of an RC Circuit 

Given the following electrical system: 

R

C v   to(  )v   ti (  )

 

we can perform KVL around the loop to get the differential equation: 

 
 

 tv
dt

tdv
RCtv i

o
o   

Assuming zero initial conditions, the Laplace transform of this is: 

     sVssRCVsV ioo   

and therefore the system transfer function is: 

 
  sTsRCsV

sV

i

o







1

1

1

1
 

where RCT  , the time constant. 

Block diagrams are 
transfer functions 

A simple first-order 
system 
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Therefore the block diagram is: 

sT

1

1

V  s(  )
i

V  s(  )
o

 

Note that there’s no hint of what makes up the inside of the block, except for 

the input and output signals. It could be a simple RC circuit, a complex passive 

circuit, or even an active circuit (with op-amps). The important thing the block 

does is hide all this detail. 

 

7.10.1 Notation 

We use the following notation, where  sG  is the transfer function: 

 

V  s(  )
i

V  s(  )
o

G  s(  )
 

 

Figure 7.8 

Most systems have several blocks interconnected by various forwards and 

backwards paths. Signals in block diagrams can not only be transformed by a 

transfer function, they can also be added and subtracted. 

 

X

Y

Z=X+Y X

Y

Z=X-Y

 

 

Figure 7.9 

Block diagram of the 
simple lowpass RC 
circuit 

A block represents 
multiplication with a 
transfer function 

Addition and 
subtraction of 
signals in a block 
diagram 
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7.11 Cascading Blocks 

Blocks can be connected in cascade. 

 

X
G   s(  )

1
G   s(  )

2

Z=G
1
G

2
XY=G

1
X

 

 

Figure 7.10 

Care must be taken when cascading blocks. Consider what happens when we 

try to create a second-order circuit by cascading two first-order circuits: 

 

Vi

R

VoC

R

C

 

 

Figure 7.11 

Show that the transfer function for the above circuit is: 

 

   

V

V

RC

s RC s RC

o

i


 

1

3 1

2

2 2  
(7.44) 

 

Cascading blocks 
implies multiplying 
the transfer 
functions 

A circuit which IS 
NOT the cascade of 
two first-order 
circuits 
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Compare with the following circuit: 

 

Vi

R

C Vo

R

C

 

 

Figure 7.12 

which has the transfer function: 

 

   

V

V

RC

s RC

RC

s RC

RC

s RC s RC

o

i


 


 

1

1

1

1

1

2 1

2

2 2

 

(7.45) 

They are different! In the first case, the second network loads the first (i.e. they 

interact). We can only cascade circuits if the “outputs” of the circuits present a 

low impedance to the next stage, so that each successive circuit does not “load” 

the previous circuit. Op-amp circuits of both the inverting and non-inverting 

type are ideal for cascading. 

A circuit which IS 
the cascade of two 
first-order circuits 

We can only 
cascade circuits if 
they are buffered 
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7.12 Standard Form of a Feedback Control System 

Perhaps the most important block diagram is that of a feedback connection, 

shown below: 

 

G  s(  )

H  s(  )

R  s(  ) C  s(  )E  s(  )

B  s(  )

 

 

Figure 7.13 

We have the following definitions: 

 sG  = forward path transfer function 

 sH  = feedback path transfer function 

 sR  = reference, input, or desired output 

 sC  = controlled variable, or output 

 sB  = output multiplied by  sH  

 sE  = actuating error signal 

   sCsR   = system error 

 
 sR

sC
 = closed-loop transfer function 

   sHsG  = loop gain 

To find the transfer function, we solve the following two equations which are 

self-evident from the block diagram: 

     
       sCsHsRsE

sEsGsC




 

(7.46) 

Standard form for 
the feedback 
connection 
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Then the output  sC  is given by: 

           
          sRsGsHsGsC

sCsHsGsRsGsC





1  
(7.47) 

and therefore: 

 
 

 
   sHsG

sG

sR

sC




1  
(7.48) 

Similarly, we can show that: 

 
     sHsGsR

sE




1

1
 

(7.49) 

and: 

 
 

   
   sHsG

sHsG

sR

sB




1  (7.50) 

Notice how all the above expressions have the same denominator. 

We define     01  sHsG  as the characteristic equation of the differential 

equation describing the system. Note that for negative feedback we get 

   sHsG1  and for positive feedback we get    sHsG1 . 

 

1+GH 1-GH

negative feedback positive feedback

 

 

Figure 7.14 

Transfer function for 
the standard 
feedback connection 

Finding the error 
signal’s transfer 
function for the 
standard feedback 
connection 

Characteristic 
equations for 
positive and 
negative feedback 
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7.13 Block Diagram Transformations 

We can manipulate the signals and blocks in a block diagram in order to 

simplify it. The overall system transfer function is obtained by combining the 

blocks in the diagram into just one block. This is termed block-diagram 

reduction. 

Original Diagram Equivalent Diagram 

G1

X
1

X
2

X
3

G2

 
G1G2

X
1

X
3

 

G
2

G
1

 

 

G
1

G
2

 

G
X

1

X
2

X
3

 

G
X

1

X
2

X
3

G
 

G
X

1

X
2

X
3

 

G
X

1

X
2

X
3

G

1

 

G
X

1

X
1

X
2

 

G
X

1
X

2

G

1X
1

 

G
X

1

X
2

X
2

 G

X
1

X
2

X
2

G

 

G
X

1
X

2

H
 

G X
2X

1

HG1
 

Table 7.1 – Block Diagram Transformations 

Simplifying block 
diagrams 

Combining blocks in 
cascade 

Combining blocks in 
parallel 

Moving a summing 
point behind a block 

Moving a summing 
point ahead of a 
block 

Moving a pick-off 
point behind a block 

Moving a pick-off 
point ahead of a 
block 

Eliminating a 
feedback loop 
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EXAMPLE 7.7 Unity Feedback Equivalence 

Given: 

G
R C

H
 

then alternatively we can get: 

 













C
H

R
GH

HCRGC

 

which is drawn as: 

GH
R C

H

1
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EXAMPLE 7.8 Block Diagram Reduction 

Given: 


i

G
1

G
2

H
1

G
4

G
3

H
2


o

 

we put: 

G
1

G
2

G
1
G

2

G
4

G
3

G
3

G
4

+

H
1

G
1
G

2

G
1
G

2

H
1

G
1
G

2
1-

 

Therefore we get: 

G
3

G
4

+
G

1
G

2

H
1

G
1
G

2
1-


i

H
2


o

 

which simplifies to: 


i


oG

1
G

2
G

3
G

4
+(            )

H
1

G
1
G

2
1- + G

1
G

2
G

3
G

4
+(            ) H

2  
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EXAMPLE 7.9 Block Diagram Reduction 

Consider a system where d is a disturbance input which we want to suppress: 


i

G
1

G
2


o

d

 

Using superposition, consider i  only: 


i

G
1

G
2


o1

 

Therefore: 

21

211

1 GG

GG

i

o







 

Considering d only: 

G
1

G
2


od 2

 

we have: 

21

22

1 GG

G

i

o







 

Therefore, the total output is: 

d
GG

G

GG

GG
iooo

21

2

21

21
21

11 



   

Therefore, use a small 2G  and a large 1G ! 
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7.14 Summary 

 The Laplace transform is a generalization of the Fourier transform. To find 

the Laplace transform of a function, we start from a known Laplace 

transform pair, and apply any number of Laplace transform pair properties 

to arrive at the solution. 

 Inverse Laplace transforms are normally obtained by the method of partial 

fractions using residues. 

 Systems described by differential equations have rational Laplace 

transforms. The Laplace transforms of the input signal and output signal are 

related by the transfer function of the system:      sXsHsY  . There is a 

one-to-one correspondence between the coefficients in the differential 

equation and the coefficients in the transfer function. 

 The impulse response and the transfer function form a Laplace transform 

pair:    sHth  . 

 The transfer function of a system can be obtained by performing analysis in 

the s-domain. 

 A block diagram is composed of blocks containing transfer functions and 

adders. They are used to diagrammatically represent systems. All single-

input single-output systems can be reduced to one equivalent transfer 

function. 
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Exercises 

1. 

Obtain transfer functions for the following networks: 

a)  

R

C

 

b) 

C
2

R
2

R
1

C
1

 

c) 

R

L

C

C

 

d) 

R
2

C
1

L
1

R
1

 

2. 

Obtain the Laplace transforms for the following integro-differential equations: 

a) 
 

     tedi
C

tRi
dt

tdi
L

t

 
 

0 

1
  

b) 
   

  ttKx
dt

tdx
B

dt

txd
M 3

2

2

  

c) 
   

  ttK
dt

td
B

dt

td
J 


sin10

2

2
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3. 

Find the  tf  which corresponds to each  sF  below: 

a) 
 

sss

s
sF

42

5
23

2






 

b) 
 

45 24 


ss

s
sF

 

c) 
 

 23 25

13






ss

s
sF

 

4. 

Use the final value theorem to determine the final value for each  tf  in 3 a), 

b) and c) above. 

5. 

Find an expression for the transfer function of the following network (assume 

the op-amp is ideal): 

Vo

Vi

R1 C1

C2

R2
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6. 

In the circuit below, the switch is in a closed position for a long time before 

0t , when it is opened instantaneously. 

Find the inductor current  ty  for 0t . 

t

y t(  )

=0

F
1

5

2

5

1 H

10 V

 

 

7. 

Given: 

G  s(  )

H  s(  )

R  s(  ) C  s(  )E  s(  )

B  s(  )

 

a) Find expressions for: 

(i) 
 
 sR

sC
  (ii) 

 
 sR

sE
 (iii) 

 
 sR

sB
 

b) What do you notice about the denominator in each of your solutions? 
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8. 

Using block diagram reduction techniques, find the transfer functions of the 

following systems: 

a) 

R Y
G   s(  )

1

H   s(  )
2

G   s(  )
2

G   s(  )
3

H   s(  )
3

 

b) 

Y

a

d

b

c

X
1

X
5
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9. 

Use block diagram reduction techniques to find the transfer functions of the 

following systems: 

a) 

R C
G

1
G

2
G

3

H
2

G
4

H
1

H
3

 

b) 

X Y
A

B

C

E

D

F
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Pierre Simon de Laplace (1749-1827) 

The application of mathematics to problems in physics became a primary task 

in the century after Newton. Foremost among a host of brilliant mathematical 

thinkers was the Frenchman Laplace. He was a powerful and influential figure, 

contributing to the areas of celestial mechanics, cosmology and probability. 

Laplace was the son of a farmer of moderate means, and while at the local 

military school, his uncle (a priest) recognised his exceptional mathematical 

talent. At sixteen, he began to study at the University of Caen. Two years later 

he travelled to Paris, where he gained the attention of the great mathematician 

and philosopher Jean Le Rond d’Alembert by sending him a paper on the 

principles of mechanics. His genius was immediately recognised, and Laplace 

became a professor of mathematics. 

He began producing a steady stream of remarkable mathematical papers. Not 

only did he make major contributions to difference equations and differential 

equations but he examined applications to mathematical astronomy and to the 

theory of probability, two major topics which he would work on throughout his 

life. His work on mathematical astronomy before his election to the Académie 

des Sciences included work on the inclination of planetary orbits, a study of 

how planets were perturbed by their moons, and in a paper read to the 

Academy on 27 November 1771 he made a study of the motions of the planets 

which would be the first step towards his later masterpiece on the stability of 

the solar system. 

In 1773, before the Academy of Sciences, Laplace proposed a model of the 

solar system which showed how perturbations in a planet’s orbit would not 

change its distance from the sun. For the next decade, Laplace contributed a 

stream of papers on planetary motion, clearing up discrepancies in the orbit’s 

of Jupiter and Saturn, he showed how the moon accelerates as a function of the 

Earth’s orbit, he introduced a new calculus for discovering the motion of 

celestial bodies, and even a new means of computing planetary orbits which 

led to astronomical tables of improved accuracy. 
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The 1780s were the period in which Laplace produced the depth of results 

which have made him one of the most important and influential scientists that 

the world has seen. Laplace let it be known widely that he considered himself 

the best mathematician in France. The effect on his colleagues would have 

been only mildly eased by the fact that Laplace was right! 

In 1784 Laplace was appointed as examiner at the Royal Artillery Corps, and 

in this role in 1785, he examined and passed the 16 year old Napoleon 

Bonaparte. 

In 1785, he introduced a field equation in spherical harmonics, now known as 

Laplace’s equation, which is found to be applicable to a great deal of 

phenomena, including gravitation, the propagation of sound, light, heat, water, 

electricity and magnetism. 

Laplace presented his famous nebular hypothesis in 1796 in Exposition du 

systeme du monde, which viewed the solar system as originating from the 

contracting and cooling of a large, flattened, and slowly rotating cloud of 

incandescent gas. The Exposition consisted of five books: the first was on the 

apparent motions of the celestial bodies, the motion of the sea, and also 

atmospheric refraction; the second was on the actual motion of the celestial 

bodies; the third was on force and momentum; the fourth was on the theory of 

universal gravitation and included an account of the motion of the sea and the 

shape of the Earth; the final book gave an historical account of astronomy and 

included his famous nebular hypothesis which even predicted black holes. 

Laplace stated his philosophy of science in the Exposition:-  

If man were restricted to collecting facts the sciences were only a sterile 

nomenclature and he would never have known the great laws of nature. It is 

in comparing the phenomena with each other, in seeking to grasp their 

relationships, that he is led to discover these laws... 

Exposition du systeme du monde was written as a non-mathematical 

introduction to Laplace's most important work. Laplace had already discovered 

the invariability of planetary mean motions. In 1786 he had proved that the 

eccentricities and inclinations of planetary orbits to each other always remain 

small, constant, and self-correcting. These and many of his earlier results 

"Your Highness, I 
have no need of this 
hypothesis. "  
     - Laplace, to 
Napoleon on why 
his works on 
celestial mechanics 
make no mention of 
God. 
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formed the basis for his great work the Traité du Mécanique Céleste published 

in 5 volumes, the first two in 1799.  

The first volume of the Mécanique Céleste is divided into two books, the first 

on general laws of equilibrium and motion of solids and also fluids, while the 

second book is on the law of universal gravitation and the motions of the 

centres of gravity of the bodies in the solar system. The main mathematical 

approach was the setting up of differential equations and solving them to 

describe the resulting motions. The second volume deals with mechanics 

applied to a study of the planets. In it Laplace included a study of the shape of 

the Earth which included a discussion of data obtained from several different 

expeditions, and Laplace applied his theory of errors to the results. 

In 1812 he published the influential study of probability, Théorie analytique 

des probabilités. The work consists of two books. The first book studies 

generating functions and also approximations to various expressions occurring 

in probability theory. The second book contains Laplace's definition of 

probability, Bayes's rule (named by Poincaré many years later), and remarks on 

mathematical expectation. The book continues with methods of finding 

probabilities of compound events when the probabilities of their simple 

components are known, then a discussion of the method of least squares, and 

inverse probability. Applications to mortality, life expectancy, length of 

marriages and probability in legal matters are given. 

After the publication of the fourth volume of the Mécanique Céleste, Laplace 

continued to apply his ideas of physics to other problems such as capillary 

action (1806-07), double refraction (1809), the velocity of sound (1816), the 

theory of heat, in particular the shape and rotation of the cooling Earth 

(1817-1820), and elastic fluids (1821). 

Many original documents concerning his life have been lost, and gaps in his 

biography have been filled by myth. Some papers were lost in a fire that 

destroyed the chateau of a descendant, and others went up in flames when 

Allied forces bombarded Caen during WWII. 

Laplace died on 5 March, 1827 at his home outside Paris. 
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Introduction 

In any particular system, the phasor ratio of the desired forced response to the 

forcing function, written in terms of the complex frequency s, is called the 

transfer function. Thus, a transfer function is an input-output description of the 

behaviour of a system, and it does not include any information concerning the 

internal structure of the system and its behaviour. 

The transfer function is intimately related to the characteristic equation – it 

completely characterises a system. We can thus dispense with detailed system 

descriptions, such as a circuit schematic, and start to think in terms of cascaded 

and interconnected “blocks” that are described by transfer functions – so-called 

block diagrams. 

The transfer function will also be seen to hold information about the form of 

the circuit’s natural response. Thus, given a transfer function of a system, we 

can write down an expression for the natural response by inspection. If we are 

given a forcing function and the initial conditions, we can then determine the 

complete response. 

We shall also see that electrical systems are not special – we can model any 

system described by linear differential equations (e.g. mechanical, hydraulic, 

electrical, thermal, fluid) with block diagrams. 

From the transfer function alone, we can derive many important properties of a 

system, such as whether or not it is stable. 
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8.1 Stability 

To look at stability, let’s examine the rational system transfer function that 

ordinarily arises from linear differential equations: 
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(8.1) 

The transfer function  sH  is the Laplace transform of the impulse response 

 th . Since it’s the poles of a Laplace transform that determine the system’s 

time-domain response, then the poles of  sH  determine the form of  th . In 

particular, for real and complex non-repeated poles: 
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(8.2a) 

 

(8.2b) 

If  sH  has repeated poles, then  th  will contain terms of the form ptiect   

and/or    teAt ti cos . 

From the time-domain expressions, it follows that  th  converges to zero as 

t  if and only if: 

  0Re ip  (8.3a) 

where ip  are the poles of  sH . 

This is equivalent to saying: 

A system is stable if all the poles of the transfer function lie 

in the open left-half s-plane 

(8.3b) 

The impulse 
response is always 
some sort of 
exponential 

Conditions on the 
poles for a stable 
system 

Stability defined 
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8.2 Unit-Step Response 

Consider a system with rational transfer function      sAsBsH  . If an input 

 tx  is applied for 0t  with no initial energy in the system, then the transform 

of the resulting output response is: 

 
 
 

 sX
sA

sB
sY 

 
(8.4) 

Suppose  tx  is the unit-step function  tu , so that   ssX 1 . Then the 

transform of the step response is: 

 
 
 ssA

sB
sY 

 
(8.5) 

Using partial fractions, this can be written as: 

 
   

 sA

sE

s

H
sY 

0
 

(8.6) 

where  sE  is a polynomial in s and the residue of the pole at the origin was 

given by: 

    00 HssYc s    (8.7) 

Taking the inverse Laplace transform of  sY , we get the time-domain 

response to the unit-step function: 

      0,0 tr  ttyHty  (8.8) 

where  tytr  is the inverse Laplace transform of    sAsE . If the system is 

stable so that all the roots of   0sA  lie in the open left-half plane, then the 

Transform of step-
response for any 
system 

The complete 
response consists of 
a transient part and 
a steady-state part 
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term  tytr  converges to zero as t , in which case  tytr  is the transient 

part of the response. 

So, if the system is stable, the step response contains a transient that decays to 

zero and it contains a constant with value  0H . The constant  0H  is the 

steady-state value of the step response. 

An analysis of the transient response is very important because we may wish to 

design a system with certain time-domain behaviour. For example, we may 

have a requirement to reach 99% of the steady-state value within a certain time, 

or we may wish to limit any oscillations about the steady-state value to a 

certain amplitude etc. This will be examined for the case of first-order and 

second-order systems. 

Transients are 
important, especially 
for control system 
design 
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8.2.1 First-Order Systems 

For the first-order transfer function: 

 
ps

p
sH




 
(8.9) 

The unit-step response is: 

  0,1   tety pt
 (8.10) 

which has been written in the form of Eq. (8.8). If the system is stable, then p 

lies in the open left-half plane, and the second term decays to zero. The rate at 

which the transient decays to zero depends on how far over to the left the pole 

is. Since the total response is equal the constant “1” plus the transient response, 

the rate at which the step response converges to the steady-state value is equal 

to the rate at which the transient decays to zero. This may be an important 

design consideration. 

An important quantity that characterizes the rate of decay of the transient is the 

time constant T. It is defined as p1 , assuming 0p . You are probably 

familiar with the concept of a time constant for electric circuits (eg. RCT   

for a simple RC circuit), but it is a concept applicable to all first-order systems. 

The smaller the time constant, the faster the rate of decay of the transient. 

Step-response of a 
first-order system 

Time constant 
defined 
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8.2.2 Second-Order Systems 

Now consider the second-order system given by the transfer function: 
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(8.11) 

The real parameters in the denominator are: 

ratio damping  (8.12) 

frequency naturaln  (8.13) 

If we write: 

 
  21
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(8.14) 

then the poles of  sH  are given by the quadratic formula: 

12

1   nnp  
(8.15a) 

12

2   nnp  

(8.15b) 

There are three cases to consider. 

Standard form of a 
second-order 
lowpass transfer 
function 

Damping ratio and 
natural frequency 
defined 

Pole locations for a 
second-order 
system 
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Distinct Real Poles ( 1 ) - Overdamped 

In this case, the transfer function can be expressed as: 
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2
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sH n





 

(8.16) 

and the transform of the unit-step response is given by: 

 
  spsps

sY n

21
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(8.17) 

Rewriting as partial fractions and taking the inverse Laplace transform, we get 

the unit-step response: 

  0,1 21

21 


tececty
tptp

 (8.18) 

Therefore, the transient part of the response is given by the sum of two 

exponentials: 

  tptp
ececty 21

21tr


  (8.19) 

and the steady-state value: 

    10
21

2

ss 
pp

Hty n
 

(8.20) 

It often turns out that the transient response is dominated by one pole (the one 

closer to the origin – why?), so that the step response looks like that of a first-

order system. 

Step response of a 
second-order 
overdamped system 

Transient part of the 
step response of a 
second-order 
overdamped system 

Steady-state part of 
the step response of 
a second-order 
overdamped system 
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Repeated Real Poles ( 1 ) – Critically Damped 

In this case, the transfer function has the factored form: 

 
 2
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n
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s
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(8.21) 

Expanding   ssH  via partial fractions and taking the inverse transform yields 

the step response: 

    t

n
netty

 
 11  (8.22) 

Hence, the transient response is: 

    t

n
netty

 
 1tr  (8.23) 

and the steady-state response is: 

    10ss  Hty  (8.24) 

as before. 

Unit-step response 
of a second-order 
critically damped 
system 

Transient part of the 
unit-step response 
of a second-order 
critically damped 
system 

Steady-state part of 
the unit-step 
response of a 
second-order  
critically damped 
system 
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Complex Conjugate Poles ( 10  ) – Underdamped 

For this case, we define the damped frequency: 

21   nd  
(8.25) 

so that the poles are located at: 

dn jp  2,1  (8.26) 

The transfer function is then: 
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(8.27) 

and the transform of the unit-step response     ssHsY   can be expanded as: 
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  (8.28) 

Thus, from the transform Eq. (8.2b), the unit-step response is: 

   


  1cossin1 
 tety d

t

d

n n

 
(8.29) 

Verify the above result. 

The transient response is an exponentially decaying sinusoid with frequency 

-1rads d . Thus second-order systems with complex poles have an oscillatory 

step response. 

Damped frequency 
defined 

Underdamped pole 
locations are 
complex conjugates 

Step response of a 
second-order 
underdamped 
system 
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8.2.3 Second-Order Pole Locations 

It is convenient to think of the second-order response in terms of the pole-zero 

plot of the second-order transfer function. Only two parameters determine the 

pole locations:   and n . It is instructive how varying either parameter moves 

the pole locations around the s-plane. A graph of some pole locations for 

various values of   and one value of n  are shown below: 
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Figure 8.1 

We can see, for fixed n , that varying   from 0 to 1 causes the poles to move 

from the imaginary axis along a circular arc with radius n  until they meet at 

the point ns  .  If 0  then the poles lie on the imaginary axis and the 

transient never dies out – we have a marginally stable system. As   is 

increased, the response becomes less oscillatory and more and more damped, 

until 1 . Now the poles are real and repeated, and there is no sinusoid in the 

response. As    is increased, the poles move apart on the real axis, with one 

moving to the left, and one moving toward the origin. The response becomes 

more and more damped due to the right-hand pole getting closer and closer to 

the origin. 

Second-order pole 
locations 

How the damping 

ratio, , varies the 
pole location 
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8.3 Sinusoidal Response 

Again consider a system with rational transfer function      sAsBsH  . To 

determine the system response to the sinusoidal input   tCtx 0cos , we first 

find the Laplace transform of the input: 
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(8.30) 

The transform  sY  of the ZSR is then: 
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The partial fraction expansion of Eq. (8.31) is: 
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(8.32) 

You should confirm the partial fraction expansion. 

The inverse Laplace transform of both sides of Eq. (8.32) yields: 

        tyejHejH
C

ty
tjtj

tr0

*

0
00

2


    (8.33) 

and from Euler’s identity, this can be written: 

        tyjHtjHCty tr000 cos    (8.34) 

 

The sinusoidal 
response of a 
system 

is sinusoidal (plus a 
transient) 
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When the system is stable, the  tytr  term decays to zero and we are left with 

the steady-state response: 

       0,cos 000ss  tjHtjHCty   (8.35) 

This result is exactly the same expression as that found when performing 

Fourier analysis, except there the expression was for all time, and hence there 

was no transient! This means that the frequency response function  H  can 

be obtained directly from the transfer function: 

     



js

sHjHH


  (8.36) 

 

Steady-state 
sinusoidal response 
of a system 

Frequency response 
from transfer 
function 
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8.4 Arbitrary Response 

Suppose we apply an arbitrary input  tx  that has rational Laplace transform 

     sDsCsX   where the degree of  sC  is less than  sD . If this input is 

applied to a system with transfer function      sAsBsH  , the transform of 

the response is: 

 
   
   sDsA

sCsB
sY   (8.37) 

This can be written as: 

 
 
 

 
 sA

sE

sD

sF
sY   (8.38) 

Taking the inverse transform of both sides gives: 

     tytyty trss   (8.39) 

where  tyss  is the inverse transform of    sDsF  and  tytr  is the inverse 

transform of    sAsE . 

The important point to note about this simple analysis is that the form of the 

transient response is determined by the poles of the system transfer function 

 sH  regardless of the particular form of the input signal  tx , while the form 

of the steady-state response depends directly on the poles of the input  sX , 

regardless of what the system transfer function  sH  is! 

The Laplace 
transform of an 
output signal always 
contains a steady-
state term and a 
transient term 

The form of the 
response is 
determined by the 
poles only 
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8.5 Summary 

 A system is stable if all the poles of the transfer function lie in the open left-half 

s-plane. 

 The complete response of a system consists of a transient response and a steady-

state response. The transient response consists of the ZIR and a part of the ZSR. 

The steady-state response is part of the ZSR. The transfer function gives us the 

ZSR only! 

 The step response is an important response because it occurs so frequently in 

engineering applications – control systems in particular. Second-order systems 

exhibit different step responses depending on their pole locations – overdamped, 

critically damped and underdamped. 

 The frequency response of a system can be obtained from the transfer function by 

setting js  . 

 The poles of the system determine the transient response. 

 The poles of the signal determine the steady-state response. 

8.6 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB
®

, Prentice-Hall, 1997. 
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Exercises 

1. 

Determine whether the following circuit is stable for any element values, and 

for any bounded inputs: 

R L

C

 

2. 

Suppose that a system has the following transfer function: 

 
4

8




s
sH  

a) Compute the system response to the following inputs. Identify the steady-

state solution and the transient solution. 

(i)    tutx   

(ii)    ttutx   

(iii)      tuttx 2sin2  

(iv)      tuttx 10sin2  

b) Use MATLAB
®
 to compute the responses numerically. Plot the responses 

and compare them to the responses obtained analytically in part a). 
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3. 

Consider three systems which have the following transfer functions: 

(i)  
164

32
2 


ss

sH  

(ii)  
168

32
2 


ss

sH  

(iii)  
1610

32
2 


ss

sH  

For each system: 

a) Determine if the system is critically damped, underdamped, or 

overdamped. 

b) Calculate the step response of the system. 

c) Use MATLAB
®

 to compute the step response numerically. Plot the 

response and compare it to the plot of the response obtained analytically in 

part b). 

4. 

For the circuit shown, compute the steady-state response  tyss  resulting from 

the inputs given below assuming that there is no initial energy at time 0t . 

a)    tutx   

b)      tuttx cos10  

c)      tuttx 65cos   

100 k

10   F

10   F

200 k
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Oliver Heaviside (1850-1925) 

The mid-Victorian age was a time when the divide between the rich and the 

poor was immense (and almost insurmountable), a time of unimaginable 

disease and lack of sanitation, a time of steam engines belching forth a steady 

rain of coal dust, a time of horses clattering along cobblestoned streets, a time 

when social services were the fantasy of utopian dreamers. It was into this 

smelly, noisy, unhealthy and class-conscious world that Oliver Heaviside was 

born the son of a poor man on 18 May, 1850. 

A lucky marriage made Charles Wheatstone (of Wheatstone Bridge fame) 

Heaviside’s uncle. This enabled Heaviside to be reasonably well educated, and 

at the age of sixteen he obtained his first (and last) job as a telegraph operator 

with the Danish-Norwegian-English Telegraph Company. It was during this 

job that he developed an interest in the physical operation of the telegraph 

cable. At that time, telegraph cable theory was in a state left by Professor 

William Thomson (later Lord Kelvin) – a diffusion theory modelling the 

passage of electricity through a cable with the same mathematics that describes 

heat flow. 

By the early 1870’s, Heaviside was contributing technical papers to various 

publications – he had taught himself calculus, differential equations, solid 

geometry and partial differential equations. But the greatest impact on 

Heaviside was Maxwell’s treatise on electricity and magnetism – Heaviside 

was swept up by its power. 

In 1874 Heaviside resigned from his job as telegraph operator and went back to 

live with his parents. He was to live off his parents, and other relatives, for the 

rest of his life. He dedicated his life to writing technical papers on telegraphy 

and electrical theory – much of his work forms the basis of modern circuit 

theory and field theory. 

In 1876 he published a paper entitled On the extra current which made it clear 

that Heaviside (a 26-year-old unemployed nobody) was a brilliant talent. He 

had extended the mathematical understanding of telegraphy far beyond 

 

I remember my first 
look at the great 
treatise of 
Maxwell’s…I saw 
that it was great, 
greater and 
greatest, with 
prodigious 
possibilities in its 
power.  – Oliver 
Heaviside 
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Thomson’s submarine cable theory. It showed that inductance was needed to 

permit finite-velocity wave propagation, and would be the key to solving the 

problems of long distance telephony. Unfortunately, although Heaviside’s 

paper was correct, it was also unreadable by all except a few – this was a trait 

of Heaviside that would last all his life, and led to his eventual isolation from 

the “academic world”.  In 1878, he wrote a paper On electromagnets, etc. 

which introduced the expressions for the AC impedances of resistors, 

capacitors and inductors. In 1879, his paper On the theory of faults showed that 

by “faulting” a long telegraph line with an inductance, it would actually  

improve the signalling rate of the line – thus was born the idea of “inductive 

loading”, which allowed transcontinental telegraphy and long-distance 

telephony to be developed in the USA. 

When Maxwell died in 1879 he left his electromagnetic theory as twenty 

equations in twenty variables! It was Heaviside (and independently, Hertz) 

who recast the equations in modern form, using a symmetrical vector calculus 

notation (also championed by Josiah Willard Gibbs (1839-1903)). From these 

equations, he was able to solve an enormous amount of problems involving 

field theory, as well as contributing to the ideas behind field theory, such as 

energy being carried by fields, and not electric charges. 

A major portion of Heaviside’s work was devoted to “operational calculus”.
1
 

This caused a controversy with the mathematicians of the day because although 

it seemed to solve physical problems, it’s mathematical rigor was not at all 

clear. His knowledge of the physics of problems guided him correctly in many 

instances to the development of suitable mathematical processes. In 1887 

Heaviside introduced the concept of a resistance operator, which in modern 

terms would be called impedance, and Heaviside introduced the symbol Z for 

it. He let p be equal to time-differentiation, and thus the resistance operator for 

an inductor would be written as pL. He would then treat p just like an algebraic 

                                                 

1
 The Ukrainian Mikhail Egorovich Vashchenko-Zakharchenko published The Symbolic 

Calculus and its Application to the Integration of Linear Differential Equations in 1862. 

Heaviside independently invented (and applied) his own version of the operational calculus. 

Now all has been 
blended into one 
theory, the main 
equations of which 
can be written on a 
page of a pocket 
notebook. That we 
have got so far is 
due in the first place 
to Maxwell, and next 
to him to Heaviside 
and Hertz.  – H.A. 
Lorentz 

Rigorous 
mathematics is 
narrow, physical 
mathematics bold 
and broad.  – Oliver 
Heaviside 
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quantity, and solve for voltage and current in terms of a power series in p. In 

other words, Heaviside’s operators allowed the reduction of the differential 

equations of a physical system to equivalent algebraic equations. 

Heaviside was fond of using the unit-step as an input to electrical circuits, 

especially since it was a very practical matter to send such pulses down a 

telegraph line. The unit-step was even called the Heaviside step, and given the 

symbol  tH , but Heaviside simply used the notation 1. He was tantalizingly 

close to discovering the impulse by stating “… 1p  means a function of t 

which is wholly concentrated at the moment 0t , of total amount 1. It is an 

impulsive function, so to speak…[it] involves only ordinary ideas of 

differentiation and integration pushed to their limit.” 

Heaviside also played a role in the debate raging at the end of the 19
th

 century 

about the age of the Earth, with obvious implications for Darwin’s theory of 

evolution. In 1862 Thomson wrote his famous paper On the secular cooling of 

the Earth, in which he imagined the Earth to be a uniformly heated ball of 

molten rock, modelled as a semi-infinite mass. Based on experimentally 

derived thermal conductivity of rock, sand and sandstone, he then 

mathematically allowed the globe to cool according to the physical law of 

thermodynamics embedded in Fourier’s famous partial differential equation for 

heat flow. The resulting age of the Earth (100 million years) fell short of that 

needed by Darwin’s theory, and also went against geologic and palaeontologic 

evidence. John Perry (a professor of mechanical engineering) redid Thomson’s 

analysis using discontinuous diffusivity, and arrived at approximate results that 

could (based on the conductivity and specific heat of marble and quartz) put 

the age of the Earth into the billions of years. But Heaviside, using his 

operational calculus, was able to solve the diffusion equation for a finite 

spherical Earth. We now know that such a simple model is based on faulty 

premises – radioactive decay within the Earth maintains the thermal gradient 

without a continual cooling of the planet. But the power of Heaviside’s 

methods to solve remarkably complex problems became readily apparent. 

Throughout his “career”, Heaviside released 3 volumes of work entitled 

Electromagnetic Theory, which was really just a collection of his papers. 

Paul Dirac derived 
the modern notion of 
the impulse, when 
he used it in 1927, 
at age 25, in a paper 
on quantum 
mechanics. He did 
his undergraduate 
work in electrical 
engineering and 
was both familiar 
with all of 
Heaviside’s work 
and a great admirer 
of his. 

The practice of 
eliminating the 
physics by reducing 
a problem to a 
purely mathematical 
exercise should be 
avoided as much as 
possible. The 
physics should be 
carried on right 
through, to give life 
and reality to the 
problem, and to 
obtain the great 
assistance which 
the physics gives to 
the mathematics. – 
Oliver Heaviside, 
Collected Works, 
Vol II, p.4 
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Heaviside shunned all honours, brushing aside his honorary doctorate from the 

University of Göttingen and even refusing to accept the medal associated with 

his election as a Fellow of the Royal Society, in 1891. 

In 1902, Heaviside wrote an article for the Encyclopedia Britannica entitled 

The theory of electric telegraphy. Apart from developing the wave propagation 

theory of telegraphy, he extended his essay to include “wireless” telegraphy, 

and explained how the remarkable success of Marconi transmitting from 

Ireland to Newfoundland might be due to the presence of a permanently 

conducting upper layer in the atmosphere. This supposed layer was referred to 

as the “Heaviside layer”, which was directly detected by Edward Appleton and 

M.A.F. Barnett in the mid-1920s. Today we merely call it the “ionosphere”. 

Heaviside spent much of his life being bitter at those who didn’t recognise his 

genius – he had disdain for those that could not accept his mathematics without 

formal proof, and he felt betrayed and cheated by the scientific community 

who often ignored his results or used them later without recognising his prior 

work. It was with much bitterness that he eventually retired and lived out the 

rest of his life in Torquay on a government pension. He withdrew from public 

and private life, and was taunted by “insolently rude imbeciles”. Objects were 

thrown at his windows and doors and numerous practical tricks were played on 

him. 

Today, the historical obscurity of Heaviside’s work is evident in the fact that 

his vector analysis and vector formulation of Maxwell’s theory have become 

“basic knowledge”. His operational calculus was made obsolete with the 1937 

publication of a book by the German mathematician Gustav Doetsch – it 

showed how, with the Laplace transform, Heaviside’s operators could be 

replaced with a mathematically rigorous and systematic method. 

The last five years of Heaviside’s life, with both hearing and sight failing, were 

years of great privation and mystery. He died on 3
rd

 February, 1925. 

References 

Nahin, P.: Oliver Heaviside: Sage in Solitude, IEEE Press, 1988. 

Heaviside should be 
remembered for his 
vectors, his field 
theory analyses, his 
brilliant discovery of 
the distortionless 
circuit, his 
pioneering applied 
mathematics, and 
for his wit and 
humor. – P.J. Nahin 
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Introduction 

An examination of a system’s frequency response is useful in several respects. 

It can help us determine things such as the DC gain and bandwidth, how well a 

system meets the stability criterion, and whether the system is robust to 

disturbance inputs. 

Despite all this, remember that the time- and frequency-domain are 

inextricably related – we can’t alter the characteristics of one without affecting 

the other. This will be demonstrated for a second-order system later. 

 

9.1 The Frequency Response Function 

Recall that for a LTI system characterized by  sH , and for a sinusoidal input 

   tAtx 0cos  , the steady-state response is: 

      000ss cos  HtHAty   (9.1) 

where  H  is the frequency response function, obtained by setting js   in 

 sH . Thus, the system behaviour for sinusoidal inputs is completely specified 

by the magnitude response  H  and the phase response  H . 

The definition above is precisely how we determine the frequency response 

experimentally – we input a sinusoid and, in the steady-state, measure the 

magnitude and phase change at the output. 
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9.2 Determining the Frequency Response from a 
Transfer Function 

We can get the frequency response of a system by manipulating its transfer 

function. Consider a simple first-order transfer function: 

 
ps

K
sH




 
(9.2) 

The sinusoidal steady state corresponds to s j  . Therefore, Eq. (9.2) is, for 

the sinusoidal steady state: 

 
pj

K
H







 
(9.3) 

The complex function  H  can also be written using a complex exponential 

in terms of magnitude and phase: 

      jeHH   (9.4) 

which is normally written in polar coordinates: 

       HH  (9.5) 

We plot the magnitude and phase of  H  as a function of   or f . We use 

both linear and logarithmic scales. The phase function is usually plotted in 

degrees. 

If the logarithm (base 10) of the magnitude is multiplied by 20, then we have 

the gain of the frequency response in decibels (dB): 

    dB log20 10  jHA   (9.6) 

A negative gain in decibels is referred to as attenuation. For example, -3 dB 

gain is the same as 3 dB attenuation. 

The transfer function 
in terms of 
magnitude and 
phase 

The magnitude of 
the transfer function 
in dB 
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For example, in Eq. (9.2), let 0 pK  so that: 

 
01

1




j
H




 
(9.7) 

The magnitude function is found directly as: 

 
 201

1





H

 
(9.8) 

and the phase is: 

  







 

0

1tan





 
(9.9) 

 



9.5 

PMcL Magnitude Responses Index     

2015  9 - Frequency Response 

9.3 Magnitude Responses 

A magnitude response is the magnitude of the frequency response, plotted 

against the frequency of the input. Magnitude responses can be classified 

according to their particular properties. To look at these properties, we will use 

linear magnitude versus linear frequency plots. For the simple first-order RC 

circuit that you are so familiar with, the magnitude function has three 

frequencies of special interest corresponding to these values of  H : 

 

 

  0

707.0
2

1

10

0







H

H

H


 

(9.10) 

The frequency  0  is known as the half-power frequency. The plot below 

shows the complete magnitude response of  H  as a function of  , and the 

circuit that produces it: 

 

Vi

R

VoC



|H|

1

21

0
0 0 02  

 

Figure 9.1 

The magnitude 
response is the 
magnitude of the 
transfer function in 
the sinusoidal 
steady state 

A simple lowpass 
filter 
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An idealisation of the response in Figure 9.1, known as a brick wall, and the 

circuit that produces it are shown below: 

 

Vi Vo



|T|

1

0
0 0

ideal

filter

Cutoff

Pass Stop

 

 

Figure 9.2 

For the ideal filter, the output voltage remains fixed in amplitude until a critical 

frequency is reached, called the cutoff frequency,  0 . At that frequency, and 

for all higher frequencies, the output is zero. The range of frequencies with 

output is called the passband; the range with no output is called the stopband. 

The obvious classification of the filter is a lowpass filter. 

Even though the response shown in the plot of Figure 9.1 differs from the ideal, 

it is still known as a lowpass filter, and, by convention, the half-power 

frequency is taken as the cutoff frequency. 

An ideal lowpass 
filter 

Pass and stop 
bands defined 



9.7 

PMcL Magnitude Responses Index     

2015  9 - Frequency Response 

If the positions of the resistor and capacitor in the circuit of  Figure 9.1 are 

interchanged, then the resulting circuit is: 

 

Vi R Vo

C

 

 

Figure 9.3 

Show that the transfer function is: 

 
RCs

s
sH

1


 
(9.11) 

Letting 1 0RC   again, and with s j  , we obtain: 

 
0

0

1 




j

j
H




 
(9.12) 

The magnitude function of this equation, at the three frequencies given in 

Eq. Figure 9.10, is: 

 

 

  1

707.0
2

1

00

0







H

H

H


 

(9.13) 
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The plot below shows the complete magnitude response of  H  as a function 

of  , and the circuit that produces it: 

 



Vi R Vo

C

|H|

1

21

0
0 0 02 03  

 

Figure 9.4 

This filter is classified as a highpass filter. The ideal brick wall highpass filter 

is shown below: 

 

Vi Vo



|T|

1

0
0 0

ideal

filter

Cutoff

PassStop

 

 

Figure 9.5 

The cutoff frequency is  0 , as it was for the lowpass filter. 

A simple highpass 
filter 

An ideal highpass 
filter 
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9.4 Phase Responses 

Like magnitude responses, phase responses are only meaningful when we look 

at sinusoidal steady-state signals. A frequency response can be expressed in 

polar form as: 

  


 



 H

X

Y

X

Y
H

0  
(9.14) 

where the input is taken as the phase reference (zero phase). 

For the bilinear transfer function, the frequency response is: 

 
pj

zj
KH











 
(9.15) 

and the phase is: 


 

  








 











 K
z p

tan tan1 1

 
(9.16) 

We use the sign of this phase angle to classify systems. Those giving positive 

  are known as lead systems, those giving negative   as lag systems. 

For the simple RC circuit of Figure 9.1, for which  H  is given by 

Eq. (9.7), we have: 





 











tan 1

0
 

(9.17) 

Since   is negative for all  , the circuit is a lag circuit. When   0 , 

      tan 1 1 45 . 

Phase response is 
obtained in the 
sinusoidal steady 
state 

The phase of the 
bilinear transfer 
function 

Lead and lag circuits 
defined 
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A complete plot of the phase response is shown below: 

 





0 0 02
0 º

-45 º

-90 º

 

 

Figure 9.6 

For the circuit in Figure 9.4, show that the phase is given by: 





 











90 1

0

tan
 

(9.18) 

The phase response has the same shape as Figure 9.6 but is shifted upward by 

90 : 

 



0 0 02
0 º

45 º

90 º

 

 

Figure 9.7 

The angle   is positive for all  , and so the circuit is a lead circuit. 

Lagging phase 
response for a 
simple lowpass filter 

Leading phase 
response for a 
simple highpass 
filter 
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9.5 Frequency Response of a Lowpass Second-Order System 

Starting from the usual definition of a lowpass second-order system transfer 

function: 

 
22

2

2 nn

n

ss
sH








 
(9.19) 

we get the following frequency response function: 

 





nn

n

j
H

222

2




 
(9.20) 

The magnitude is: 

 
   2

222

2

2 




nn

njH




 

(9.21) 

and the phase is: 













 

22

1 2
tan






n

n

 
(9.22) 

 

The magnitude 
response of a 
lowpass second 
order transfer 
function 

The phase response 
of a lowpass second 
order transfer 
function 
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The magnitude and phase functions are plotted below for 4.0 : 

 

1

0

0 

-40 dB / decade

|H|

0 1 
-180

-90

0

for all
-180  asymptoteº

All

 r = 2 

 , degrees

 n

1

2

1-2 n   n





 

 

Figure 9.8 

For the magnitude function, from Eq. (9.21) we see that: 

      0,21,10  HHH n   (9.23) 

and for large  , the magnitude decreases at a rate of -40 dB per decade, which 

is sometimes described as two-pole rolloff. 

For the phase function, we see that: 

       180,90,00  n  (9.24) 

 

Typical magnitude 
and phase 
responses of a 
lowpass second 
order transfer 
function 
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9.6 Visualization of the Frequency Response from a 
Pole-Zero Plot 

The frequency response can be visualised in terms of the pole locations of the 

transfer function. For example, for a second-order lowpass system: 

 
22

2

2 nn

n

ss
sH








 
(9.25) 

the poles are located on a circle of radius n  and at an angle with respect to the 

negative real axis of   1cos . These complex conjugate pole locations are 

shown below: 

 





n

n-

j

p

p*

 

 

Figure 9.9 

In terms of the poles shown in Figure 9.9, the transfer function is: 

 
  


psps

sH n

2
 

(9.26) 

 

Standard form for a 
lowpass second 
order transfer 
function 

Pole locations for a 
lowpass second 
order transfer 
function 

Lowpass second 
order transfer 
function using pole 
factors 
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With s j  , the two pole factors in this equation become: 

j p m j p m        

1 1 2 2and
 

(9.27) 

In terms of these quantities, the magnitude and phase are: 

 
21

2

mm
H n 

 
(9.28) 

and: 

     1 2  (9.29) 

Vectors representing Eq. (9.27) are shown below: 
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Figure 9.10 

Polar representation 
of the pole factors 

Magnitude function 
written using the 
polar representation 
of the pole factors 

Phase function 
written using the 
polar representation 
of the pole factors 

Determining the 
magnitude and 
phase response 
from the s plane 
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Figure 9.10 shows three different frequencies - one below n , one at n , and 

one above n . From this construction we can see that the short length of m1  

near the frequency n  is the reason why the magnitude function reaches a peak 

near n . These plots are useful in visualising the frequency response of the 

circuit. 

 

9.7 Bode Plots 

Bode
*
 plots are plots of the magnitude function     HA 10log20  and the 

phase function   , where the scale of the frequency variable (usually  ) is 

logarithmic. The use of logarithmic scales has several desirable properties: 

 we can approximate a frequency response with straight lines. This is called 

an approximate Bode plot. 

 the shape of a Bode plot is preserved if we decide to scale the frequency – 

this makes design easy. 

 we add and subtract individual factors in a transfer function, rather than 

multiplying and dividing. 

 the slope of all asymptotic lines in a magnitude plot is dB/decade 20n , 

and /decade45n  for phase plots, where n is any integer. 

 by examining a few features of a Bode plot, we can readily determine the 

frequency response function (for simple systems). 

We normally don’t deal with equations when drawing Bode plots – we rely on 

our knowledge of the asymptotic approximations for the handful of factors that 

go to make up a transfer function. 

                                                 

*
 Dr. Hendrik Bode grew up in Urbana, Illinois, USA, where his name is pronounced boh-dee. 

Purists insist on the original Dutch boh-dah. No one uses bohd. 

The advantages of 
using Bode plots 
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EXAMPLE 15.1 Bode Plot of an RC Circuit’s Frequency Response 

For the simple lowpass RC circuit, let RC10   so that the frequency 

response can be written as: 

 
01

1




j
jH


  

The magnitude function is found directly as: 

   
 

  2

010

2

0

1010

1log10

1

1
log20log20























 jHA

 

The phase is: 

  



 











tan 1

0

 

The Bode plots are graphed below, using a normalised log scale for  : 
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9.7.1  Bode Plot Factors 

The primary advantage of a logarithmic scale for Bode magnitude plots is the 

conversion of multiplicative factors into additive factors by virtue of the 

definition of the logarithm. The phase plots are additive by definition of the 

multiplication of complex numbers. For example, if we have a frequency 

response function of the form: 

 
43

21

HH

HH
jH 

 
(9.30) 

then clearly: 

 

4321

410310

210110

log20log20

log20log20

AAAA

HH
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(9.31) 

and: 

 

4321

4321







 HHHH

 
(9.32) 

 

Bode plot factors 
are additive if the 
magnitude scale is 
logarithmic 
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There are four different kinds of factors that may occur in a frequency response 

function: 

Name Factor 

Constant gain K 

Pole (or zero) at the origin j  

Pole (or zero) on the real axis 
01 j  

Complex conjugate poles (or zeros)    200011  jjQ   

We can determine the logarithmic magnitude plot and phase plot for these four 

factors and then utilize them to obtain a Bode plot for any general form of a 

frequency response function. Typically, the curves for each factor are obtained 

and then added together graphically to obtain the curve for the complete 

frequency response function. 

The four factors that 
can occur in a 
frequency response 
function 



9.19 

PMcL Bode Plots Index     

2015  9 - Frequency Response 

9.7.2 Approximating Bode Plots 

The hand drawing of the individual Bode plot frequency response factors can 

be simplified by using linear approximations to the exact curves. 

Approximate Magnitude Response 

Consider a frequency response factor  011 j . The exact magnitude 

response is given by: 

    2

010 1log10  A  (9.33) 

For very small frequencies, such that 0  , we can say: 

    dB 01log10 10 A  (9.34) 

For very large frequencies, such that 0  , we can say: 

   dB log20 010  A  (9.35) 

Thus, on a set of axes where the horizontal axis is 10log , the “asymptotic” 

curves for the magnitude response are straight lines as shown below: 

 

 

 

Figure 9.11 

Approximate 
responses can be 
easily drawn for the 
individual frequency 
response factors 

Exact and 
approximate 
magnitude response 
for a “real pole” 
factor 
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The low and high frequency asymptotes meet at the frequency 0 , which is 

often called the break frequency or corner frequency. The slope of the high 

frequency asymptote can be ascertained from Eq. (9.35). 

An interval of two frequencies with a ratio equal to ten, such as from 1  to 

12 10  , is called a decade. The difference between the logarithmic gains 

for 0  , over a decade of frequency is approximated by: 

     

  

 

 

dB 20

10log20

log20

log20

log20

10

1210

0110

021012















 AA

 

(9.36) 

That is, the slope of the high frequency asymptotic line for this frequency 

response factor is -20 dB/decade. 

A frequency interval from 1  to 12 2   is often used and is called an 

octave. The difference between the logarithmic gains for 0  , over an 

octave is approximated by: 

     

 

dB 021.6

2log20

log20

10

121012





  AA

 
(9.37) 

Therefore, the slope of the high frequency asymptote can be specified as either 

-6 dB/octave or -20 dB/decade. 

Note that the actual gain at the break frequency 0   is -3 dB, so 0  is also 

sometimes referred to as “the -3 dB frequency”. 

Break frequency 
and corner 
frequency defined 

The slope of all 
asymptotic lines on 
a magnitude plot is 
a multiple of 
±20 dB/decade… 

…or ±6 dB/octave 
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Approximate Phase Response 

Consider a frequency response factor  011 j . The exact phase response 

is given by: 

  



 











tan 1

0
 

(9.38) 

Instead of graphing this nonlinear function, we often resort to a piece-wise 

linear approximation, as shown below: 

 

 

 

Figure 9.12 

The piece-wise linear approximation passes through the correct phase of -45° 

at the break frequency, and is within 6° of the actual phase curve for all 

frequencies. As can be seen from the graph, the slope of the line passing 

through the -45° point is -45°/decade. This line only continues a decade above 

and a decade below the break frequency. For 0   the approximating line 

is flat at 0°, whilst for 0   the approximating line is flat at -90°. 

Exact and 
approximate phase 
response for a “real 
pole” factor 

The slope of all 
asymptotic lines on 
a phase plot is a 
multiple of 
±45°/decade 
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9.8 Approximate Bode Plot Frequency Response Factors 

The table below gives transfer function factors and their corresponding 

magnitude asymptotic plots and phase linear approximations: 

Magnitude 

Asymptote 

dB ,A  

Phase 

Linear Approximation 
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0.1
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n  

The corresponding numerator factors are obtained by “mirroring” the above 

plots about the 0 dB line and 0° line. 
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Function 
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9.9 Transfer Function Synthesis 

One of the main reasons for using Bode plots is that we can synthesise a 

desired frequency response by placing poles and zeros appropriately. This is 

easy to do asymptotically, and the results can be checked using MATLAB
®

. 

EXAMPLE 15.2 Design of a Filter using a Bode Plot 

The asymptotic Bode plot shown below is for a band-enhancement filter: 

|H|, dB

0 dB

2

10
3

10
4

10
5

10

20 dB

 rad/s (log scale)

 

We wish to provide additional gain over a narrow band of frequencies, leaving 

the gain at higher and lower frequencies unchanged. We wish to design a filter 

to these specifications and the additional requirement that all capacitors have 

the value C 10 nF . 

The composite plot may be decomposed into four first-order factors as shown 

below: 
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Decomposing a 
Bode plot into first-
order factors 

A band 
enhancement filter 
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Those marked 1 and 4 represent zero factors, while those marked 2 and 3 are 

pole factors. The pole-zero plot corresponding to these factors is shown below: 

j



1234

 

From the break frequencies given, we have: 
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101101
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Substituting s for j  gives the transfer function: 
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We next write  sH  as a product of bilinear functions. The choice is arbitrary, 

but one possibility is: 
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s

s

s

s
sHsHsH  

For a circuit realisation of 1H  and 2H  we decide to use an inverting op-amp 

circuit that implements a bilinear transfer function: 

Vo

Vi

1 1 1 1

10
-2

10
-3

10
-5

10
-4

 

The pole-zero plot 
corresponding to the  
Bode plot 

The transfer function 
corresponding to the  
Bode plot 

The transfer function 
as a cascade of 
bilinear functions 

A realisation of the 
specifications 
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To obtain realistic element values, we need to scale the components so that the 

transfer function remains unaltered. This is accomplished with the equations: 

C
k

C R k R
m

mnew old new oldand 
1

 

Since the capacitors are to have the value 10 nF, this means km  108 . The 

element values that result are shown below and the design is complete: 

Vo

Vi

10 nF 10 nF 10 nF 10 nF

1 M 100 k 1 k 10 k

 

In this simple example, the response only required placement of the poles and 

zeros on the real axis. However, complex pole-pair placement is not unusual in 

design problems. 

Magnitude scaling is 
required to get 
realistic element 
values 

A realistic 
implementation of 
the specifications 
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9.10 Digital Filters 

Digital filtering involves sampling, quantising and coding of the input analog 

signal (using an analog to digital converter, or ADC for short). Once we have 

converted voltages to mere numbers, we are free to do any processing on them 

that we desire. Usually, the signal’s spectrum is found using a fast Fourier 

transform, or FFT. The spectrum can then be modified by scaling the 

amplitudes and adjusting the phase of each sinusoid. An inverse FFT can then 

be performed, and the processed numbers are converted back into analog form 

(using a digital to analog converter, or DAC). In modern digital signal 

processors, an operation corresponding to a fast convolution is also sometimes 

employed – that is, the signal is convolved in the time-domain in real-time. 

The components of a digital filter are shown below: 

 

Anti-alias

Filter
ADC

Digital
Signal

Processor
DAC

Reconstruction

Filter
vovi

 

 

Figure 9.13 

The digital signal processor can be custom built digital circuitry, or it can be a 

general purpose computer. There are many advantages of digitally processing 

analog signals: 

1. A digital filter may be just a small part of a larger system, so it makes sense 

to implement it in software rather than hardware. 

2. The cost of digital implementation is often considerably lower than that of 

its analog counterpart (and it is falling all the time). 

3. The accuracy of a digital filter is dependent only on the processor word 

length, the quantising error in the ADC and the sampling rate. 

4. Digital filters are generally unaffected by such factors as component 

accuracy, temperature stability, long-term drift, etc. that affect analog filter 

circuits. 

Digital filters use 
analog filters 

The components of 
a digital filter 

Digital filter 
advantages 
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5. Many circuit restrictions imposed by physical limitations of analog devices 

can be circumvented in a digital processor. 

6. Filters of high order can be realised directly and easily. 

7. Digital filters can be modified easily by changing the algorithm of the 

computer. 

8. Digital filters can be designed that are always stable. 

9. Filter responses can be made which always have linear phase (constant 

delay), regardless of the magnitude response. 

Some disadvantages are: 

1. Processor speed limits the frequency range over which digital filters can be 

used (although this limit is continuously being pushed back with ever faster 

processors). 

2. Analog filters (and signal conditioning) are still necessary to convert the 

analog signal to digital form and back again. 

9.11 Summary 

 A frequency response consists of two parts – a magnitude response and a 

phase response. It tells us the change in the magnitude and phase of a 

sinusoid at any frequency, in the steady-state. 

 Bode plots are magnitude (dB) and phase responses drawn on a semi-log 

scale, enabling the easy analysis or design of high-order systems. 

9.12 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB
®

, Prentice-Hall, 1997. 

Digital filter 
disadvantages 
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Exercises 

1. 

With respect to a reference frequency Hz 200 f , find the frequency which is 

(a) 2 decades above 0f  and (b) 3 octaves below 0f . 

2. 

Express the following magnitude ratios in dB: (a) 1, (b) 40, (c) 0.5 

3. 

Draw the approximate Bode plots (both magnitude and phase) for the transfer 

functions shown. Use MATLAB
®
 to draw the exact Bode plots and compare. 

(a)   10sG  (b)  
s

sG
4

  (c)  
110

1




s
sG  

(d)  
110

1




s
sG  (e)    15  ssG  (f)    15  ssG  

Note that the magnitude plots for the transfer functions (c) and (d); (e) and (f) 

are the same. Why? 

4. 

Prove that if  sG  has a single pole at 1s  the asymptotes of the log 

magnitude response versus log frequency intersect at  1 . Prove this not 

only analytically but also graphically using MATLAB
®
. 
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5. 

Make use of the property that the logarithm converts multiplication and 

division into addition and subtraction, respectively, to draw the Bode plot for: 

 
 

 101.0

1100






ss

s
sG  

Use asymptotes for the magnitude response and a linear approximation for the 

phase response. 

6. 

Draw the exact Bode plot using MATLAB
®
 (magnitude and phase) for 

 
22

2

2

100

nnss

s
sG

 
  

when 

-1rads 10n  and 3.0  

Compare this plot with the approximate Bode plot (which ignores the 

value of  ). 

7. 

Given 

(a)  
 

   16.9411.0

166.620
2






sss

s
sG  

(b)  
 

 ss

ss
sG






10

5.14
2

2

 

Draw the approximate Bode plots and from these graphs find G  and G  at 

(i) -1rads 1.0 , (ii) -1rads 1 , (iii) -1rads 10 , (iv) -1rads 100 . 
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8. 

The experimental responses of two systems are given below. Plot the Bode 

diagrams and identify the transfer functions. 

 (a)    (b)  

  

 -1rads  
1G  

(dB) 

1G  

(°) 

   

 -1rads  
2G  

(dB) 

2G  

(°) 

0.1 40 -92  0.01 -26 87 

0.2 34 -95  0.02 -20 84 

0.5 25 -100  0.04 -14 79 

1 20 -108  0.07 -10 70 

2 14 -126  0.1 -7 61 

3 10 -138  0.2 -3 46 

5 2 -160  0.4 -1 29 

10 -9 -190  0.7 -0.3 20 

20 -23 -220  1 0 17 

30 -32 -235  2 0 17 

40 -40 -243  4 0 25 

50 -46 -248  7 -2 36 

100 -64 -258  10 -3 46 

    20 -7 64 

    40 -12 76 

    100 -20 84 

    500 -34 89 

    1000 -40 89 

9. 

Given    5 ssKsG  

(a) Plot the closed loop frequency response of this system using unity feedback 

when 1K . What is the –3 dB bandwidth of the system? 

(b) Plot the closed loop frequency response when K is increased to 100K . 

What is the effect on the frequency response? 

10. 

The following measurements were taken for an open-loop system: 

(i) 1  , dB 6G ,  25G  

(ii) 2  , dB 18G ,  127G  

Find G  and G  at 1  and 2  when the system is connected in a unity 

feedback arrangement. 
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11. 

An amplifier has the following frequency response. Find the transfer function. 
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10 Time-Domain Response 
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Introduction 

Control systems employing feedback usually operate to bring the output of the 

system being controlled “in line” with the reference input. For example, a maze 

rover may receive a command to go forward 4 units – how does it respond? 

Can we control the dynamic behaviour of the rover, and if we can, what are the 

limits of the control? Obviously we cannot get a rover to move infinitely fast, 

so it will never follow a step input exactly. It must undergo a transient – just 

like an electric circuit with storage elements. However, with feedback, we may 

be able to change the transient response to suit particular requirements, like 

time taken to get to a certain position within a small tolerance, not 

“overshooting” the mark and hitting walls, etc. 
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10.1 Steady-State Error 

One of the main objectives of control is for the system output to “follow” the 

system input. The difference between the input and output, in the steady-state, 

is termed the steady-state error: 

     

 te
t

e

tctrte

ss 




lim  
(10.1) 

Consider the unity-feedback system: 

 

R  s(  ) C  s(  )E  s(  )
G  s(  )

 

 

Figure 10.1 

The type of the control system, or simply system type, is the number of poles 

that  sG  has at 0s . For example: 

 
 

 
 

 
3 type

2

4
sG

1 type
22

3110

3

2









ss

sss

s
sG

 

(10.2) 

 

Steady-state error 
defined 

System type defined 
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When the input to the control system in Figure 10.1 is a step function with 

magnitude R, then   sRsR   and the steady-state error is: 

   

 
   

 sG
s

R

sG

R

ssG

ssR

s

ssE
s

te
t

ess

0
lim

1

10
lim

10
lim

0
limlim


















 

(10.3) 

For convenience, we define the step-error constant, PK , as: 

 sG
s

KP 0
lim



 

(10.4) 

so that Eq. (10.3) becomes: 

P

ss
K

R
e




1  
(10.5) 

We see that for the steady-state error to be zero, we require PK . This will 

only occur if there is at least one pole of  sG  at the origin. We can summarise 

the errors of a unity-feedback system to a step-input as: 

0:systemhigher or  1 type

constant
1

:system 0 type








ss

P

ss

e

K

R
e

 (10.6) 

 

Step-error constant 
– only defined for a 
step-input 

Steady-state error to 
a step-input for a 
unity-feedback 
system 
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10.2 Transient Response 

Consider a maze rover (MR) described by the differential equation: 

 
   tx

M
tv

M

k

dt

tdv f 1


 
(10.7) 

where  tv  is the velocity,  tx  is the driving force, M is the mass and fk  

represents frictional losses. We may represent the MR by the following block 

diagram: 

 

V  s(  )X  s(  )

Mks

M

f

1

 

 

Figure 10.2 

Now, from the diagram above, it appears that our input to the rover affects the 

velocity in some way. But we need to control the output position, not the 

output velocity. 

We’re therefore actually interested in the following model of the MR: 

 

V  s(  )X  s(  )

Mks

M

f

1

s

1 C  s(  )

 

 

Figure 10.3 

Maze rover force / 
velocity differential 
equation 

MR transfer function 
for velocity output 

MR transfer function 
for position output 
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This should be obvious, since position  tc  is given by: 

     dvtc
t


 

0 
 

(10.8) 

Using block diagram reduction, our position model of the MR is:  

 

X  s(  ) C  s(  )

 Mkss

M

f

1

 

 

Figure 10.4 

The whole point of modelling the rover is so that we can control it. Suppose we 

wish to build a maze rover position control system. We will choose for 

simplicity a unity-feedback system, and place a “controller” in the feed-

forward path in front of the MR’s input. Such a control strategy is termed 

series compensation. 

A block diagram of the proposed feedback system, with it’s unity-feedback and 

series compensation controller is: 

 

R  s(  ) C  s(  )E  s(  )
G  s(  )

c

controller

X  s(  )

 Mkss

M

f

1

 

 

Figure 10.5 

Simple MR position 
control scheme 
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Let the controller be the simplest type possible – a proportional controller 

which is just a gain PK . Then the closed-loop transfer function is given by: 

 
    MKMkss

MK

sR

sC

Pf

P




 
(10.9) 

which can be manipulated into the standard form for a second-order transfer 

function: 

 
  22

2

2 nn

n

sssR

sC








 
(10.10) 

Note: For a more complicated controller, we will not in general obtain a 

second-order transfer function. The reason we examine second-order systems 

is because they are amenable to analytical techniques – the concepts remain 

the same though for higher-order systems. 

Although this simple controller can only vary 2

n , with n  fixed (why?), we 

can still see what sort of performance this controller has in the time-domain as 

PK  is varied. In fact, the goal of the controller design is to choose a suitable 

value of PK  to achieve certain criteria. 

For a unit-step function input,   ssR 1 , and the output response of the 

system is obtained by taking the inverse Laplace transform of the output 

transform: 

 
 22

2

2 nn

n

sss
sC








 
(10.11) 

 

Second-order 
control system 

Controllers change 
the transfer function 
– and therefore the 
time-domain 
response 
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We have seen previously that the result for an underdamped system is: 

   



12

2
cos1sin

1
1 






 t
e

tc n

tn

 
(10.12) 

We normally desire the output to be slightly underdamped due to its “fast” 

characteristics – it rises to near the steady-state output much quicker than an 

overdamped or critically damped system. 

Although second-order control systems are rare in practice, their analysis 

generally helps to form a basis for the understanding of analysis and design for 

higher-order systems, especially ones that can be approximated by second-

order systems. Also, time-domain specifications of systems can be directly 

related to an underdamped second-order response via simple formula. 

 

10.3 Second-order Step Response 

The time-domain unit-step response to the system described by Eq. (10.10) has 

been solved previously. We found that there were three distinct solutions that 

depended upon the pole locations. We termed the responses overdamped (two 

real poles), critically damped (repeated real poles) and underdamped (complex 

conjugate poles). 

Some time-domain criteria only apply to certain types of response. For 

example, percent overshoot only exists for the underdamped case. 
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We will now examine what sort of criteria we usually specify, with respect to 

the following diagram: 

 

c  t(  )

t
0

0.10

0.95
1.00
1.05

0.90

0.50

ts

tr

td

tp

P.O. = percent overshoot

 

 

Figure 10.6 

The following definitions are made: 

%100overshootpercent P.O. max 



ss

ss

c

cc
 (10.13) 

  %50

delay time





ssd

d

ctc

t
 (10.14) 

    %10   %,90

 timerise

%10%90

%10%90





ssss

r

ctcctc

ttt
 (10.15) 

 
%5

 timesettling






ss

sss

s

c

cttc

t

 (10.16) 

Step response 
definitions 

Percent overshoot 

Delay time 

Rise time 

Settling time 
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The poles of Eq. (10.10) are given by: 

d

nn

j

jpp







 2

21 1 ,
 

(10.17) 

The undamped natural frequency is: 

origin from distance radialn  (10.18) 

The damping factor is defined as: 

poles  theofpart  real  (10.19) 

and the damped natural frequency is: 

poles  theofpart imaginary d  (10.20) 

The damping ratio is defined as: 

n


 

 (10.21) 

All of the above are illustrated in the following diagram: 

 

=

n

n-

d

j



n 1-  2

j

j

j j

n=- -

 

 

Figure 10.7 

Natural frequency 
defined 

Damping factor 
defined 

Damped frequency 
defined 

Damping ratio 
defined 

Second-order 
complex pole 
locations 
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The effect of   is readily apparent from the following graph of the step-input 

response: 

 

c  t(  )

tn

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 10.8 

Second-order step 
response for varying 
damping ratio 
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10.4 Settling Time 

The settling time, st , is the time required for the output to come within and stay 

within a given band about the actual steady-state value. This band is usually 

expressed as a percentage p of the steady-state value. To derive an estimate for 

the settling time, we need to examine the step-response more closely. 

The standard, second-order lowpass transfer function of Eq. (10.10) has the 

s-plane plot shown below if 10  : 

 

n



j



n 1-  2

- n

s -plane

j

 

 

Figure 10.9 

It can be seen that the angle   is given by: 





 

n

ncos
 

(10.22) 

The step-response, as given by Eq. (10.12), is then: 

   










t
e

tc n

tn

2

2
1sin

1
1

 
(10.23) 

 

Pole locations 
showing definition of 

the angle  
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The curves  211 


 tne  are the envelope curves of the transient 

response for a unit-step input. The response curve  tc  always remains within a 

pair of the envelope curves, as shown below: 
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Figure 10.10 

To determine the settling time, we need to find the time it takes for the 

response to fall within and stay within a certain band about the steady-state 

value. This time depends on   and n  in a non-linear fashion, because of the 

oscillatory response. It can be obtained numerically from the responses shown 

in Figure 10.8. 

Pair of envelope 
curves for the unit-
step response of a 
lowpass second-
order underdamped 
system 
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One way of analytically estimating the settling time with a simple equation is 

to consider only the minima and maxima of the step-response. For 10  , 

the step-response is the damped sinusoid shown below: 

 

1

0

1- e
 t

n
-

1+e
 t

n
-

steady-state value

 

 

Figure 10.11 

The dashed curves in Figure 10.11 represent the loci of maxima and minima of 

the step-response. The maxima and minima are found by differentiating the 

time response, Eq. (10.23), and equating to zero: 
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(10.24) 

 

Exponential curves 
intersecting the 
maxima and minima 
of the step-response 
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Dividing through by the common term and rearranging, we get: 
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(10.25) 

where we have used the fact that   n tantan ,  ,2 ,1 ,0n  

Then, taking the arctangent of both sides of Eq. (10.25), we have:  





ntn 

 2

2

1 1
1

tan
 

(10.26) 

From the s-plane plot of Figure 10.9, we have: 






2

1 1
tan


 

 
(10.27) 

Substituting Eq. (10.27) into Eq. (10.26), and solving for t, we obtain: 

21 








n

n
t

,  ,2 ,1 ,0n  
(10.28) 

Eq. (10.28) gives the time at which the maxima and minima of the step-

response occur. Since  tc  in Eq. (10.23) is only defined for 0t , Eq. (10.28) 

only gives valid results for 0t . 

Times at which the 
maxima and minima 
of the step-response 
occur 
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Substituting Eq. (10.28) into Eq. (10.23), we get: 
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(10.29) 

Cancelling common terms, we have: 
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(10.30) 

Since: 

 
  even ,sinsin

odd ,sinsin
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(10.31) 

then Eq. (10.30) defines two curves: 
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(10.32a) 

 

(10.32b) 

From Figure 10.9, we have: 

21sin    
(10.33) 
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Substituting this equation for sin  into Eqs. (10.32), we get: 

  odd ,1
21

1 nenc

n









  

 

(10.34) 

 

  even ,1
21

2 nenc
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(10.35) 

 

Eq. (10.34) and Eq. (10.35) are, respectively, the relative maximum and 

minimum values of the step-response, with the times for the maxima and 

minima given by Eq. (10.28). But these values will be exactly the same as 

those given by the following exponential curves: 
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(10.36a) 

(10.36b) 

evaluated at the times for the maxima and minima: 

21 






n

n
t

,  ,2 ,1 ,0n  
(10.37) 

Since the exponential curves, Eqs (10.36), pass through the maxima and 

minima of the step-response, they can be used to approximate the extreme 

bounds of the step-response (note that the response actually goes slightly 

outside the exponential curves, especially after the first peak – the exponential 

curves are only an estimate of the bounds). 

Exponential curves 
passing through the 
maxima and minima 
of the step-response 
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We can make an estimate of the settling time by simply determining the time at 

which  tc1  [or  tc2 ] enters the band     11 tc  about the steady-state 

value, as indicated graphically below: 
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ts
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Figure 10.12 

The exponential terms in Eqs. (5B.32) represent the deviation from the steady-

state value. Since the exponential response is monotonic, it is sufficient to 

calculate the time when the magnitude of the exponential is equal to the 

required error  . This time is the settling time, st : 

snt
e

 
  (10.38) 

Taking the natural logarithm of both sides and solving for st  gives 

the “p-percent” settling time for a step-input: 

n

st


ln


 
(10.39) 

where 
100

p
 . 

Note that this formula is an approximation to the real settling time. 

Graph of an 
underdamped step-
response showing 
exponential curves 
bounding the 
maxima and minima 

Settling time for a 
second-order 
system 
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10.5 Peak Time 

The peak time, pt , at which the response has a maximum overshoot is given by 

Eq. (10.28), with 1n  (the first local maxima): 

dn

pt












21
 

(10.40) 

This formula is only applicable if 10  , otherwise the peak time is pt . 

10.6 Percent Overshoot 

The magnitudes of the overshoots can be determined using Eq. (5B.31a). The 

maximum value is obtained by letting 1n . Therefore, the maximum value is: 

 
21
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 etc  

(10.41) 

Hence, the maximum overshoot is: 

21
overshoot maximum

 
 e  

(10.42) 

and the maximum percent overshoot is: 

%100P.O.
21


 
e  

(10.43) 

10.7 Rise Time and Delay Time 

To determine rise times and delay times, we usually don’t resort to solving the 

non-linear equation that results in substitution of the 10%, 50% and 90% 

values of the steady-state response and solving for t. We use a normalised 

delay time graph, or solve the resulting equations numerically using 

MATLAB
®
, or measure from a graph of the response (or on the DSO). 

Peak time for a 
second-order 
system 

Percent overshoot 
for a second-order 
system 
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10.8 Summary 

 The time-domain response of a system is important in control systems. In 

“set point” control systems, the time-domain response is the step response 

of the system. We usually employ feedback in a system so that the output 

tracks the input with some acceptable steady-state error. 

 The transient part of a time-domain response is important. Control systems 

usually specify acceptable system behaviour with regards to percent 

overshoot, settling time, rise time, etc. For second-order systems, most of 

these quantities can be obtained from simple formula – in general they 

cannot. 

 For second-order all-pole systems, we can directly relate pole locations 

(  and n ) to transient behaviour. 

 Three important parameters of a second-order underdamped response are 

used to specify a transient response. They are: 

Settling time:  
n

st


ln
  

Peak time:  
dn

pt












21
 

Percent overshoot:  %100P.O.
21


 
e  
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Exercises 

1. 

A second-order all-pole system has roots at -1rads 32 j . If the input to the 

system is a step of 10 units, determine: 

(a) the P.O. of the output 

(b) the peak time of the output 

(c) the damping ratio 

(d) the natural frequency of the system 

(e) the actual frequency of oscillation of the output 

(f) the 0-100% rise time 

(g) the 5% settling time 

(h) the 2% settling time 

2. 

Determine a second-order, all-pole transfer function which will meet the 

following specifications for a step input: 

(a) 10%-90% rise time  150 ms 

(b)  5% overshoot 

(c) 1% settling time  1 s 



10.22 

Index Exercises PMcL   

10 - Time-Domain Response  2015 

3. 

Given: 

 
 22

2

2 nn

n

sss
sC






  

find  tc  using the residue approach. 

[Hint: Expand the denominator into the form   dd jsjss   ] 

4. 

The experimental zero-state response to a unit-step input of a second-order all-

pole system is shown below: 

c  t(  )

t

a
b

0.4 0.8

1.0

0
 

(a) Derive an expression (in terms of a and b) for the damping ratio. 

(b) Determine values for the natural frequency and damping ratio, given 

4.0a  and 08.0b . 
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5. 

Given: 

(i)  
10

10
1




s
sG  

(ii)  
1

1
2




s
sG  

(iii)  
  101

10
3




ss
sG  

(a) Sketch the poles of each system on the s-plane. 

(b) Sketch the time responses of each system to a unit-step input. 

(c) Which pole dominates the time response of  sG3 ? 

6. 

Find an approximate first-order model of the transfer function: 

 
23

4
2 


ss

sG  

by “fitting” a single-time-constant step response curve to its step response. 

Sketch and compare the two step responses. 

Hint: A suitable criterion to use that is common in control theory is the integral 

of the square of the error, ISE, which is defined as: 

 
T

dtteI
 

0 

2

1  

The upper limit T is a finite time chosen somewhat arbitrarily so that the 

integral approaches a steady-state value. 
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7. 

Automatically controlled machine-tools form an important aspect of control 

system application. The major trend has been towards the use of automatic 

numerically controlled machine tools using direct digital inputs. Many 

CAD/CAM tools produce numeric output for the direct control of these tools, 

eliminating the tedium of repetitive operations required of human operators, 

and the possibility of human error. The figure below illustrates the block 

diagram of an automatic numerically controlled machine-tool position control 

system, using a computer to supply the reference signal. 

1R  s(  ) C  s(  )

servo motor
servo

amplifier

s +s(     1)

position feedback

Ka = 9

 

(a) What is the undamped natural frequency n  and damping factor  ? 

(b) What is the percent overshoot and time to peak resulting from the 

application of a unit-step input? 

(c) What is the steady-state error resulting from the application of a unit-step 

input? 

(d) What is the steady-state error resulting from the application of a unit-ramp 

   ttutr   input? 
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8. 

Find the steady-state errors to (a) a unit-step, and (b) a unit-ramp input, for the 

following feedback system: 

R  s(  ) C  s(  )

s3

s 2+1

1

 

Note that the error is defined as the difference between the actual input  tr  

and the actual output  tc . 

9. 

Given 

 
1.0

1.0




s
sG  

a) Find an expression for the step-response of this system. Sketch this 

response. What is the system time constant? 

b) A unity feedback loop is to be connected around the system as shown: 

R  s(  ) C  s(  )
K G  s(  )

 

Sketch the time responses of the closed-loop system and find the system 

time constants when (i) 1.0K , (ii) 1K  and (iii) 10K . 

What affect does feedback have on the time response of a first-order 

system? 
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11 Effects of Feedback 
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Introduction 

We apply feedback in control systems for a variety of reasons. The primary 

purpose of feedback is to more accurately control the output - we wish to 

reduce the difference between a reference input and the actual output. When 

the input signal is a step, this is called set-point control. 

Reduction of the system error is only one advantage of feedback. Feedback 

also affects the transient response, stability, bandwidth, disturbance rejection 

and sensitivity to system parameters. 

Recall that the basic feedback system was described by the block diagram: 

 

G  s(  )

H  s(  )

R  s(  ) C  s(  )E  s(  )

B  s(  )

 

 

Figure 11.1 

The system is described by the following transfer function: 

 
 

 
   sHsG

sG

sR

sC




1  
(11.1) 

The only way we can improve “system performance” – whatever that may be – 

is by choosing a suitable  sH  or  sG . Some of the criteria for choosing 

 sG , with   1sH , will be given in the following sections. 

General feedback 
control system 

General feedback 
control system 
transfer function 
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11.1 Transient Response 

One of the most important characteristics of control systems is their transient 

response. We might desire a “speedy” response, or a response without an 

“overshoot” which may be physically impossible or cause damage to the 

system being controlled (e.g. Maze rover hitting a wall!). 

We can modify the response of a system by cascading the system with a 

transfer function which has been designed so that the overall transfer function 

achieves some design objective. This is termed open-loop control. 

 

C  s(  )R  s(  )
G   s(  )

c

controller

G   s(  )
p

plant  

 

Figure 11.2 

A better way of modifying the response of a system is to apply feedback. This 

is termed closed-loop control. By adjusting the loop feedback parameters, we 

can control the transient response (within limits). A typical control system for 

set-point control simply derives the error signal by comparing the output 

directly with the input. Such a system is called a unity-feedback system. 

 

R  s(  ) C  s(  )E  s(  )
G   s(  )

c

controller

G   s(  )
p

plant

 

 

Figure 11.3 

 

Open-loop control 
system 

Unity-feedback 
closed-loop control 
system 
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EXAMPLE 11.1 Transient Response 

We have already seen that the MR can be described by the following block 

diagram (remember it’s just a differential equation!): 

V  s(  )X  s(  )

Mks

M

f

1

 

In this example, the objective is to force  tv  to be equal to a desired constant 

speed, 0v . As we have seen, this implies a partial fraction term sv0  in the 

expression for  sV . Since the MR’s transfer function does not contain a sK  

term, then the only way it can appear in the expression for  sV  is if 

  sKsX  . 

Assuming the input is a step function, then we have: 

     

Mks

kK

s

kK

s

K

Mks

M

sXsGsV

f

ff

f









1
 

Inverse transforming yields: 

     0,1 


te
k

K
tv

tMk

f

f  

MR transfer function 
for velocity output 
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If K is set to fkv0  then: 

     0,10 


tevtv
tMk f  

and since 0Mk f , then   0vtv   as t . If our reference signal were 

   tuvtr 0  then the system we have described is: 

V  s(  )X  s(  )

Mks

M

f

1
R  s(  )

kf

controller plant  

This is referred to as open-loop control, since it depends only on the reference 

signal and not on the output. This type of control is deficient in several aspects. 

Note that the reference input has to be converted to the MR input through a 

gain stage equal to fk , which must be known. Also, by examining the output 

velocity equation given above, we can see that we have no control over how 

fast the velocity converges to 0v . 

 

11.2 Closed-Loop Control 

To better control the output, we’ll implement a closed-loop control system. For 

simplicity, we’ll use a unity-feedback system, with our controller placed in the 

feed-forward path: 

 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1
G  s(  )

c

controller

X  s(  )

plant

 

 

Figure 11.4 

Step response of 
MR velocity 

Simple open-loop 
MR controller 

Open-loop control 
has many 
disadvantages 

Closed-loop MR 
controller 
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11.2.1 Proportional Control (P Controller) 

The simplest type of controller has transfer function   Pc KsG  . This is called 

proportional control since the control signal  tx  is directly proportional to the 

error signal  te . 

 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1
K

P

controller

X  s(  )

plant

 

 

Figure 11.5 

With this type of control, the transform of the output is: 

 
   
   

 

 
   

 MKMks

KkvK

s

KkvK

s

v

MKMks

MK

sR
sGsG

sGsG
sV

Pf

PfPPfP

Pf

P

c

c















00

0

1

 

(11.2) 

Inverse transforming yields the response: 

      0,10 





te
Kk

vK
tv

tMKk

Pf

P Pf

 (11.3) 

Now the velocity converges to the value  
PfP KkvK 0 . Since it is now 

impossible for   0vtv  , the proportional controller will always result in a 

steady-state tracking error equal to  Pff Kkvk 0 . However, we are free to 

make this error as small as desired by choosing a suitably large value for PK . 

Also, from Eq. (11.3), we can see that the rate at which  tv  converges to the 

steady-state value can be made as fast as desired by again taking PK  to be 

suitably large. 

Proportional 
controller 
(P controller) 

MR velocity step-
response using a 
proportional 
controller 

Sometimes a 
closed-loop system 
exhibits a steady-
state error 
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11.2.2 Integral Control (I Controller) 

One of the deficiencies of the simple P controller in controlling the maze rover 

was that it did not have a zero steady-state error. This was due to the fact that 

the overall feedforward system was Type 0, instead of Type 1. We can easily 

make the overall feedforward system Type 1 by changing the controller so that 

it has a pole at the origin: 

 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1K
I

controller

X  s(  )

s

plant

 

 

Figure 11.6 

We recognise that the controller transfer function is just an integrator, so this 

form of control is called integral control. With this type of control, the overall 

transfer function of the closed-loop system is: 

 
 

MKsMks

MK

sMKMks

sMK
sT

If

I

If

I







2

 

(11.4) 

We can see straight away that the transfer function is 1 at DC (set 0s  in the 

transfer function). This means that the output will follow the input in the 

steady-state (zero steady-state error). By comparing this second-order transfer 

function with the standard form: 

 
22

2

2 nn

n

ss
sT






  (11.5) 

we can see that the controller is only able to adjust the natural frequency, or the 

distance of the poles from the origin, n . This may be good enough, but we 

would prefer to be able to control the damping ratio   as well. 

Integral controller 
(I controller) 
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11.2.3 Proportional Plus Integral Control (PI Controller) 

If we combine the two previous controllers we have what is known as a PI 

controller. 

 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1

controller

X  s(  )K
I

s

plant

K
P+

 

 

Figure 11.7 

The controller in this case causes the plant to respond to both the error and the 

integral of the error. With this type of control, the overall transfer function of 

the closed-loop system is: 

 
 

 

  MKsMKMks

sMKMK

MsKKMks

MsKK
sT

IPf

PI

IPf

IP











2

1

1

 

(11.6) 

Again, we can see straight away that the transfer function is 1 at DC (set 0s  

in the transfer function), and again that the output will follow the input in the 

steady-state (zero steady-state error). We can now control the damping ratio  , 

as well as the natural frequency n , independently of each other. But we also 

have a zero in the numerator. Intuitively we can conclude that the response will 

be similar to the response with integral control, but will also contain a term 

which is the derivative of this response (we see multiplication by s – the zero – 

as a derivative). We can analyse the response by rewriting Eq. (11.6) as: 

 
22

2

22

2

22 nn

nIP

nn

n

ss

sKK

ss
sT















 
(11.7) 

Proportional plus 
Integral controller 
(PI controller) 
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For a unit-step input, let the output response that is due to the first term on the 

right-hand side of Eq. (11.7) be  tcI . Then the total unit-step response is: 

   
 

dt

tdc

K

K
tctc I

I

P
I 

 
(11.8) 

The figure below shows that the addition of the zero at PI KKs   reduces 

the rise time and increases the maximum overshoot, compared to the I 

controller step response:  

 

c  t(  )

t
0

1.00

c  t(  )
I

c  t(  )
I

d

dtK
I

K
P

c  t(  )
I

c  t(  )
I

d

dtK
I

K
P+

 

 

Figure 11.8 

The response is easy to sketch by drawing the derivative of  tcI  and adding a 

scaled version of this to  tcI . The derivative is sketched by noting that the 

derivative of  tcI  is zero when the tangent to  tcI  is horizontal, and the slope 

of  tcI  oscillates between positive and negative values between these points. 

The total response can then be sketched in, ensuring that the total response 

goes through the points where the  tcI  slope is zero. 

PI controller 
response to a unit-
step input 
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11.2.4 Proportional, Integral, Derivative Control (PID Controller) 

One of the best known controllers used in practice is the PID controller, where 

the letters stand for proportional, integral, and derivative. The addition of a 

derivative to the PI controller means that PID control contains anticipatory 

control. That is, by knowing the slope of the error, the controller can anticipate 

the direction of the error and use it to better control the process. The PID 

controller transfer function is: 

 
s

K
sKKsG I

DPc 
 

(11.9) 

There are established procedures for designing control systems with PID 

controllers, in both the time and frequency-domains. 

 

11.3 Disturbance Rejection 

A major problem with open-loop control is that the output  tc  of the plant will 

be “perturbed” by a disturbance input  td . Since the control signal  tr  does 

not depend on the plant output  tc  in open-loop control, the control signal 

cannot compensate for the disturbance  td . Closed-loop control can 

compensate to some degree for disturbance inputs. 

Feedback minimizes 
the effect of 
disturbance inputs 



11.11 

PMcL Disturbance Rejection Index     

2015  11 - Effects of Feedback 

EXAMPLE 11.2 Disturbance Rejection 

Consider the MR in open-loop: 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1
G  s(  )

c

controller

X  s(  )

D   s(  )
1

D   s(  )
2 D   s(  )

3

 

The disturbance inputs could be modelling electronic noise in amplifiers, or a 

sudden increase in velocity due to an incline, or any other unwanted signal. In 

open-loop control, a disturbance  td2  has just as much “control” as our 

controller! 

Closed-loop feedback reduces the response of the system to disturbance inputs: 

R  s(  ) V  s(  )E  s(  )

Mks

M

f

1
G  s(  )

c

controller

X  s(  )

D   s(  )
1

D   s(  )
2 D   s(  )

3

 

Using superposition, the output is given by: 

 
   
   

    

 
   

 

   
 sD

sGsG

sD
sGsG

sG

sDsR
sGsG

sGsG
sV

c

c

c

c

3

2

1

1

1

1

1












 

Thus, we cannot eliminate noise at the input  td1 . The system cannot 

discriminate between  td1  and  tr . To minimise the other disturbances on the 

output, we need to make the loop-gain    sGsGc1  large. 

Open-loop MR 
system with 
disturbance inputs 

Closed-loop MR 
system with 
disturbance inputs 

Most  disturbance 
inputs are minimized 
when using 
feedback 



11.12 

Index Sensitivity PMcL   

11 - Effects of Feedback  2015 

11.4 Sensitivity 

Sensitivity is a measure of how the characteristics of a system depend on the 

variations of some component (or parameter) of the system. The effect of the 

parameter change can be expressed quantitatively in terms of a sensitivity 

function. 

11.4.1 System Sensitivity 

This is a general formulation which applies to any type of system, open- or 

closed-loop. Let the system transfer function be expressed as  ,sT , where   

is some parameter in the transfer function. Then: 


















T

T

TT
S T

 
(11.10) 

is called the system sensitivity (with respect to  ). It represents the fractional 

change in the system transfer function due to a fractional change in some 

parameter. 

If TS  is small, the effect on T of changes in   is small. For small changes in 

 : 

0

0









TT
ST

 (11.11) 

where 0T  and 0  are the nominal or design values. 

Sensitivity defines 
how one element of 
a system affects a 
characteristic of the 
system 

System sensitivity 
defined 
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EXAMPLE 11.3 System Sensitivity 

How does  sT  depend on changes in  sG  for: 

G  s(  )

H  s(  )

R  s(  ) C  s(  )E  s(  )

B  s(  )

G  s(  )
R  s(  ) C  s(  )

a) open loop b) closed loop  

Intuitively for open-loop, the output must depend directly on  sG , so 1T

GS . 

Intuitively for closed-loop: 

 
 
     sHsHsG

sG
sT

1

1



  

if     1sHsG . Therefore changes in  sG  “don’t matter”, or the system is 

not sensitive to changes in  sG . 

Analytically, using system sensitivity for the open-loop case: 

   

1






G

T

sGsT

 

 (here G corresponds to the parameter  ). Therefore: 

1





G

T

T

G
ST

G  

The transfer function is therefore directly sensitive to changes in G, as we 

thought. 

System sensitivity to 
G for open-loop 
systems 
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Analytically, for the closed-loop case: 

 
   

 21

1

1

GH

GHGH

G

T

sHsG

sG
T













 

Then: 

    GHGHGHG

G
ST

G






1

1

1

1

1
2

 

Therefore with feedback, the effect of a percentage change in G is reduced by 

the factor  GH11 . If the input R is held constant, the effect on the output C 

of a change in G is  GH11  less than it would have been without feedback. 

Show that 1T

HS  for this example. This result means that stable feedback 

components must be used in order to receive the full benefits of feedback. 

 

System sensitivity to 
G for closed-loop 
systems 

Feedback elements 
must be accurate 
and stable 
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11.5 Summary 

 Various types of controllers, such as P, PI, PID are used to compensate the 

transfer function of the plant in unity-feedback systems. 

 Feedback systems can minimise the effect of disturbance inputs or system 

parameter variations. 

 Sensitivity is a measure of the dependence of a system’s characteristics 

with respect to variations of a particular element (or parameter). Feedback 

can reduce the sensitivity of forward-path elements, but input and feedback 

elements must be highly stable because they have a much greater effect on 

the output. 

11.6 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB
®

, Prentice-Hall, 1997. 
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Exercises 

1. 

Show that the following block diagrams are equivalent: 

G  s(  )

H  s(  )

R  s(  ) C  s(  )

G'  s(  )
R  s(  ) C  s(  )

 

where  
 

    11 


sHsG

sG
sG  

2. 

Assume that an operational amplifier has an infinite input impedance, zero 

output impedance and a very large gain K. 

Show for the feedback configuration shown that   11  KKVV io  if K is 

large. 

V2

K

V1
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3. 

For the system shown: 

R  s(  ) C  s(  )100

s +s(     1)

K2 =10

K1 =10 G=

 

a) Determine the sensitivity of the system’s transfer function T with respect 

to the input transducer, 1K . 

b) Determine the sensitivity of the system’s transfer function T with respect 

to the output transducer, 2K . 

c) Determine the sensitivity of the system’s transfer function T with respect 

to the plant, G. 

d) Indicate qualitatively the frequency dependency of T

GS . 



11.18 

Index Exercises PMcL   

11 - Effects of Feedback  2015 

4. 

It is important to ensure passenger comfort on ships by stabilizing the ship’s 

oscillations due to waves. Most ship stabilization systems use fins or hydrofoils 

projecting into the water in order to generate a stabilization torque on the ship. 

A simple diagram of a ship stabilization system is shown below: 

K1

R  s(  )  (  )
G  s(  )

roll sensor

shipfin actuator

sT   s(   )
f

Ka

roll

T   s(   )
d

 

The rolling motion of a ship can be regarded as an oscillating pendulum with a 

deviation from the vertical of   degrees and a typical period of 3 seconds. The 

transfer function of a typical ship is: 

 
22

2

2 nn

n

ss
sG






  

where 22  Tn  , s 14.3T , and 1.0 . With this low damping factor 

 , the oscillations continue for several cycles and the rolling amplitude can 

reach 18  for the expected amplitude of waves in a normal sea. Determine and 

compare the open-loop and closed-loop system for: 

a) sensitivity to changes in the actuator constant aK  and the roll sensor 1K  

b) the ability to reduce the effects of the disturbance of the waves. 

Note: 1. The desired roll angle  t  is zero degrees. 

2. This regulating system is only effective for disturbances (waves) 

with frequencies nd   , the natural frequency of the ship. Can 

you show this? 

Comment on these results with respect to the effect of feedback on the 

sensitivity of the system to parameter variations. 
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5. 

The system shown uses a unity feedback loop and a PI compensator to control 

the plant. 

R  s(  ) C  s(  )E  s(  )

PI compensator

K
I

s

plant

K
P+

D  s(  )

G  s(  )

 

Find the steady-state error,  e , for the following conditions [note that the 

error is always the difference between the reference input  tr  and the plant 

output  tc ]: 

(a)  
1

1

1 sT

K
sG


 ,    0IK  (b)  

1

1

1 sT

K
sG


 ,    0IK  

(c)  
 1

1

1 sTs

K
sG


 ,  0IK  (d)  

 1

1

1 sTs

K
sG


 ,  0IK  

when: 

(i)   0td ,  tr unit-step 

(ii)   0td ,  tr unit-ramp 

(iii)  td  unit-step,   0tr  

(iv)  td  unit-step,  tr unit-step 

How does the addition of the integral term in the compensator affect the 

steady-state errors of the controlled system? 
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12 The z-Transform 
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Introduction 

Digital control of continuous-time systems has become common thanks to the 

ever-increasing performance/price ratio of digital signal processors 

(microcontrollers, DSPs, gate arrays etc). Once we convert an analog signal to 

a sequence of numbers, we are free to do anything we like to them. 

Complicated control structures can be implemented easily in a computer, and 

even things which are impossible using analog components (such as median 

filtering). We can even create systems which “learn” or adapt to changing 

systems, something rather difficult to do with analog circuitry. 

The side-effect of all these wonderful benefits is the fact that we have to learn a 

new (yet analogous) body of theory to handle what are essentially discrete-time 

systems. It will be seen that many of the techniques we use in the continuous-

time domain can be applied to the discrete-time case, so in some cases we will 

design a system using continuous-time techniques and then simply discretize it. 

To handle signals in the discrete-time domain, we’ll need something akin to the 

Laplace transform in the continuous-time domain. That thing is the z-

transform. 

 

12.1 The z-Transform 

We’ll start with a discrete-time signal which is obtained by ideally and 

uniformly sampling a continuous-time signal: 

     





n

ss nTttxtx 
 

(12.1) 

 

We’ll treat a 
discrete-time signal 
as the weights of an 
ideally sampled 
continuous-time 
signal 
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Now since the function  txs  is zero everywhere except at the sampling 

instants, we replace the  tx  with the value at the sample instant: 

     





n

sss nTtnTxtx 
 

(12.2) 

Also, if we establish the time reference so that   0   ,0  ttx , then we can say: 

     





0n

sss nTtnTxtx 
 

(12.3) 

This is the discrete-time signal in the time-domain. The value of each sample is 

represented by the area of an impulse, as shown below: 

 

0

x   t
s
(  )

T
s0

1

t

t

0

x  t(  )

t

 

 

Figure 12.1 

A discrete-time 
signal made by 
ideally sampling a 
continuous-time 
signal 
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What if we were to analyse this signal in the frequency domain? Taking the 

Laplace transform yields: 

      








 

0 
0

dtenTtnTxsX st

n

sss 
 

(12.4) 

Since summation and integration are linear, we’ll change the order to give: 

     








 

0 
0

dtenTtnTxsX st

s

n

ss 
 

(12.5) 

Using the sifting property of the delta function, this integrates to: 

   







0n

snT

ss
senTxsX

 
(12.6) 

Therefore, we can see that the Laplace transform of a sampled signal,  txs , 

involves a summation of a series of functions, ssnT
e


. This is a problem because 

one of the advantages of transforming to the s-domain was to be able to work 

with algebraic polynomial equations. Fortunately, a very simple idea 

transforms the Laplace transform of a sampled signal into one which is an 

algebraic polynomial equation. 

The idea is to define a complex variable z as: 

ssT
ez   (12.7) 

Notice that this is a non-linear transformation. This definition gives us a new 

transform, called the z-transform, with independent variable z: 

   





0n

n

s znTxzX
 

(12.8) 

Definition of z 
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Since  snTx  is just a sequence of sample values,  nx , we normally write the 

z-transform as: 

   





0n

nznxzX
 

(12.9) 

Thus, if we know the sample values of a signal,  nx , it is a relatively easy step 

to write down the z-transform for the sampled signal: 

          21 210 zxzxxzX  (12.10) 

Note that Eq. (12.9) is the one-sided z-transform. We use this for the same 

reasons that we used the one-sided Laplace transform. 

 

12.2 Mapping Between s-Domain and z-Domain 

The mapping from the continuous-time s-plane into the discrete-time z-plane 

defined by ssT
ez   leads to some interesting observations. Since  js  , 

we have: 

ss TjT
eez


  (12.11) 

so that the magnitude and phase of  z are, respectively: 

sT
ez


  

sTz   

(12.12) 

Definition of 
z-transform 
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Therefore, we can draw the mapping between the s-domain and the z-domain 

as follows: 

 



j

Re s

Im s

s -plane

e

Re z

Im z

z -plane

Ts

unit circle

 Ts

Mapping

z=e
Tss

 

 

Figure 12.2 

The mapping of the s-domain to the z-domain depends on the sample 

interval, sT . Therefore, the choice of sampling interval is crucial when 

designing a digital system. 

12.2.1 Mapping the s-Plane Imaginary Axis 

The j -axis in the s-plane is when 0 . In the z-domain, this corresponds to 

a magnitude of 10  eez sT
. Therefore, the frequency   in the 

s-domain maps linearly on to the unit-circle in the z-domain with a phase angle 

sTz  . In other words, distance along the j -axis in the s-domain maps 

linearly onto angular displacement around the unit-circle in the z-domain. 
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Im s

s -plane

Re z

Im z

z -plane
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unit circle

1

2

3

1

2

3

uniform  linear
spacing

uniform angular
spacing

 

 

Figure 12.3 

The mapping 
between s-plane 
and z-plane 

The mapping 

between the j-axis 
in the s-plane and 
the unit-circle in the 
z-plane 
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12.2.2 Aliasing 

With a sample period sT , the angular sample rate is given by: 

s

ss
T

f



2

2 
 

(12.13) 

When the frequency is equal to the foldover frequency (half the sample rate), 

2sjs   and: 

12  



j
Tj

sT
eeez

s
s

s
 

(12.14) 

Thus, as we increase the frequency from 0 to half the sampling frequency along 

the j -axis in the s-plane, there is a mapping to the z-domain in an 

anticlockwise direction around the unit-circle from 01z  to 1z . In a 

similar manner, if we decrease the frequency along the j -axis from 0 to 

2sjs  , the mapping to the z-plane is in a clockwise direction from 

01z  to 1z . Thus, between the foldover frequencies 2sjs  , 

there is a unique one-to-one mapping from the s-plane to the z-plane. 

 

2
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Figure 12.4 

The mapping of the 

j-axis in the s-
plane up to the 
foldover frequency, 
and the unit-circle in 
the z-plane, is 
unique 
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However, if the frequency is increased beyond the foldover frequency, the 

mapping just continues to go around the unit-circle. This means that aliasing 

occurs – higher frequencies in the s-domain are mapped to lower frequencies in 

the z-domain. 

 

Re s

Im s

s -plane

Re z

Im z

z -plane

unit circle

1

2

3

s /2

s /2

s

3s /2

s

3 s /2

1 2 3

 

 

Figure 12.5 

Thus, absolute frequencies greater than the foldover frequency in the s-plane 

are mapped on to the same point as frequencies less than the foldover 

frequency in the z-plane. That is, they assume the alias of a lower frequency. 

The energies of frequencies higher than the foldover frequency add to the 

energy of frequencies less than the foldover frequency and this is referred to as 

frequency folding. 

The mapping of the 

j-axis higher than 
the foldover 
frequency in the 
s-plane, and the 
unit-circle in the z-
plane, causes 
aliasing 
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12.3 Finding z-Transforms 

We will use the same strategy for finding z-transforms of a signal as we did for 

the other transforms – start with a known standard transform and successively 

apply transform properties. We first need a few standard transforms. 

12.3.1 z-Transform of the Unit-Pulse 

To find the z-transform of a signal    nnx  , we substitute into the 

z- transform definition: 

   

      










11

0

210 zz

znzX
n

n





 

(12.15) 

Since   10  , and   0n  for 0n , we get a standard transform pair: 

  1n  (12.16) 

Thus, the z-transform of a unit-pulse is 1. Note that there is no such thing as an 

impulse for discrete-time systems – this transform pair is therefore similar to, 

but not identical to, the transform of an impulse for the Fourier and Laplace 

transforms. 

The z-transform of a 
unit-pulse 
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12.3.2 z-Transform of  nuan  

To find the z-transform of a signal    nuanx n , we substitute into the 

definition of the z-transform: 

   





0n

nn znuazX
 

(12.17) 

Since   1nu  for all 0n , 

 










































32

0

1
z

a

z

a

z

a

z

a
zX

n

n

 

(12.18) 

To convert this geometric progression into closed-form, let the sum of the 

first k terms of a general geometric progression be written as kS : 

12
1

0

1 




 kn
k

n

n

k xxxxxS 

 

(12.19) 

Then, multiplying both sides by x  gives: 

k

k xxxxxS  32
 (12.20) 

Subtracting Eqs. (12.19) and (12.20) gives: 

 
k

k

k

xxxx

xxxxxS



 




32

13211
 

(12.21) 
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This is a telescoping sum, where we can see that on the right-hand side only the 

first and last terms remain after performing the subtraction. 

Dividing both sides by  x1  then results in: 

x

x
xS

kk

n

n

k







 1

11

0
 

(12.22) 

If k  then the series will only converge if 1x , because then 0kx . 

For this special case, we have: 

1,
1

1
1 2

0









x
x

xxx
n

n 
 

(12.23) 

Using this result to express Eq. (12.18) results in: 

  1,

1

1













z

a

z

a
zX

 (12.24) 

This can be rewritten as: 

  az
az

z
zX 


 ,

 
(12.25) 

 

Closed-form 
expression for an 
infinite geometric 
progression 

The z-transform of a 
geometric 
progression 
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The ROC of  zX  is az  , as shown in the shaded area below: 

 

0

|a|

Region of convergenceSignal x  n[  ]

0

a
n
u  n[  ]

n

1

zRe

zIm

 

 

Figure 12.6 

As was the case with the Laplace transform, if we restrict the z-transform to 

causal signals, then we do not need to worry about the ROC. 

12.3.3 z-Transform of the Unit-Step 

To find the z-transform of the unit-step, just substitute 1a  into Eq. (12.25). 

The result is: 

 
1


z

z
nu

 
(12.26) 

This is a frequently used transform in the study of control systems. 

A signal and the 
region of 
convergence of its 
z-transform in the z-
plane 

The z-transform of a 
unit-step 
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12.3.4 z-Transform of a Sinusoid 

To find the z-transform of    nuncos , we recognise that: 

    2cos njnj een    (12.27) 

According to Eq. (12.25), it follows that: 








j

nj

ez

z
e

 
(12.28) 

Therefore: 

  ,
2

1
cos 















 jj ez

z

ez

z
n

 
(12.29) 

and so we have another standard transform: 

   
 

1cos2

cos
cos

2 




zz

zz
nun

 
(12.30) 

A similar derivation can be used to find the z-transform of    nunsin . 
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12.3.5 Right Shift (Delay) Property 

Most of the z-transform properties are inherited Laplace transform properties. 

One of the most important properties of the z-transform is the right shift 

property. It enables us to directly transform a difference equation into an 

algebraic equation in the complex variable z. 

The z-transform of a function shifted to the right by one unit is given by: 

     n

n

znxnx 




  11
0

Z
 

(12.31) 

Letting 1 nr  yields: 

      

   

   1

1

1

1

0

1

1

1

























xzXz

zrxzx

zrxnx

r

r

r

r

Z

 

(12.32) 

Thus: 

     11 1   xzXznx  (12.33) 

 

The z-transform 
right shift property 



12.15 

PMcL Standard z-Transforms Index     

2015  12 - The z-Transform 

12.4 Standard z-Transforms 

 

 
1


z

z
nu

 

(Z.1) 

  1n  
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az
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(Z.5) 
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12.5 z-Transform Properties 

Assuming    zXnx  . 

   zaXnax   
(Z.6) 

  









a

z
Xnxan

 

(Z.7) 

     




 
1

0

q

k

kq zqkxzXzqnx
 

(Z.8) 

no corresponding transform (Z.9) 

   zX
dz

d
znnx 

 

(Z.10) 

     





1

0

q

k

kqq zkxzXzqnx
 

(Z.11) 

   zX
z

z
kx

n

k 10 



 

(Z.12) 

       zXzXnxnx 2121   
(Z.13) 

   zXx
z 

 lim0  
(Z.14) 

      zXznx
zn

1limlim
1




 
(Z.15) 

 

Linearity 

Multiplication by 
na  

Right shifting 

Multiplication by n 

Left shifting 

Summation 

Convolution 

Initial-value theorem 

Final-value theorem 
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12.6 Evaluation of Inverse z-Transforms 

From complex variable theory, the definition of the inverse z-transform is: 

   


C

n dzzzX
j

nx 1

2

1

  
(12.34) 

You won’t need to evaluate this integral to determine the inverse z-transform, 

just like we hardly ever use the definition of the inverse Laplace transform. We 

manipulate  zX  into a form where we can simply identify sums of standard 

transforms that may have had a few properties applied to them. 

Given: 

 
    n

n

nn

pzpzpz

bzbzb
zF












21

1

10

 
(12.35) 

we want to put  zF  in the form: 

 
n

n
pz

z
k

pz

z
k

pz

z
kkzF








 

2

2

1

10  (12.36) 

The approach we will use is to firstly expand   zzF  into partial fractions, 

then multiply through by z. 

EXAMPLE 12.1 Finding the inverse z-transform 
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Therefore: 
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Inverse z-transform 
defined – but too 
hard to apply! 

Expand functions of 
z into partial 
fractions – then find 
the inverse z-
transform 
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Now we evaluate the residues: 
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12.7 Transforms of Difference Equations 

The right shift property of the z-transform sets the stage for solving linear 

difference equations with constant coefficients. Because    zYzkny k , 

the z-transform of a difference equation is an algebraic equation that can be 

readily solved for  zY . Next we take the inverse z-transform of  zY  to find 

the desired solution  ny . 

 

difficult?
difference

equation

time-domain

solution

algebaric

equation solution

-domainzeasy!

ZT IZT
time-domain

frequency-domain

 

 

Figure 12.7 

EXAMPLE 12.2 Solving a Difference Equation with the z-Transform 

Solve the second-order linear difference equation: 

         25132615  nxnxnynyny  

if the initial conditions are   6111 y ,   36372 y  and the input 

     nunx
n

 2 . 

Now: 
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For the input,     021  xx . Then: 
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Taking the z-transform of the original equation, and substituting the foregoing 

results, we obtain: 
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from which we obtain: 
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and: 

           

      0,325.0

 325.0  3225 

5
18

3
7

15
26

response state-zero

5
28

3
22

15
26

responseinput -zero





n

ny

nnn
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As can be seen, the z-transform method gives the total response, which 

includes zero-input and zero-state components. The initial condition terms give 

rise to the zero-input response. The zero-state response terms are exclusively 

due to the input. 

 

12.8 The System Transfer Function 

Consider the simple first-order discrete-time system described by the 

difference equation: 

     nbxnayny  1  (12.37) 

Taking the z-transform of both sides and using the right-shift property gives: 

        zbXyzYzazY   11
 (12.38) 

Solving for  zY  gives: 
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(12.39) 

which can be written: 

 
 

 zX
az

bz

az

zay
zY









1
 

(12.40) 

The first part of the response results from the initial conditions, the second part 

results from the input. 

First-order 
difference equation 

and corresponding 
z-transform 
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If the system has no initial energy (zero initial conditions) then: 

   zX
az

bz
zY




 
(12.41) 

We now define the transfer function for this system as: 

 
az

bz
zH




 
(12.42) 

so that: 

     zXzHzY   (12.43) 

This is the transfer function representation of the system. To determine the 

output  ny  we simply evaluate Eq. (12.43) and take the inverse z-transform. 

For a general n
th

 order system described by the difference equation: 
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i inxbinyany
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(12.44) 

and if the system has zero initial conditions, then taking the z-transform of both 

sides results in: 

   zX
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(12.45) 

so that the transfer function is: 

 
NN

NN

MN

M

NN

azazaz

zbzbzb
zH












1

1

1

1

10




 

(12.46) 

Discrete-time 
transfer function 
defined 

Transfer function 
derived directly from 
difference equation 
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We can show that the convolution relationship of a linear discrete-time system: 

          0n,
0

 


i

inxihnxnhny
 

(12.47) 

when transformed gives Eq. (12.43). We therefore have: 

   zHnh   (12.48) 

That is, the unit-pulse response and the transfer function form a z-transform 

pair. 

12.8.1 Stability 

The left-half s-plane, where 0 ,  corresponds to 1 sT
ez


, which is 

inside the unit-circle. The right-half s-plane maps outside the unit circle. 

Recall that functions of the Laplace variable s having poles with negative real 

parts decay to zero as t . In a similar manner, transfer functions of z 

having poles with magnitudes less than one decay to zero in the time-domain 

as n . Therefore, for a stable system, we must have: 

1ip  (12.49a) 

where ip  are the poles of  zH . This is equivalent to saying: 

A system is stable if all the poles of the transfer function 

lie inside the unit-circle 

(12.49b) 

 

The unit-pulse 
response and 
transfer function 
form a z-transform 
pair 

Stability defined for 
a discrete-time 
system 
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12.8.2 Transfer Function Interconnections 

The transfer function of an LTI discrete-time system can be computed from a 

block diagram of the system, just like for continuous-time systems. 

Recall that an LTI discrete-time system is composed of elements such as 

adders, gains (which multiply the input by a constant), and the unit-delay 

element, which is shown below: 

 

x  n[  ] y  n[  ] x  n[     ]-1=
D

 

 

Figure 12.8 

By taking the z-transform of the input and output, we can see that we should 

represent a delay in the z-domain by: 

 

X  z(  ) Y  z(  )
z -1

z -1= X  z(  )

 

 

Figure 12.9 

A discrete-time unit-
delay element 

Delay element in 
block diagram form 
in the z-domain 
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EXAMPLE 12.3 Transfer Function of an Integrator 

The discrete-time approximation to continuous-time integration is given by the 

difference equation: 

     11  nTxnyny  

The block diagram of the system is: 

x  n[  ] y  n[  ]

D

D
y  n[     ]-1

Tx  n[  ]
x  n[     ]-1T

T

 

The system in the z-domain is: 

X  z(  ) Y  z(  )TX  z(  )
X  z(   )T

z -1

z -1

z -1

z -1Y  z(  )

T

 

Through the standard block diagram reduction techniques, we get: 

X  z(  ) Y  z(  )

z -11-
z -1T

 

You should confirm that this transfer function obtained using block diagram 

reduction methods is the same as that found by taking the z-transform of 

the original difference equation. 

 

Time-domain block 
diagram of a 
numeric integrator 

z-domain block 
diagram of a 
numeric integrator 

Transfer function of 
a numeric integrator 
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12.9 Summary 

 The z-transform is the discrete-time counterpart of the Laplace transform. 

There is a mapping from the s-domain to the z-domain given by ssT
ez  . 

The mapping is not unique, and for frequencies above the foldover 

frequency, aliasing occurs. 

 We evaluate inverse z-transforms using partial fractions, standard 

transforms and the z-transform properties. 

 Systems described by difference equations have rational z-transforms. The 

z-transforms of the input signal and output signal are related by the transfer 

function of the system:      zXzHzY  . There is a one-to-one 

correspondence between the coefficients in the difference equation and the 

coefficients in the transfer function. 

 We can use the z-transform to express discrete-time systems in transfer 

function (block diagram) form. 

 The unit-pulse response and the transfer function form a z-transform pair: 

   zHnh  . 

 The transfer function of a system can be obtained by performing analysis in 

the z-domain. 

12.10 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 

MATLAB
®

, Prentice-Hall, 1997. 
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Exercises 

1. 

Construct z-domain block diagrams for the following difference equations: 

(i)        12  nxnxnyny  

(ii)        43212  nxnynyny  

2. 

(i) Construct a difference equation from the following block diagram: 

z -13

-2 z -2

z -1

Y  z(  )X  z(  )

 

(ii) From your solution calculate  ny  for n = 0, 1, 2 and 3 given   22 y , 

  11 y ,   0nx  for 0n  and    nnx 1  for n = 0, 1, 2 … 

3. 

Using z-transforms: 

(a) Find the unit-pulse response for the system given by: 

     1
3

1
 nynxny  

(b) Find the response of this system to the input 

 




















4, ,3 ,2,1

1 ,0,2

,3 ,2 ,1,0

n

n

n

nx  

Hint:  nx  can be written as the sum of a unit step and two unit-pulses, or as 

the subtraction of two unit-steps. 
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4. 

Determine the weighting sequence for the system shown below in terms of the 

individual weighting sequences  nh1  and  nh2 . 

y  n[  ]x  n[  ]

h  n
2
[  ]

h  n
1
[  ]

 

5. 

For the feedback configuration shown below, determine the first three terms of 

the weighting sequence of the overall system by applying a unit-pulse input 

and calculating the resultant response. Express your results as a function of the 

weighting sequence elements  nh1  and  nh2 . 

y  n[  ]x  n[  ]

h  n
2
[  ]

h  n
1
[  ]

 

6. 

Using the definition of the z-transform 

(a) Find  zY  when: 

(i)   0ny  for 0n ,    nny 21  for ,2 ,1 ,0n  

(ii)   0ny  for 0n ,   1 nany  for ,3 ,2 ,1n  

(iii)   0ny  for 0n ,   1 nnany  for ,3 ,2 ,1n  

(iv)   0ny  for 0n ,   12  nanny  for ,3 ,2 ,1n  
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(b) Determine the z-transform of the sequence 

  


 


n

n
nx

other  all,0

,4 ,2 ,0,2 
 

by noting that      nxnxnx 21   where  nx1  is the unit-step sequence and 

 nx2  is the unit-alternating sequence. Verify your result by directly 

determining the z-transform of  nx . 

(c) Use the linearity property of the z-transform and the z-transform of anTe  

(from tables) to find   TnZ cos . Check the result using a table of 

z-transforms. 

7. 

Poles and zeros are defined for the z-transform in exactly the same manner as 

for the Laplace transform. For each of the z-transforms given below, find the 

poles and zeros and plot the locations in the z-plane. Which of these systems 

are stable and unstable? 

(a)  
21

1

43

21









zz

z
zH  

(b)  
42 81431

1
 


zz

zH  

(c)  
21

2

361

25









zz

z
zH  

Note: for a discrete-time system to be stable all the poles must lie inside the 

unit-circle. 
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8. 

Given: 

(a)            214213  nynynxnxnxny  

(b)            nxnxnxnynyny 2343234   

Find the transfer function of the systems 

(i) by first finding the unit-pulse response 

(ii) by directly taking the z-transform of the difference equation 

9. 

Use the direct division method to find the first four terms of the data sequence 

 nx , given: 

 
   12141

31414 2






zzz

zz
zX  

10. 

Use the partial fraction expansion method to find a general expression for  nx  

in Question 9. Confirm that the first four terms are the same as those obtained 

by direct division. 

11. 

Determine the inverse z-transforms of: 

(a)  
  azz

z
zX




1

2

 (b)   41 623   zzzX  

(c)  
 

  aT

aT

ezz

ze
zX










1

1
 (d)  

 
  411

1
2 




zzz

zz
zX  

(e)  
 12

4
3 


zz

zX   (f)  
12 


zz

z
zX  
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12. 

Given: 

       nxnynyny  2168  

(a) Find the unit-pulse response  nh  using time-domain methods. 

(b) Find  zH  

(i) by directly taking the z-transform of the difference equation 

(ii) from your answer in (a) 

(c) From your solution in (b) find the unit-step response of the system. Check 

your solution using a convolution method on the original difference 

equation. 

(d) Find the zero-state response if   nnx  . 

13. 

Given        21  nynynxny , find the unit-step response of this system 

using the transfer function method, assuming zero initial conditions. 
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14. 

Use z-transform techniques to find a closed-form expression for the Fibonacci 

sequence: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34… 

Hint: To use transfer function techniques, the initial conditions must be zero. 

Construct an input so that the ZSR of the system described by the difference 

equation gives the above response. 

The ancient Greeks considered a rectangle to be perfectly proportioned (saying 

that the lengths of its sides were in a golden ratio to each other) if the ratio of 

the length to the width of the outer rectangle equalled the ratio of the length to 

the width of the inner rectangle: 

 -1



1

1

 

That is: 

1

1

1 




 

Find the two values of   that satisfy the golden ratio. Are they familiar values? 

15. 

Given  
 2

1

as
sF


 , find  zF . 

Hint: 1. First find  tf . 2. Then put nTt   to obtain  nTf . 3. Take the z-

transform of  nTf . 
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16. 

Given: 

 
 

   zDzX
z

z

z

zX
zX 







 3

1
2

1

6

1
 

     zkXzXzX 213   

     zX
Az

zX
z

zX 324

3

2

10





  

(a) Draw a block diagram. Use block diagram reduction to find  zX 3 . 

Are there any differences between the operations which apply to discrete-time 

and continuous-time transfer functions? 

17. 

Using the initial and final value theorems, find  0f  and  f  of the 

following functions: 

(a)  
3.0

1




z
zF   (b)   23 251   zzzF  

(c)  
  azz

z
zF




41

2

 (d)  
   12141

31414 2






zzz

zz
zF  
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18. 

Perform the convolution    nyny   when 

(i)    nuny   

(ii)        21  nnnny   

using 

(a) the property that convolution in the time-domain is equivalent to 

multiplication in the frequency domain, and 

(b) using any other convolution technique. 

Compare answers. 

19. 

Determine the inverse z-transform of: 

 
 

  411

1
2 




zzz

zz
zF  

HINT: This has a repeated root. Use techniques analogous to those for the 

Laplace transform when multiple roots are present. 
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Introduction 

Digital signal processing is now the preferred method of signal processing. 

Communication schemes and controllers implemented digitally have inherent 

advantages over their analog counterparts: reduced cost, repeatability, stability 

with aging, flexibility (one H/W design, different S/W), in-system 

programming, adaptability (ability to track changes in the environment), and 

this will no doubt continue into the future. However, much of how we think, 

analyse and design systems still uses analog concepts, and ultimately most 

embedded systems eventually interface to a continuous-time world. 

It’s therefore important that we now take all that we know about continuous-

time systems and “transfer” or “map” it into the discrete-time domain. 
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13.1 Signal Discretization 

We have already seen how to discretize a signal. An ideal sampler  produces a 

weighted train of impulses: 

 

(  )g  t

(  )p  t

(  )p  t(  )g  t

T T2T-2 T- 0

(  )g   t= s

sss s  

 

Figure 13.1 

This was how we approached the topic of z-transforms. Of course an ideal 

sampler does not exist, but a real system can come close to the ideal. We saw 

in the lab that it didn’t matter if we used a rectangular pulse train instead of an 

impulse train – the only effect was that repeats of the spectrum were weighted 

by a sinc function. This didn’t matter since reconstruction of the original 

continuous-time signal was accomplished by lowpass filtering the baseband 

spectrum which was not affected by the sinc function. 

In a computer, values can only be stored as discrete values, not only at discrete 

times. Thus, in a digital system, the output of a sampler is quantized so that we 

have a digital representation of the signal. The effects of quantization will be 

ignored for now – be aware that they exist, and are a source of errors for digital 

signal processors. 

Sampling a 
continuous-time 
signal produces a 
discrete-time signal 
(a train of impulses) 

Digital signal 
processing also 
quantizes the 
discrete-time signal 
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13.2 Signal Reconstruction 

The reconstruction of a signal from ideal samples was accomplished by an 

ideal filter: 

 

lowpass

filter

s
(  )g   t (  )g  t

 

 

Figure 13.2 

We then showed that so long as the Nyquist criterion was met, we could 

reconstruct the signal perfectly from its samples (if the lowpass filter is ideal). 

To ensure the Nyquist criterion is met, we normally place an anti-alias filter 

before the sampler. 

13.2.1 Hold Operation 

The output from a digital signal processor is obviously digital – we need a way 

to convert a discrete-time signal back into a continuous-time signal. One way is 

by using a lowpass filter on the sampled signal, as above. But digital systems 

have to first convert their digital data into analog data, and this is accomplished 

with a DAC. 

Lowpass filtering a 
discrete-time signal 
(train of impulses) 
produces a 
continuous-time 
signal 
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To model a DAC, we note that there is always some output (it never turns off), 

and that the values it produces are quantized: 

 

0

g  t(  )
~

t
2T 4T 6T2T-4T-

g  t(  )

T 3T 5TT-3T-5T- s s s s s ss s s s s  

 

Figure 13.3 

The mathematical model we use for the output of a DAC is: 

 

zero-order

hold

s
(  )g   t (  )g  t

~

 

 

Figure 13.4 

The output of the zero-order hold device is: 

   
ssss TnTtnTnTgtg  ,~

 (13.1) 

where sT  is the sample period. 

The operation of the zero-order hold device in terms of frequency response 

shows us that it acts like a lowpass filter (but not an ideal one): 

     fGefTTfG s

fTj

ss
s

 sinc
~

 (13.2) 

Show that the above is true by taking the Fourier transform of  tg~ . 

The output from a 
DAC looks like a 
train of impulses 
convolved with a 
rectangle 

A DAC is modelled 
as a zero-order hold 
device 

Zero-order hold 
frequency response 
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13.3 System Discretization 

Suppose we wish to discretize a continuous-time LTI system. We would expect 

the input/output values of the discrete-time system to be: 

       nTynynTxnx  ,  (13.3) 

In the frequency-domain, we want an equivalent relationship by taking the 

Laplace transform of the continuous time system and the z-transform of the 

discrete-time system, while still maintaining Eq. (13.3): 

 

(  )h  t

(  )x  t (  )y  t

(  )H  s

(  )X  s (  )Y  s

(  )H   z

X  z(  ) Y  z(  )

d

Laplace transform

[  ]x  n [  ]y  n

z-transform

[  ]h  n
(     )x  nTs (     )y  nTs= =

 

 

Figure 13.5 

We now have to determine the discrete-time transfer function  zHd  so that 

the relationship Eq. (13.3) holds true. One way is to match the inputs and 

outputs in the frequency-domain. You would expect that since ssT
ez  , then we 

can simply do: 

   
  zTsd

s

sHzH
ln1

  (13.4) 

Unfortunately, this leads to a z-domain expression which is not a finite rational 

polynomial in z. We want polynomials of z because the discrete-time system 

will be implemented as a difference equation in a computer. Recall that each 

1z  in a transfer function represents a shift to the right in the signal – a task 

easily handled by indexing into an array of stored values (there are special 

signal processing techniques to implement fractional delays, but for now we 

will stay with the easier concept of integer delays). 

Discretizing a 
system should 
produce the same 
(sampled) signals 

An exact match of 
the two systems 

We can’t implement 
the exact match 
because the transfer 
function is not a 
finite rational 
polynomial 
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13.3.1 The Bilinear Transform 

Therefore, we seek a rational polynomial approximation to the zln  function. 

We start with Taylor’s theorem: 

       
 

  


 af
ax

afaxafxf
!2

2

 
(13.5) 

Now set   xxf ln , 1a  and let yx 1 : 

  
432

1ln
432 yyy

yy
 

(13.6) 

Now, from inspection, we can also have: 

  
432

1ln
432 yyy

yy
 

(13.7) 

Subtracting Eq. (13.7) from Eq. (13.6), and dividing by 2 gives us: 














7531

1
ln

2

1 753 yyy
y

y

y
 (13.8) 

Now let: 

y

y
z






1

1
 (13.9) 

or, rearranging: 

1

1






z

z
y  (13.10) 

 



13.8 

Index System Discretization PMcL   

13 - Discretization  2015 

Substituting Eqs. (13.9) and (13.10) into Eq. (13.8) yields: 


















































 

53

1

1

5

1

1

1

3

1

1

1
2ln

z

z

z

z

z

z
z

 
(13.11) 

Now if 1z , then we can truncate higher than first-order terms to get the 

approximation: 















1

1
2ln

z

z
z  (13.12) 

We can now use this as an approximate value for s. This is called the bilinear 

transformation (since it has 2 (bi) linear terms): 















1

12
ln

1

z

z

T
z

T
s

ss

 (13.13) 

This transformation has several desirable properties: 

 The open LHP in the s-domain maps onto the open unit disk in the z-

domain (thus the bilinear transformation preserves the stability condition). 

 The j -axis maps onto the unit circle in the z-domain. This will be used 

later when we look at frequency response of discrete-time systems. 

So, an approximate mapping from a continuous-time system to a discrete-time 

system, from Eq. (13.4) is: 

  















1

12

z

z

T
HzH

s

d  
(13.14) 

 

Bilinear 
transformation 
defined - an 
approximate 
mapping between s 
and z 

Discretizing a 
system using the 
bilinear 
transformation 
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13.4 Frequency Response 

Since ssT
ez  , then letting js   gives sTj

ez


 . If we define: 

sT  (13.15) 

then the frequency response in the z-domain is found by setting: 

 jez  (13.16) 

This value of z is found on the unit-circle and has an angle of sT : 

 



z=e
j

1-1

-j

j

 

 

Figure 13.6 

But this point is also given by the angle n2 , so the mapping from the z-

plane to the s-domain is not unique. In fact any point on the unit circle maps to 

the s-domain frequency  nTs 2 , or: 

s

s

ss

n
T

T
n

T















2

 

(13.17) 

where s  is the sampling frequency in radians. 

The relationship 
between discrete-
time frequency and 
continuous-time 
frequency 

Value of z to 
determine discrete-
time frequency 
response 

Frequency response 
mapping 

Frequency response 
mapping is not 
unique – aliasing 
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This shows us two things: 

 The mapping from the z-domain to the s-domain is not unique. Conversely, 

the mapping from the s-domain to the z-domain is not unique. This means 

that frequencies spaced at s  map to the same frequency in the z-domain. 

We already know this! It’s called aliasing. 

 The frequency response of a discrete-time system is periodic with period 

2 , which means it can be completely characterised by restricting   so 

that   . 

Just like the continuous-time case where we set js   in  sH  to give the 

frequency response  H , we can set  jez  in  zHd  to give the frequency 

response  dH . Doing this with Eq. (13.14) yields the approximation: 

  

















1

12
j

j

s

d
e

e

T
HH

 
(13.18) 

The frequency that corresponds to   in the s-domain is approximately given 

by Eq. (13.13): 

1

12










j

j

s e

e

T
j  (13.19) 

Using Euler’s identity show that  this can be manipulated into the form: 

2
tan

2 


sT


 
(13.20) 

 

Discrete-time 
frequency response 
is periodic 

Mapping 
continuous-time 
frequency to 
discrete-time 
frequency using the 
bilinear 
transformation 
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The inverse relationship is: 

2
tan2 1 sT

 
(13.21) 

So now Eq. (13.18), the approximate frequency response of an equivalent 

discrete-time system, is given by: 

  








 


2
tan

2

s

d
T

HH
 

(13.22) 

The distortion caused by the approximation Eq. (13.21) is called frequency 

warping, since the relationship is non-linear. If there is some critical frequency 

(like the cutoff frequency of a filter) that must be preserved in the 

transformation, then we can pre-warp the continuous-time frequency response 

before applying Eq. (13.21). 

Note that we may be able to select the sample period T so that all our “critical” 

frequencies will be mapped by: 

sc

scsc
c

T

TT















 

2
2

2
tan2 1

 
(13.23) 

which is a small deviation from the real mapping sT  given by 

Eq. (13.15). 

Discretizing a 
system to get a 
similar frequency 
response 
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13.5 Response Matching 

In control systems, it is usual to consider a mapping from continuous-time to 

discrete-time in terms of the time-domain response instead of the frequency 

response. For set-point control, this mapping is best performed as step 

invariance synthesis, although other mappings can be made (like impulse 

invariance). 

We saw before that we want: 

       ss nTynynTxnx  ,  (13.24) 

where the output of the discrete-time system is obtained by sampling the step-

response of the continuous-time system. 

Since for a unit-step input we have: 

 
1


z

z
zX

 
(13.25) 

then we want: 

   
z

z
zYzH d

1


 
(13.26) 

where  zY  is the z-transform of the ideally sampled step-response of the 

continuous-time system. 

Time-domain (step 
response) matching 

Step response 
matching to get the 
discrete-time 
transfer function 
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EXAMPLE 13.1 Step-Response Matching 

Suppose we design a maze rover velocity controller in the continuous-time 

domain and we are now considering its implementation in the rover’s 

microcontroller. We might come up with a continuous-time controller transfer 

function such as: 

 
s

sGc

5
500  

Our closed loop system is therefore: 

R  s(  ) E  s(  )

controller

V  s(  )X  s(  )

maze rover

s 

0.001

0.01s

500s 5

 

Show that the block diagram can be reduced to the transfer function: 

R  s(  ) V  s(  )

s 

0.5

0.5

 

The transform of the step response is then: 

 

5.0

11

1

5.0

5.0







ss

ss
sY

 

and taking the inverse Laplace transform gives the step response: 

     tuety t5.01   

The discretized version of the step response is: 

     nueny snT5.0
1


  

Continuous-time 
step response 

and desired 
discrete-time step 
response 
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and taking the z-transform gives: 

 
sT

ez

z

z

z
zY

5.01 





  

Hence, using Eq. (13.26) yields the following transfer function for the 

corresponding discrete-time system: 

 
1

1

5.0

5.0

5.0
1

11
1























az

bz

ez

e

ez

z
zH

s

s

s T

T

Td  

We would therefore implement the difference equation: 

     11  nbxnayny  

You should confirm that this difference equation gives an equivalent step-

response at the sample instants using MATLAB
®

 for various values of T. 

Equivalent discrete-
time transfer 
function using step 
response 

Equivalent discrete-
time difference 
equation using step 
response 
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13.6 Summary 

 We can discretize a continuous-time signal by sampling. If we meet the 

Nyquist criterion for sampling, then all the information will be contained in 

the resulting discrete-time signal. We can then process the signal digitally. 

 We can reconstruct a continuous-time signal from mere numbers by using a 

DAC. We model this as passing our discrete-time signal (a weighted 

impulse train) through a lowpass filter with a rectangular impulse response. 

 A system (or signal) may be discretized using the bilinear transform. This 

maps the LHP in the s-domain into the open unit disk in the z-domain. It is 

an approximation only, and introduces warping when examining the 

frequency response. 

 Response matching derives an equivalent discrete-time transfer function so 

that the signals in the discrete-time system exactly match samples of the 

continuous-time system’s input and output signals. 

13.7 References 

Kamen, E. & Heck, B.: Fundamentals of Signals and Systems using 
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®

, Prentice-Hall, 1997. 
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Exercises 

1. 

A Maze Rover phase-lead compensator has the transfer function: 

 
 

 4

120






s

s
sH  

Determine a difference equation that approximates this continuous-time system 

using the method of step-response matching. The sample period is 64 ms. 

2. 

Repeat Exercise 1, but this time use the bilinear transform. 

3. 

A continuous-time system has a transfer function  
23

2
2 




ss

s
sG  and it is 

required to find the transfer function of an equivalent discrete-time system 

 zH  whose unit-step response consists of samples of the continuous-time 

system’s unit-step response. Find  zH  assuming a sample time of s 1 . 

Compare the time solutions at s 100 ,10 ,1 ,0t  to verify your answer. 

4. 

Compare the step responses of each answer in Exercises 1 and 2 using 

MATLAB
®
. 
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14 System Design 
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Introduction 

The design of a control system centres around two important specifications – 

the steady-state performance and the transient performance. The steady-state 

performance is relatively simple. Given a reference input, we want the output 

to be exactly, or nearly, equal to the input. The way to achieve the desired 

steady-state error, for any type of input, is by employing a closed-loop 

configuration that gives the desired system type. The more complex 

specification of transient behaviour is tackled by an examination of the 

system’s poles. We will examine transient performance as specified for an all-

pole second-order system (the transient performance criteria still exist for 

higher-order systems, but the formula shown here only apply to all-pole 

second-order systems). 

The transient specification for a control system will usually consist of times 

taken to reach certain values, and allowable deviations from the final steady-

state value. For example, we might specify percent overshoot, peak time, and 

5% settling time for a control system. Our task is to find suitable pole locations 

for the system. 
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14.1 Design Criteria for Continuous-Time Systems 

14.1.1 Percent Overshoot 

The percent overshoot for a second-order all pole step-response is given by: 

21
..









 eOP  

(14.1) 

Therefore, for a given maximum overshoot specification, we can evaluate the 

minimum allowable  . But what specific   do we choose? We don’t know 

until we take into consideration other specifications! What we do is simply 

define a region in the s-plane where we can meet this specification. 

Since  cos , where   is the angle with respect to the negative real axis, 

then we can shade the region of the s-plane where the P.O. specification is 

satisfied: 

 

-planes





shaded region is where
PO is satisfied



j

=cos -1 

 

 

Figure 14.1 

PO specification 
region in the s-plane 
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14.1.2 Peak Time 

The peak time for a second-order all-pole step-response is given by: 

d

pt





 
(14.2) 

Since a specification will specify a maximum peak time, then we can find the 

minimum pd t   required to meet the specification. 

Again, we define the region in the s-plane where this specification is satisfied: 

 

-planes

shaded region is where
 is satisfied



j


=

d t
p

t p


d

j

 

 

Figure 14.2 

Peak time 
specification region 
in the s-plane 
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14.1.3 Settling Time 

The settling time for a second-order all-pole step-response is given by: 



ln
st  

(14.3) 

Since a specification will specify a maximum settling time, then we can find the 

minimum st ln  required to meet the specification. 

We define the region in the s-plane where this specification is satisfied: 

 

-planes



j

= t
s

shaded region is where
 is satisfiedt s



-ln

 

 

Figure 14.3 

Settling time 
specification region 
in the s-plane 
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14.1.4 Combined Specifications 

Since we have now specified simple regions in the s-plane that satisfy each 

specification, all we have to do is combine all the regions to meet every 

specification. 

 




d

j

-planes





shaded region is where
all specs are satisfied



j

 

 

Figure 14.4 

Sometimes a specification is automatically met by meeting the other 

specifications – this is clear once the regions are drawn on the s-plane. 

It is now up to us to choose, within reasonable limits, the desired closed-loop 

pole locations. The region we have drawn on the s-plane is an output 

specification – we must give consideration to the inputs of the system! For 

example, there is nothing theoretically wrong with choosing closed-loop pole 

locations out near infinity – we’d achieve a very nice, sharp, almost step-like 

response! In practice, we can’t do this, because the inputs to our system would 

exceed the allowable linear range. Our analysis has considered the system to be 

linear – we know it is not in practice! Op amps saturate; motors cannot have 

megavolts applied to their windings without breaking down; and we can’t put 

our foot on the accelerator past the floor of the car (no matter how much we 

try)! 

Combined 
specifications region 
in the s-plane 

We choose s-plane 
poles close to the 
origin so as not to 
exceed the linear 
range of systems 
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Practical considerations therefore mean we should choose pole locations that 

are close to the origin – this will mean we meet the specifications, and 

hopefully we won’t be exceeding the linear bounds of our system. We 

normally indicate the desired pole locations by placing a square around them: 

 




d

j

-planes





chosen pole location that meets the
specs and keeps the system linear



j

 

 

Figure 14.5 

Can we apply these specifications to real (higher-order) systems? Yes – if it’s a 

dominant second-order all-pole system: 

 

-planes



j

 

 

Figure 14.6 

Desired closed-loop 
pole locations are 
represented with a 
square around them 

Dominant second-
order all-pole 
system 
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or we introduce a minor-loop to move a dominant first-order pole away: 

 

-planes



j

minor-loop feedback

 

 

Figure 14.7 

or we achieve a pole-zero cancellation by placing a zero very close to the 

dominant pole: 

 

-planes



j

close zero

 

 

Figure 14.8 

We should be careful when implementing pole-zero cancellation. Normally we 

do not know exactly the pole locations of a system, so the “cancellation” is 

only approximate. In some cases this inexact cancellation can cause the 

opposite of the desired effect – the system will have a dominant first-order pole 

and the response will be “sluggish”. 

Dominant second-
order all-pole 
system made by 
moving a pole using 
a minor-feedback 
loop 

Dominant second-
order all-pole 
system made by 
pole-zero 
cancellation 

Pole-zero 
cancellation is 
inexact 
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EXAMPLE 14.1 Desired Closed-Loop Pole Locations 

We need to design a maze rover position controller to achieve the following 

specifications: 

(a) PO < 10% 

(b) s 57.1pt  

(c) 2% settling time s 9st  

We evaluate the regions in the order they are given. For the PO spec, we have: 

591.0

1.0
21














e  

so that: 

  53cos 1  

For the peak time spec, we have: 

1-rads 2
57.1




d  

For the settling time spec, we get: 

nepers 43.0
9

39

9

02.0ln
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The regions can now be drawn: 

-planes



j

53°

53°

-0.43

2j

2-j

2.1j

2.1-j

-1.6

 

We choose the desired closed-loop poles to be at 1.26.1 js   to meet all our 

specifications. 

 

14.2 Design Criteria for Discrete-Time Systems 

A second-order continuous-time system can be “translated” into a second-order 

discrete-time system using either the bilinear (Tustin) transform, zero-order 

holds, or a variety of other methods. Discretizing a continuous-time system 

inevitably involves a sample time – this sample time affects the pole locations 

of the discrete-time system. We therefore would like to see where our poles 

should be to satisfy the initial design specifications. In transforming the 

performance specifications to the z-plane, it is first convenient to see how a 

single point of the s-plane maps into the z-plane. 

Specification 
regions in the z-
plane 
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14.2.1 Mapping of a Point from the s-plane to the z-plane 

By definition, ssT
ez  , and  js  . Therefore: 

zz

Te

eez

s

T

TjT

s

ss











 

(14.4) 

That is, we have: 

 

-planes



j

-planez

Ts

 Tse

unit-circle

 

 

Figure 14.9 

We can see that if: 

10

10

10







z

z

z







 
(14.5) 

We will now translate the performance specification criteria areas from the s-

plane to the z-plane. 

Mapping a point 
from the s-plane to 
the z-plane 
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14.2.2 Percent Overshoot 

In the s-plane, the PO specification is given by   1costan  js . This 

line in the z-plane must be: 

 

 



1

costan

costan

1










s

T

TjTsT

Te

eeez

s

sss

 
(14.6) 

For a given  , this locus is a logarithmic spiral: 
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unit-circle
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Figure 14.10 

The region in the z-plane that corresponds to the region in the s-plane where 

the PO specification is satisfied is shown below: 

 

-planez

unit-circle =0.5

-planes

=0=


2

s

j


2

s

j



=0.5

 

 

Figure 14.11 

PO specification 
region in the z-plane 
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14.2.3 Peak Time 

In the s-plane, the peak time specification is given by djs   . A line of 

constant frequency in the z-plane must be: 

sd

T

TjTsT

Te

eeez

s

sdss









 
(14.7) 

For a given d , this locus is a straight line between the origin and the unit-

circle, at an angle sdT  (remember we only consider the LHP of the s-

plane so that 0  ): 

-planez

unit-circle

-planes

j


2

s

j



j 1

 2j

-j 1

T 1 s

T 2 s


2

s Ts
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Figure 14.12 

The region in the z-plane that corresponds to the region in the s-plane where 

the peak time specification is satisfied is shown below: 

-planez

unit-circle

-planes

j


2

s

j



j d

-j d

T d s

T d s
-

 

Figure 14.13 

Peak time 
specification region 
in the z-plane 
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14.2.4 Settling Time 

In the s-plane, the settling time specification is given by  js  . The 

corresponding locus in the z-plane must be: 

s

T

TjTsT

Te

eeez

s

sss













 
(14.8) 

For a given  , this locus is a circle centred at the origin with a radius sT
e


: 

 

-planez

unit-circle

-planes
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Figure 14.14 

The region in the z-plane that corresponds to the region in the s-plane where 

the settling time specification is satisfied is shown below: 

-planez

unit-circle

-planes

j


-

 Tse

 

Figure 14.15 

Settling time 
specification region 
in the z-plane 
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14.2.5 Combined Specifications 

A typical specification will mean we have to combine the PO, peak time and 

settling time regions in the z-plane. For the s-plane we chose pole locations 

close to the origin. Since sT
ez


 , and   is a small negative number near the 

origin, then we need to maximize z . We therefore choose pole locations in the 

z-plane which satisfy all the criteria, and we choose them as far away from the 

origin as possible: 

 

-planez

unit-circle desired pole

locations

 

 

Figure 14.16 

Sometimes we perform a design in the s-plane, then discretize it using a 

method such as the bilinear transform or step-response matching. We should 

always check whether the resulting discrete-time system will meet the 

specifications – it may not, due to the imperfections of the discretization! 

Combined 
specifications region 
in the z-plane 

We choose z-plane 
poles close to the 
unit-circle so as not 
to exceed the linear 
range of systems 
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14.3 Summary 

 The percent overshoot, peak time and settling time specifications for an all-

pole second-order system can easily be found in the s-plane. Desired pole 

locations can then be chosen that satisfy all the specifications, and are 

usually chosen close to the origin so that the system remains in its linear 

region. 

 We can apply the all-pole second-order specification regions to systems 

that are dominant second-order systems. 

 The percent overshoot, peak time and settling time specifications for an all-

pole second-order system can be found in the z-plane. The desired pole 

locations are chosen as close to the unit-circle as possible so the system 

stays within its linear bounds. 

14.4 References 

Kuo, B: Automatic Control Systems, Prentice-Hall, 1995. 

Nicol, J.: Circuits and Systems 2 Notes, NSWIT, 1986. 



15.1 

PMcL Contents Index     

2015  15 - Root Locus 

15 Root Locus 

Contents 

 

Introduction ................................................................................................... 15.2 

15.1 Root Locus ............................................................................................. 15.2 

15.2 Root Locus Rules................................................................................... 15.6 
15.2.1 1. Number of Branches ............................................................... 15.6 
15.2.2 2. Locus End Points .................................................................... 15.6 

15.2.3 3. Real Axis Symmetry ............................................................... 15.6 
15.2.4 4. Real Axis Sections .................................................................. 15.6 
15.2.5 5. Asymptote Angles .................................................................. 15.7 

15.2.6 6. Asymptotic Intercept (Centroid) ............................................. 15.7 
15.2.7 7. Real Axis Breakaway and Break-In Points ............................ 15.7 
15.2.8 8. Imaginary Axis Crossing Points ........................................... 15.10 
15.2.9 9. Effect of Poles and Zeros ...................................................... 15.10 

15.2.10 10. Use a computer ................................................................... 15.10 

15.3 MATLAB
®
’s RLTool .......................................................................... 15.15 

15.4 Root Loci of Discrete-Time Systems .................................................. 15.17 

15.5 Time Response of Discrete-Time Systems .......................................... 15.18 

15.6 Summary .............................................................................................. 15.20 

15.7 References ........................................................................................... 15.20 

Exercises ...................................................................................................... 15.21 

James Clerk Maxwell (1831-1879) ............................................................. 15.25 
References ............................................................................................... 15.29 

 

 



15.2 

Index Introduction PMcL   

15 - Root Locus  2015 

Introduction 

The roots of a system’s characteristic equation (the poles), determine the 

mathematical form of the system’s transient response to any input. They are 

very important for system designers in two respects. If we can control the pole 

locations then we can position them to meet time-domain specifications such as 

P.O., settling time, etc. The pole locations also determine whether the system is 

stable – we must have all poles in the open LHP for stability. A “root locus” is 

a graphical way of showing how the roots of a characteristic equation in the 

complex (s or z) plane vary as some parameter is varied. It is an extremely 

valuable aid in the analysis and design of control systems, and was developed 

by W. R. Evans in his 1948 paper “Graphical Analysis of Control Systems,” 

Trans. AIEE, vol. 67, pt. II, pp. 547-551, 1948. 

 

15.1 Root Locus 

As an example of the root locus technique, we will consider a simple unity-

feedback control system: 

 

R  s(  ) C  s(  )E  s(  )
G  s(  )

c

controller plant

G   s(  )p

 

 

Figure 15.1 

We know that the closed-loop transfer function is just: 

 
 

   

   sGsG

sGsG

sR

sC

pc

pc




1  
(15.1) 
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This transfer function has the characteristic equation: 

    01  sGsG pc  (15.2) 

Now suppose that we can “separate out” the parameter of interest, K, in the 

characteristic equation – it may be the gain of an amplifier, or a sampling rate, 

or some other parameter that we have control over. It could be part of the 

controller, or part of the plant. Then the characteristic equation can be written: 

  01  sKP  (15.3) 

where  sP  does not depend on K. The graph of the roots of this equation, as 

the parameter K is varied, gives the root locus. In general: 

 
    
    n

m

pspsps

zszszs
KsKP










21

21

 
(15.4) 

where iz  are the m open-loop zeros and ip  are the n open-loop poles of the 

system. Also, rearranging Eq. (15.3) gives us: 

  1sKP  (15.5) 

Taking magnitudes of both sides leads to the magnitude criterion for a root 

locus: 

  KsP 1  (15.6) 

Similarly, taking angles of both sides of Eq. (15.5) gives the angle criterion for 

a root locus: 

  ,2,1,0360180  rrsPK  (15.7) 

To construct a root locus we can just apply the angle criterion. To find a 

particular point on the root locus, we need to know the magnitude of K. 

Characteristic 
equation of a unity-
feedback system 

Root locus 
magnitude criterion 

Root locus angle 
criterion 



15.4 

Index Root Locus PMcL   

15 - Root Locus  2015 

EXAMPLE 15.1 Root Locus of a Simple Two-Pole System 

A simple maze rover positioning scheme is shown below: 

R  s(  ) C  s(  )E  s(  )
K p

controller

 ss 

0.5

maze rover

 

We are trying to see the effect that the controller parameter pK  has on the 

closed-loop system. First of all, we can make the following assignments: 

 
 2

5.0




ss
sGp  and   pc KsG   

Putting into the form of Eq. (15.3), we then have: 

pKK   and  
 2

5.0




ss
sP  

For such a simple system, it is easier to derive the root locus algebraically 

rather than use the angle criterion. The characteristic equation of the system is: 

 
 

0
2

5.0
11 




ss
KsKP p  

or just: 

05.022  pKss  

The roots are then given by: 

PKs 5.011   
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We will now evaluate the roots for various values of the parameter pK : 

jjsK

jjsK

sK

sK

sK

p

p

p

p

p











1 ,14

21 ,213

1 ,12

211 ,2111

2 ,00

2,1

2,1

2,1

2,1

2,1

 

The root locus is thus: 

-planes



j

-j

-2

=0Kp

j

=2Kp

=4Kp

-1

 

What may have not been obvious before is now readily revealed: the system is 

unconditionally stable (for positive pK ) since the poles always lie in the LHP; 

and the pK  parameter can be used to position the poles for an overdamped, 

critically damped, or underdamped response. Also note that we can’t arbitrarily 

position the poles anywhere on the s-plane – we are restricted to the root locus. 

This means, for example, that we cannot increase the damping of our 

underdamped response – it will always be te . 

Root locus of a 
simple two-pole 
system 
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15.2 Root Locus Rules 

We will now examine a few important “rules” about a root locus construction 

that can give us insight into how a system behaves as the parameter K is varied. 

15.2.1 1. Number of Branches 

If  sP  has n poles and m zeros then there will be n branches. 

15.2.2 2. Locus End Points 

The root locus starts (i.e. 0K ) at the poles of  sP . This can be seen by 

substituting Eq. (15.4) into Eq. (15.3) and rearranging: 

          02121  mn zszszsKpspsps   (15.8) 

This shows us that the roots of Eq. (15.3), when 0K , are just the open-loop 

poles of  sP , which are also the poles of    sGsG pc . 

As K , the root locus branches terminate at the zeros of  sP . For mn   

then mn  branches go to infinity. 

15.2.3 3. Real Axis Symmetry 

The root locus is symmetrical with respect to the real axis. 

15.2.4 4. Real Axis Sections 

Any portion of the real axis forms part of the root locus for 0K  if the total 

number of real poles and zeros to the right of an exploratory point along the 

real axis is an odd integer. For 0K , the number is zero or even. 

Root locus 
construction rules 
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15.2.5 5. Asymptote Angles 

The  mn  branches of the root locus going to infinity have asymptotes whose 

angles with the real axis are given by: 




 180
mn

r
A  

(15.9) 

For 0K , r is odd (1, 3, 5, …, mn ). 

For 0K , r is even (0, 2, 4, …, mn ). 

This can be shown by considering the root locus as it is mapped far away from 

the group of open-loop poles and zeros. In this area, all the poles and zeros 

contribute about the same angular component. Since the total angular 

component must add up to 180  or some odd multiple, Eq. (15.9) follows. 

15.2.6 6. Asymptotic Intercept (Centroid) 

The asymptotes all intercept at one point on the real axis given by: 

   

mn

sPsP
mn

A





  of zeros of poles


 
(15.10) 

The value of A  is the centroid of the open-loop pole and zero configuration. 

15.2.7 7. Real Axis Breakaway and Break-In Points 

A breakaway point is where a section of the root locus branches from the real 

axis and enters the complex region of the s-plane in order to approach zeros 

which are finite or are located at infinity. Similarly, there are branches of the 

root locus which must break-in onto the real axis in order to terminate on 

zeros. 
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Examples of breakaway and break-in points are shown below: 

 

-1

-planes



j

-2-3
-4-5

break-in
point

breakaway
point

 

 

Figure 15.2 

The breakaway (and break-in) points correspond to points in the s-plane where 

multiple real roots of the characteristic equation occur. A simple method for 

finding the breakaway points is available. Taking a lead from Eq. (15.8), we 

can write the characteristic equation   01  sKP  as: 

      0 sKAsBsf  (15.11) 

 where  sA  and  sB  do not contain K. Suppose that  sf  has multiple roots 

of order r. Then  sf  may be written as: 

       k

r
pspspssf  21  (15.12) 

If we differentiate this equation with respect to s and set 1ps  , then we get: 

 
0

1


 psds

sdf
 

(15.13) 

Breakaway and 
break-in points of a 
root locus 
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This means that multiple roots will satisfy Eq. (15.13). From Eq. (15.11) we 

obtain: 

 
    0 sAKsB

ds

sdf
 

(15.14) 

The particular value of K that will yield multiple roots of the characteristic 

equation is obtained from Eq. (15.14) as: 

 
 sA

sB
K






 
(15.15) 

If we substitute this value of K into Eq. (15.11), we get: 

   
 
 

  0



 sA

sA

sB
sBsf

 
(15.16) 

or 

        0 sAsBsAsB  (15.17) 

On the other hand, from Eq. (15.11) we obtain: 

 
 sA

sB
K 

 
(15.18) 

and: 

       
 sA

sAsBsAsB

ds

dK
2




 
(15.19) 
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If dsdK  is set equal to zero, we get the same equation as Eq. (15.17). 

Therefore, the breakaway points can be determined from the roots of: 

0
ds

dK
 

(15.20) 

It should be noted that not all points that satisfy Eq. (15.20) correspond to 

actual breakaway and break-in points, if 0K  (those that do not, satisfy 

0K  instead). Also, valid solutions must lie on the real-axis. 

15.2.8 8. Imaginary Axis Crossing Points 

The intersection of the root locus and the imaginary axis can be found by 

solving the characteristic equation whilst restricting solution points to js  . 

This is useful to analytically determine the value of K that causes the system to 

become unstable (or stable if the roots are entering from the right-half plane). 

15.2.9 9. Effect of Poles and Zeros 

Zeros tend to “attract” the locus, while poles tend to “repel” it. 

15.2.10 10. Use a computer 

Use a computer to plot the root locus! The other rules provide intuition in 

shaping the root locus, and are also used to derive analytical quantities for the 

gain K, such as accurately evaluating stability. 

Equation to find 
breakaway and 
break-in points 
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EXAMPLE 15.2 Root Locus of a Unity Negative-Feedback System 

Consider a unity negative-feedback system: 

R  s(  ) C  s(  )E  s(  ) K s

ss s


 

This system has four poles (two being a double pole) and one zero, all on the 

negative real axis. In addition, it has three zeros at infinity. The root locus of 

this system, illustrated below, can be drawn on the basis of the rules presented. 

-1

-planes



j

-2

-0.4525

=10.25K

-3-4-5-6-7-8 1

60°

-60°

= 1.7

double pole
-7.034

 

Rule 1 There are four separate loci since the characteristic equation, 

  01  sG , is a fourth-order equation. 

Rule 2 The root locus starts ( 0K ) from the poles located at 0, -1, and a 

double pole located at -4. One pole terminates ( K ) at the zero located at -6 

and three branches terminate at zeros which are located at infinity. 

Rule 3 Complex portions of the root locus occur in complex-conjugate pairs. 
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Rule 4 The portions of the real axis between the origin and -1, the double poles 

at -4, and between -6 and   are part of the root locus. 

Rule 5 The loci approach infinity as K becomes large at angles given by: 




 60180
14

1
1 , 




 180180
14

3
2 , 




 300180
14

5
3  

Rule 6 The intersection of the asymptotic lines and the real axis occurs at: 

 
1

14

69





A  

Rule 7 The point of breakaway (or break-in) from the real axis is determined as 

follows. From the relation: 

   
 

  
0

41

6
11

2







sss

sK
sHsG  

we have: 

  
 6

41
2






s

sss
K  

Taking the derivative we get: 

           
 

0
6

414124126
2
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s
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ds

dK
 

Therefore: 

           

        
  
   0822104

024663034

041411464

0414121246
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One of the roots of this equation is obviously -4 (since it is written in factored 

form) which corresponds to the open-loop double pole. For the cubic equation 

082210 23  sss , we resort to finding the roots using MATLAB
®
 with 

the command roots([1 10 22 8]). The roots are -7.034, -2.5135 and 

-0.4525. It is impossible for the root at -2.5135 to be a breakaway or break-in 

point for the negative feedback case, since the root locus doesn’t lie there (the 

root at -2.5135 is the breakaway point for a positive feedback system, i.e. when 

0K ). Thus, the breakaway and break-in points are -4, -7.034 and -0.4525. 

Rule 8 The intersection of the root locus and the imaginary axis can be 

determined by solving the characteristic equation when js  . The 

characteristic equation becomes: 

    

 

  0616249

0616249

0641

234

234

2







KKjj

KsKsss

sKsss



 

Letting the real and imaginary parts go to zero, we have: 

  0169and0624 324   KK  

Solving the second equation gives: 

3

16 K
  

Substituting this value into the first equation, we obtain: 

06
9

16
24

9

16
2








 








 
K

KK
 

Solving this quadratic, we finally get 2483.10K . Substituting this into the 

preceding equation, we obtain: 

-1rads 7.1  

as the frequency of crossover. 
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Rule 9 follows by observation of the resulting sketch. 

Rule 10 is shown below: 

-15 -10 -5 0 5 10
-8

-6

-4

-2

0

2

4

6

8

Real Axis

Root Locus Editor (C)

Im
a
g
 A

x
is

 

Thus, the computer solution matches the analytical solution, although the 

analytical solution provides more accuracy for points such as the crossover 

point and breakaway / break-in points; and it also provides insight into the 

system’s behaviour. 
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15.3 MATLAB
®
’s RLTool 

We can use MATLAB
®

 to graph our root loci. From the command window, 

just type “rltool” to start the root locus user interface. 

EXAMPLE 15.3 Root Locus with Addition of a Zero 

The previous maze rover positioning scheme has a zero introduced in the 

controller: 

R  s(  ) C  s(  )E  s(  )

controller

0.5

maze rover

K p s
ss

 

Using MATLAB
®
’s rltool, we would enter the following: 

» Gp=tf(0.5, [1 2 0]); 

» Gc=tf([1 3], 1); 

» rltool 

We choose “File|Import…” from the main menu. We place our transfer 

function pG  into the “G” position of MATLAB
®

’s control system model. We 

then place our cG  transfer function into the “C” position and press OK. 

MATLAB
®
 will draw the root locus and choose appropriate graphing 

quantities. The closed-loop poles are shown by red squares, and can be dragged 

by the mouse. The status line gives the closed-loop pole locations, and the gain 

pK  that was needed to put them there can be observed at the top of the user 

interface. 
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The locus for this case looks like: 

-1

-planes



j

-2

=0Kp

=1Kp

=15Kp

-3
-4-5

 

We can see how the rules help us to “bend and shape” the root locus for our 

purposes. For example, we may want to increase the damping (move the poles 

to the left) which we have now done using a zero on the real axis. We couldn’t 

do this for the case of a straight gain in the previous example: 

-1

-planes



j

-2-3
-4-5

we can "bend and shape"
the root locus to pass
through our desired pole
region

"old" locus never passes
through the desired
pole region

 

 

This system is no longer an “all-pole system”, so any parameters such as rise 

time etc. that we were aiming for in the design must be checked by observing 

the step-response. This is done in MATLAB
®
 by choosing “Analysis|Response 

to Step Command” from the main menu. 

Root locus “bent 
and shaped” to pass 
through desired pole 
region 
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EXAMPLE 15.4 Root Locus with Addition of a Pole 

We will now see what happens if we place a pole in the controller instead of a 

zero: 

R  s(  ) C  s(  )E  s(  )

controller

0.5

maze rover

ss

K p

s

 

MATLAB
®
 gives us the following root locus: 

-1

-planes



j

-2

=4Kp

=60Kp

-3
-4

 

We see that the pole “repels” the root locus. Also, unfortunately in this case, 

the root locus heads off into the RHP. If the parameter pK  is increased to over 

60, then our system will be unstable! 

 

15.4 Root Loci of Discrete-Time Systems 

We can perform the same analysis for discrete-time systems, but of course the 

interpretation of the pole locations in the z-plane is different to the s-plane. The 

characteristic equation in this case is just: 

      011  zKPzGzG pc  
(8B.1) 

A root locus can 
clearly show the 
limits of gain for a 
stable system 

Root locus applies 
to discrete-time 
systems also 
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15.5 Time Response of Discrete-Time Systems 

We have already seen how to discretize a continuous-time system – there are 

methods such as the bilinear transform and step response matching. One 

parameter of extreme importance in discretization is the sample period, sT . We 

need to choose it to be “sufficiently small” so that the discrete-time system 

approximates the continuous-time system closely. If we don’t, then the pole 

and zero locations in the z-plane may lie out of the specification area, and in 

extreme cases can even lead to instability! 

EXAMPLE 15.5 Discrete-Time Step Response 

We decide to simulate a maze rover by replacing it’s continuous-time model 

with a discrete-time model found using the bilinear transform: 

R  z(  ) C  z(  )E  z(  )

controller maze rover

G  zK p

 

If the original maze rover continuous-time transfer function was: 

 
 1

1




ss
sG  

then application of the bilinear transform gives: 

 
 

  ss

s

TzzT

zT
zG

24824

1
2

22




  

The closed-loop transfer function is now found to be: 

 
 

    2222

22

248224

1

sssss

sp

TTzTzTT

zTK
zT




  

Clearly, the pole locations depend upon the sample period sT . 
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A locus of the closed-loop poles as sT  varies can be constructed. The figure 

below shows the root locus as sT  is varied from 0.1 s to 1 s: 

-planez

unit-circle

=0.1Ts

=1Ts

 

The corresponding step-responses for the two extreme cases are shown below: 

=0.1Ts

1

=1Ts

0 nTs  

We can see that the sample time affects the control system’s ability to respond 

to changes in the output. If the sample period is small relative to the time 

constants in the system, then the output will be a good approximation to the 

continuous-time case. If the sample period is much larger, then we inhibit the 

ability of the feedback to correct for errors at the output - causing oscillations, 

increased overshoot, and sometimes even instability. 

 

Root locus for a 
discrete-time system 
as sample period is 
varied 

Step response due 
to two different 
sample periods 
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15.6 Summary 

 The root locus for a unity-feedback system is a graph of the closed-loop 

pole locations as a system parameter, such as controller gain, is varied from 

0 to infinity. 

 There are various rules for drawing the root locus that help us to 

analytically derive various values, such as gains that cause instability. A 

computer is normally used to graph the root locus, but understanding the 

root locus rules provides insight into the design of compensators in 

feedback systems. 

 The root locus can tell us why and when a system becomes unstable. 

 We can bend and shape a root locus by the addition of poles and zeros so 

that it passes through a desired location of the complex plane. 

 Root locus techniques can be applied to discrete-time systems. 

 The root locus of a discrete-time system as the sample period is varied 

gives us insight into how close an approximation we have of a continuous-

time system, and whether the chosen sample period can meet the 

specifications. 

15.7 References 

Kuo, B: Automatic Control Systems, Prentice-Hall, 1995. 

Nicol, J.: Circuits and Systems 2 Notes, NSWIT, 1986. 
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Exercises 

1. 

For the system shown: 

(     2)s (     1)

R  s(  ) C  s(  )

s

K

+s

(     4)+s

+

 

Use RLTool in MATLAB
®
 for the following: 

(a) Plot the root locus as K is varied from 0 to  . 

(b) Find the range of K for stability and the frequency of oscillation if unstable. 

(c) Find the value of K for which the closed-loop system will have a 5% 

overshoot for a step input. 

(d) Estimate the 1% settling time for the closed-loop pole locations found in 

part (c). 
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2. 

The plant shown is open-loop unstable due to the right-half plane pole. 

U  s(  ) C  s(  )

s(     8)

1

+s(     3)
 

Use RLTool in MATLAB
®
 for the following: 

(a) Show by a plot of the root locus that the plant cannot be stabilized for any 

K,  K , if unity feedback is placed around it as shown. 

R  s(  ) C  s(  )

s(     8)

K

+s(     3)

 

(b) An attempt is made to stabilize the plant using the feedback compensator 

shown: 

R  s(  ) C  s(  )

s(     8)

K

+s(     3)

+s(     2)

+s(     1)

 

Determine whether this design is successful by performing a root locus 

analysis for  K0 . (Explain, with the aid of a sketch, why 0K  is 

not worth pursuing). 



15.23 

PMcL Exercises Index     

2015  15 - Root Locus 

3. 

For the system shown the required value of a is to be determined using the 

root-locus technique. 

R  s(  ) C  s(  )(       )s+a

(     3)+s s

1

+(     1)s

 

(a) Sketch the root-locus of 
 
 sR

sC
 as a varies from   to  . 

(b) From the root-locus plot, find the value of a which gives both minimum 

overshoot and settling time when  tr  is a step function. 

(c) Find the maximum value of a which just gives instability and determine the 

frequency of oscillation for this value of a. 
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4. 

The block diagram of a DC motor position control system is shown below. 

R  s(  ) C  s(  )

s

10

+(     4)s

amplifier
and motor

0.3

gear
train

Ks

tachometer

desired
position position

actual

 

The performance is adjusted by varying the tachometer gain K. K can vary 

from -100 to +100; 0 to +100 for the negative feedback configuration shown, 

and 0 to -100 if the electrical output connections from the tachometer are 

reversed (giving positive feedback). 

(a) Sketch the root-locus of 
 
 sR

sC
 as K varies from   to  . 

Use two plots: one for negative feedback and one for positive feedback. 

Find all important geometrical properties of the locus. 

(b) Find the largest magnitude of K which just gives instability, and determine 

the frequency of oscillation of the system for this value of K. 

(c) Find the steady-state error (as a function of K) when  tr  is a step function. 

(d) From the root locus plots, find the value of K which will give 10% 

overshoot when  tr  is a step function, and determine the 10-90% rise time 

for this value of K. 

Note: The closed-loop system has two poles (as found from the root locus) and 

no zeros. Verify this yourself using block diagram reduction. 
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James Clerk Maxwell (1831-1879) 

Maxwell produced a most spectacular work of individual genius – he unified 

electricity and magnetism. Maxwell was able to summarize all observed 

phenomena of electrodynamics in a handful of partial differential equations 

known as Maxwell’s equations
1
: 

t

t















E
JB

B

B
E

E







0

 

From these he was able to predict that there should exist electromagnetic waves 

which could be transmitted through free space at the speed of light. The 

revolution in human affairs wrought by these equations and their experimental 

verification by Heinrich Hertz in 1888 is well known: wireless  

communication, control and measurement - so spectacularly demonstrated by 

television and radio transmissions across the globe, to the moon, and even to 

the edge of the solar system! 

James Maxwell was born in Edinburgh, Scotland. His mother died when he 

was 8, but his childhood was something of a model for a future scientist. He 

was endowed with an exceptional memory, and had a fascination with 

mechanical toys which he retained all his life. At 14 he presented a paper to the 

Royal Society of Edinburgh on ovals. At 16 he attended the University of 

Edinburgh where the library still holds records of the books he borrowed while 

                                                 

1
 It was Oliver Heaviside, who in 1884-1885, cast the long list of equations that Maxwell had 

given into the compact and symmetrical set of four vector equations shown here and now 

universally known as “Maxwell's equations”. It was in this new form ("Maxwell redressed," as 

Heaviside called it) that the theory eventually passed into general circulation in the 1890s. 
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still an undergraduate – they include works by Cauchy on differential 

equations, Fourier on the theory of heat, Newton on optics, Poisson on 

mechanics and Taylor’s scientific memoirs. In 1850 he moved to Trinity 

College, Cambridge, where he graduated with a degree in mathematics in 1854. 

Maxwell was edged out of first place in their final examinations by his 

classmate Edward Routh, who was also an excellent mathematician. 

Maxwell stayed at Trinity where, in 1855, he formulated a “theory of three 

primary colour-perceptions” for the human perception of colour. In 1855 and 

1856 he read papers to the Cambridge Philosophical Society “On Faraday’s 

Lines of Force” in which he showed how a few relatively simple mathematical 

equations could express the behaviour of electric and magnetic fields. 

In 1856 he became Professor of Natural Philosophy at Aberdeen, Scotland, and 

started to study the rings of Saturn. In 1857 he showed that stability could be 

achieved only if the rings consisted of numerous small solid particles, an 

explanation now confirmed by the Voyager spacecraft. 

In 1860 Maxwell moved to King’s College in London. In 1861 he created the 

first colour photograph – of a Scottish tartan ribbon – and was elected to the 

Royal Society. In 1862 he calculated that the speed of propagation of an 

electromagnetic wave is approximately that of the speed of light: 

We can scarcely avoid the conclusion that light consists in the transverse 

undulations of the same medium which is the cause of electric and magnetic 

phenomena. 

Maxwell’s famous account, “A Dynamical Theory of the Electromagnetic 

Field” was read before a largely perplexed Royal Society in 1864. Here he 

brought forth, for the first time, the equations which comprise the basic laws of 

electromagnetism. 

Maxwell also continued work he had begun at Aberdeen, on the kinetic theory 

of gases (he had first considered the problem while studying the rings of 

Saturn). In 1866 he formulated, independently of Ludwig Boltzmann, the 

kinetic theory of gases, which showed that temperature and heat involved only 

molecular motion. 

All the mathematical 
sciences are 
founded on relations 
between physical 
laws and laws of 
numbers, so that the 
aim of exact science 
is to reduce the 
problems of nature 
to the determination 
of quantities by 
operations with 
numbers. – James 
Clerk Maxwell 
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Maxwell was the first to publish an analysis of the effect of a capacitor in a 

circuit containing inductance, resistance and a sinusoidal voltage source, and to 

show the conditions for resonance. The way in which he came to solve this 

problem makes an interesting story: 

Maxwell was spending an evening with Sir William Grove who was then 

engaged in experiments on vacuum tube discharges. He used an induction 

coil for this purpose, and found the if he put a capacitor in series with the 

primary coil he could get much larger sparks. He could not see why. Grove 

knew that Maxwell was a splendid mathematician, and that he also had 

mastered the science of electricity, especially the theoretical art of it, and so 

he thought he would ask this young man [Maxwell was 37] for an 

explanation. Maxwell, who had not had very much experience in 

experimental electricity at that time, was at a loss. But he spent that night in 

working over his problem, and the next morning he wrote a letter to Sir 

William Grove explaining the whole theory of the capacitor in series 

connection with a coil. It is wonderful what a genius can do in one night! 

Maxwell’s letter, which began with the sentence, “Since our conversation 

yesterday on your experiment on magneto-electric induction, I have considered 

it mathematically, and now send you the result,” was dated March 27, 1868. 

Preliminary to the mathematical treatment, Maxwell gave in this letter an 

unusually clear exposition of the analogy existing between certain electrical 

and mechanical effects. In the postscript, or appendix, he gave the 

mathematical theory of the experiment. Using different, but equivalent, 

symbols, he derived and solved the now familiar expression for the current i in 

such a circuit: 

tVidt
C

Ri
dt

di
L sin

1
   

The solution for the current amplitude of the resulting sinusoid, in the steady-

state is: 

2

2 1












C
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from which Maxwell pointed out that the current would be a maximum when: 

C
L




1
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Following Maxwell, Heinrich Hertz later showed a thorough acquaintance with 

electrical resonance and made good use of it in his experimental apparatus that  

proved the existence of electromagnetic waves, as predicted by Maxwell’s 

equations. In the first of his series of papers describing his experiment, “On 

Very Rapid Electric Oscillations”, published in 1887, he devotes one section to 

a discussion of “Resonance Phenomena” and published the first electrical 

resonance curve: 

 

When creating his standard for electrical resistance, Maxwell wanted to design 

a governor to keep a coil spinning at a constant rate. He made the system stable 

by using the idea of negative feedback. It was known for some time that the 

governor was essentially a centrifugal pendulum, which sometimes exhibited 

“hunting” about a set point – that is, the governor would oscillate about an 

equilibrium position until limited in amplitude by the throttle valve or the 

travel allowed to the bobs. This problem was solved by Airy in 1840 by fitting 

a damping disc to the governor. It was then possible to minimize speed 

fluctuations by adjusting the “controller gain”. But as the gain was increased, 

the governors would burst into oscillation again. In 1868, Maxwell published 

his paper “On Governors” in which he derived the equations of motion of 

engines fitted with governors of various types, damped in several ways, and 

explained in mathematical terms the source of the oscillation. He was also able 

to set bounds on the parameters of the system that would ensure stable 

operation. He posed the problem for more complicated control systems, but 

thought that a general solution was insoluble. It was left to Routh some years 

later to solve the general problem of linear system stability: “It has recently 

come to my attention that my good friend James Clerk Maxwell has had 

difficulty with a rather trivial problem…”. 

The first electrical 
resonance curve 
published, by Hertz, 
1887 

-planes



j
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In 1870 Maxwell published his textbook Theory of Heat. The following year he 

returned to Cambridge to be the first Cavendish Professor of Physics – he 

designed the Cavendish laboratory and helped set it up.  

The four partial differential equations describing electromagnetism, now 

known as Maxwell’s equations, first appeared in fully developed form in his 

Treatise on Electricity and Magnetism in 1873. The significance of the work 

was not immediately grasped, mainly because an understanding of the atomic 

nature of electromagnetism was not yet at hand. 

The Cavendish laboratory was opened in 1874, and Maxwell spent the next 5 

years editing Henry Cavendish’s papers. 

Maxwell died of abdominal cancer, in 1879, at the age of forty-eight. At his 

death, Maxwell’s reputation was uncertain. He was recognised to have been an 

exceptional scientist, but his theory of electromagnetism remained to be 

convincingly demonstrated. About 1880 Hermann von Helmholtz, an admirer 

of Maxwell, discussed the possibility of confirming his equations with a 

student, Heinrich Hertz. In 1888 Hertz performed a series of experiments 

which produced and measured electromagnetic waves and showed how they 

behaved like light. Thereafter, Maxwell’s reputation continued to grow, and he 

may be said to have prepared the way for twentieth-century physics. 

References 

Blanchard, J.: The History of Electrical Resonance, Bell System Technical 

Journal, Vol. 20 (4), p. 415, 1941. 
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16 State-Variables 
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Introduction 

The frequency-domain has dominated our analysis and design of signals and 

systems – up until now. Frequency-domain techniques are powerful tools, but 

they do have limitations. High-order systems are hard to analyse and design. 

Initial conditions are hard to incorporate into the analysis process (remember – 

the transfer function only gives the zero-state response). A time-domain 

approach, called the state-space approach, overcomes these deficiencies and 

also offers additional features of analysis and design that we have not yet 

considered. 

 

16.1 State Representation 

Consider the following simple electrical system: 

 

R L

vs C

i
L

vC

 

 

Figure 16.1 

In the analysis of a system via the state-space approach, the system is 

characterized by a set of first-order differential equations that describe its 

“state” variables. State variables are usually denoted by 1q , 2q , 3q , …, nq . 

They characterize the future behaviour of a system once the inputs to a system 

are specified, together with a knowledge of the initial states. 
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16.1.1 States 

For the system in Figure 16.1, we can choose Li  and Cv  as the state variables. 

Therefore, let: 

C

L

vq

iq





2

1

 

(16.1a) 

(16.1b) 

From KVL, we get: 

C
L

Ls v
dt

di
LRiv 

 
(16.2) 

Rearranging to get the derivative on the left-hand side, we get: 

sCL
L v

L
v

L
i

L

R

dt

di 11


 
(16.3) 

In terms of our state variables, given in Eqs. (9A.1), we can rewrite this as: 

sv
L

q
L

q
L

R

dt

dq 11
21

1 
 

(16.4) 

Finally, we write Eq. (16.4) in the standard nomenclature for state variable 

analysis – we use 
dt

dq
q   and also let the input, sv , be represented by the 

symbol x : 

x
L

q
L

q
L

R
q

11
211 

 
(16.5) 

 

 State variables 
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Returning to the analysis of the circuit in Figure 16.1, we have for the current 

through the capacitor: 

dt

dv
Ci C

L   
(16.6) 

Substituting our state variables, we have: 

21 qCq   (16.7) 

Finally, rearranging to get the derivative on the left-hand side: 

12

1
q

C
q 

 
(16.8) 

Notice how, for a second-order system, we need to find two first-order 

differential equations to describe the system. The two equations can be written 

in matrix form: 
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(16.9) 

Using matrix symbols, this set of equations can be compactly written: 

xbAqq   (16.10) 

We will reserve small boldface letters for column vectors, such as q  and b  

and capital boldface letters for matrices, such as A . Scalar variables such as x 

are written in italics, as usual. 

Eq. (16.10) is very important – it tells us how the states of the system q  change 

in time due to the input x. 

State equation 

Matrix, vector and 
scalar notation 
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16.1.2 Output 

The system output can usually be expressed as a linear combination of all the 

state variables. 

For example, if for the RLC circuit of Figure 16.1 the output y  is Cv  then: 

2q

vy C





 
(16.11) 

Therefore, in matrix notation, we write: 
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1
10

q

q
y

 
(16.12) 

which is usually expressed as: 

qc
Ty   (16.13) 

In general, the output can also have a contribution from the input: 

dxy T  qc  (16.14) 

16.1.3 Multiple Input-Multiple Output Systems 

State variable representation is good for multiple input – multiple output 

(MIMO) systems. All we have to do is generalise our input and output above to 

vector inputs and outputs: 

DxqCy

BxAqq





T



 
(16.15) 

Output equation 

Multiple input - 
multiple output 
(MIMO) state and 
output equations 
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16.2 Solution of the State Equations 

Once the state equations for a system have been obtained, it is usually 

necessary to find the output of a system for a given input (However, some 

parameters of the system can be directly determined by examining the A 

matrix, in which case we may not need to solve the state equations). 

We can solve the state equations in the s-domain. Taking the Laplace 

Transform of Eq. (16.10) gives: 

       sXsss bAQqQ  0  (16.16) 

Notice how the initial conditions are automatically included by the Laplace 

transform of the derivative. The solution will be the complete response, not just 

the ZSR. 

Making  sQ  the subject, we get: 

         sXsss bAIqAIQ
11

0


  (16.17) 

Because of its importance in state variable analysis, we define the following 

matrix: 

   
matrixresolvent 

1






AIΦ ss
 

(16.18) 

This simplifies Eq. (16.17) to: 

         sXsss bΦqΦQ  0  (16.19) 

Using Eq. (16.14), the LT of the output is then: 

          sXdsssY TT  
bΦcqΦc 0  (16.20) 

Resolvent matrix 
defined 
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All we have to do is take the inverse Laplace transform (ILT) to get the 

solution in the time-domain. 

Before we do that, we also define the ILT of the resolvent matrix, called the 

transition matrix: 

   

matrixmatrix

resolventtransition

st Φφ 

 
(16.21) 

The ILT of Eq. (16.19) is just: 

         

 ZSR ZIR

 

0 



 


t

dxttt  bφ0qφq
 

(16.22) 

Notice how multiplication in the s-domain turned into convolution in the time-

domain. The transition matrix is a generalisation of impulse response, but it 

applies to states – not the output! 

We can get the output response of the system after solving for the states by 

direct substitution into Eq. (16.14).  

16.3 Transition Matrix 

The transition matrix possesses two interesting properties that help it to be 

calculated by a digital computer: 

 

  tet A
φ

Iφ



0

 

(16.23a) 

(16.23b) 

The first property is obvious by substituting 0t  into Eq. (16.22). The second 

relationship arises by observing that the solution to the state equation for the 

case of zero input, Aqq  , is   teA
qq 0 . For zero input, Eq. (16.22) gives 

The transition matrix 
and resolvent matrix 
form a Laplace 
transform pair 

Complete solution of 
the state equation 
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      0qφq tt , so that we must have   tet A
φ  . The matrix teA  is defined 

by: 

     


!3!2!1

32
ttt

e t AAA
I

A

 
(16.24) 

This is easy to calculate on a digital computer, because it consists of matrix 

multiplication and addition. The series is truncated when the desired accuracy 

is reached. 

EXAMPLE 16.1 Solution of a Differential Equation Using State Variables 

Suppose a system is described by the following differential equation:  

r
dt

dr
y

dt

dy

dt

yd
 2

2

2

 

where the input and initial conditions are: 

    0010sin  yytr   

Let: 

rrxyqyq   ,, 21  

then: 

xqqq

qq





212

21

2


 

or just: 

xbAqq   

 

How to raise e to a 
matrix power 
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with: 








































2

1

2

1
,,

1

0
,

21

10

q

q

q

q




qqbA  

We form the resolvent matrix by firstly finding AI s : 



































21

1

21

10

0

0

s

s

s

s
s AI  

Then remembering that the inverse of a matrix B is given by: 

B

B
B

 adj1   

we get the resolvent matrix: 

   
 

   

    











































22

22

2

1

11

1
1

1

1

2

1

1

12

s

s

s

ss

s

s

s

s

ss AIΦ  

The transition matrix is the inverse Laplace transform of the resolvent matrix: 

    

 
 




















tete

tete

st

tt

tt

1

1

1
Φφ L

 

So, from Eq. (16.22), the ZIR is given by: 

     
 

 
 
























































t

t

tt

tt

te

te

tete

tete

q

q

tt

1

0

1

1

1

0

ZIR2

1

ZIR qφq

 

Since we don’t like performing convolution in the time-domain, we use 

Eq. (16.19) to find the ZSR: 

      sXst bΦq
1

ZSR

L  
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The Laplace transform of the input is: 

 
11

1
22 





s

s

s
sX  

so the ZSR is: 

     

   

  

   















































































































11

11

1

1

1

1

0

11

1
1

1

1

2

2

2
1

2

22

22
1

ZSR

ss

s
ss

s

s

s

s

s

ss

s

t

L

Lq

 

Use partial fractions to get: 

 
 























tte

tte

q

q
t

t

sincos

sincos

2
1

2
1

ZSR2

1
 

The total response is the sum of the ZIR and the ZSR: 


























tttee

tttee

q

q
tt

tt

sincos

sincos

2
1

2
1

2
1

2
1

2
1

2
3

2

1
 

This is just the solution for the states. To get the output, we use: 

  0,01 



d

dxy

T

T

c

qc
 

Therefore, the output is: 

ttteey tt sincos
2
1

2
1

2
3    

You should confirm this solution by solving the differential equation directly 

using your previous mathematical knowledge, eg. method of undetermined 

coefficients. 
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16.4 Transfer Function 

The transfer function of a single input-single output (SISO) system can be 

obtained easily from the state variable equations. Since a transfer function only 

gives the ZSR (all initial conditions are zero), then Eq. (16.19) becomes: 

     sXss bΦQ   (16.25) 

The output in the s-domain, using the Laplace transform of Eq. (16.14) and 

Eq. (16.25), is just: 

     

    sXds

sdXssY





bΦc

Qc

T

T

 
(16.26) 

Therefore, the transfer function is given by: 

    dssH T  bΦc  (16.27) 

16.5 Impulse Response 

The impulse response is just the inverse Laplace transform of the transfer 

function: 

   

de

dtth

tT

T





bc

bφc

A  
(16.28) 

It is possible to compute the impulse response directly from the coefficient 

matrices of the state model of the system. 

Obtaining the 
transfer function 
from a state-variable 
description of a 
system 
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EXAMPLE 16.2 Finding the Transfer Function Using State Variables 

Continuing the analysis of the system used in the previous example, we can 

find the transfer function using Eq. (16.27): 

       

   

   

 

 2

2

2

22

22

1

1

1

1

1

01

0
1

0

11

1
1

1

1

2

01































































s

s

s
s

s

s

s

ss

s

sH

 

Compare with the Laplace transform of the original differential equation: 

     sXsYss

xy
dt

dy

dt

yd





12

2

2

2

2

 

from which the transfer function is: 

 
 
 

 

 2

2

1

1

12

1









s

ss

sX

sY
sH

 

Why would we use the state-variable approach to obtain the transfer function? 

For a simple system, we probably wouldn’t, but for multiple-input multiple-

output systems, it is much easier using the state-variable approach. 
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16.6 Linear State-Variable Feedback 

Consider the following system drawn using a state-variable approach: 

 

x  t(  ) y  t(  )
b dt

A

cT

k

k0

r  t(  )

system to be controlledcontroller

q

qq

T

 

 

Figure 16.2 

The system has been characterised in terms of states – you should confirm that 

the above diagram of the “system to be controlled” is equivalent to the matrix 

formulation of Eqs. (16.10) and (16.14) (with 0d ). 

We have placed a controller in front of the system, and we desire the output y 

to follow the set point, or reference input, r. The design of the controller 

involves the determination of the controller variables 0k  and k to achieve a 

desired response from the system (The desired response could be a time-

domain specification, such as rise time, or a frequency specification, such as 

bandwidth). 

The controller just multiples each of the states iq  by a gain ik , subtracts the 

sum of these from the input r , and multiplies the result by a gain 0k . 

Now, the input x to the controlled system is: 

 qk
Trkx  0  (16.29) 

 

Block diagram of 
linear state-variable 
feedback 

The input to the 
open-loop system is 
modified by the 
feedback 
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Therefore, the state equations are: 

rkk 0bqAq   (16.30) 

where: 

T

k k bkAA 0  (16.31) 

Eq. (16.30) is the state-variable representation of the overall system (controller 

plus system to be controlled). The state equations Eq. (16.30) still have the 

same form as Eq. (16.10), but A changes to kA  and the input changes from x 

to rk0 . Analysis of the overall system can now proceed as follows. 

For the ZSR, the transfer function is given by Eq. (16.27) with the above 

substitutions: 

    dsksH k

T  bΦc0  (16.32) 

where: 

    1
 kk ss AIΦ  (16.33) 

We choose the controller variables 0k  and  n

T kkk 21k  to create the 

transfer function obtained from the design criteria (easy for an 2n  second-

order system). 

State-variable 
feedback modifies 
the A matrix 

The closed-loop 
transfer function 
when linear state-
variable feedback is 
applied 

The modified 
resolvent matrix 
when linear state-
variable feedback is 
applied 
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EXAMPLE 16.3 Linear State-Variable Feedback 

Suppose that it is desired to control an open-loop process using state-variable 

control techniques. The open-loop system is shown below: 

s+70

X  s(  ) Y  s(  )=
1 1

s

1
Q

2
Q

 

Suppose it is desired that the closed-loop second-order characteristics of the 

feedback control system have the following parameters: 

1707.0,rads 50 1   n  

Then the desired transfer function is: 

 
 

250071.70

2500

2

2

22

2







ss

sssR

sC

nn

n





 

The first step is to formulate a state-variable representation of the system. The 

relationships for each state-variable and the output variable in the 

s-domain are obtained directly from the block diagram: 

2

12

1

1

70

1

QY

Q
s

Q

X
s

Q








 

Rearranging, we get: 

2

12

11 70

QY

QsQ

XQsQ
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The corresponding state-variable representation is readily found to be: 

  xy

x

010

0

1

01

070






















q

qq
 

or just: 

dxy

x

T 



qc

bAqq
 

All linear, time-invariant systems have this state-variable representation. To 

implement state-variable feedback, we form the following system: 

 

R  s(  ) X  s(  )

Process

s
1

k0

(  )Q   s
1

s
1
+70

k1

k2

Controller

(  )Q   s
2

(  )C  s=

 

We see that the controller accepts a linear combination of the states, and 

compares this with the reference input. It then provides gain and applies the 

resulting signal as the “control effort”,  sX , to the process. 

The input signal to the process is therefore: 

 22110 qkqkrkx   

or in matrix notation: 

 qk
Trkx  0  
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Applying this as the input to the system changes the describing state equation 

to: 

  
 

rk

rkk

rk

k

T

T

0

00

0

bqAq

bqbkAq

qkbAqq













 

where: 

T

k k bkAA 0  

If we let: 

    1
 kk ss AIΦ  

then the transfer function of the closed-loop system is given by: 

    dsksH k

T  bΦc0  

We now need to evaluate a few matrices. First: 

 








 










































01

70

0001

070

0

1

01

070

2010

21

0

210

0

kkkk

kk
k

kkk

k T

k bkAA

 

Then: 

   

  



































10

20

2010

2

1

2010

1

70170

1

1

70

kks

kks

kkskks

s

kkkks

ss kk AIΦ
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The closed-loop transfer function is then found as: 

   

 
 

 
 

  2010

2

0

2010

2

0

10

20

2010

2

0

0

70

1
10

70

0
0

1

701
10

70

kkskks

k

s

kkskks

k

kks

kks

kkskks

k

dsksH k

T








































 bΦc

 

The values of 0k , 1k  and 2k  can be found by equating this with the desired 

closed-loop transfer function derived from the original specifications: 

  250071.70

2500

70 2

2010

2

0




 sskkskks

k
 

The following set of simultaneous equations result: 

71.7070

2500

2500

10

20

0







kk

kk

k

 

We have three equations and three unknowns. Solving, we find that: 

1

10843.2

2500

2

4

1

0









k

k

k

 

This completes the controller design. The final step would be to draw the root 

locus and examine the relative stability, and the sensitivity of slight gain 

variations. For this simple system, the final step is not necessary. 
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16.7 Summary 

 State-variables describe “internal states” of a system rather than just the 

input-output relationship. 

 The state-variable approach is a time-domain approach. We can include 

initial conditions in the analysis of a system to obtain the complete 

response. 

 The state-variable equations can be solved using Laplace transform 

techniques. 

 We can derive the transfer function of a SISO system using state-variables. 

 Linear state-variable feedback involves the design of gains for each of the 

states, plus the input. 
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Exercises 

1. 

Using capacitor voltages and inductor currents write a state-variable 

representation for the following circuit: 

L

vs

R1 1

R2

C1

R3

 

2. 

Consider a linear system with input u and output y. Three experiments are 

performed on this system using the inputs  tx1 ,  tx2  and  tx3  for 0t . In 

each case, the initial state at 0t ,  0x , is the same. The corresponding 

observed outputs are  ty1 ,  ty2  and  ty3 . Which of the following three 

predictions are true if   0x 0 ? 

(a) If 213 xxx  , then 213 yyy  . 

(b) If  212
1

3 xxx  , then  212
1

3 yyy  . 

(c) If 213 xxx  , then 213 yyy  . 

Which are true if   0x 0 ? 
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3. 

Write dynamical equation descriptions for the block diagrams shown below 

with the chosen state variables. 

(a)  

3

YX

s
1

s+2
1

2

s+2
1

Q
3

Q
1

Q
2

 

(b) 

 

YX
s+2

1
s+2

1
s+1

1
Q

3
Q

2
Q

1

 

4. 

Find the transfer function of the systems in Q3: 

(i) by block diagram reduction 

(ii) directly from your answers in Q3 (use the resolvent matrix etc) 

5. 

Given: 

x















 


2

1

14

11
qq  

and: 

   


















01

00

0

3
0

t

t
txq  

Find  tq . 
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6. 

Write a simple MATLAB
®

 script to evaluate the time response of the system 

described in state equation form in Q5 using the approximate relationship: 

   
T

tTt qq
q


  

Use this script to plot  tq  using: 

(a) s 01.0T ,  (b) s 1.0T , (c) s 1T  

Compare these plots to the values given by the exact solution to Q5 (obtained 

by finding the inverse Laplace transforms of the answer given). 

Comment on the effect of varying the time increment T. 
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17 State-Variables 2 
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Introduction 

State-variable analysis is useful for high-order systems and multiple-input 

multiple-output systems. It can also be used to find transfer functions between 

any output and any input of a system. It also gives us the complete response. 

The only drawback to all this analytical power is that solving the state-variable 

equations for high-order systems is difficult to do symbolically. Any computer 

solution also has to be thought about in terms of processing time and memory 

storage requirements. 

The use of eigenvectors and eigenvalues solves this problem. 

State-variable analysis can also be extended to discrete-time systems, 

producing exactly analogous equations as for continuous-time systems. 

 

17.1 Normal Form 

Solving matrix equations is hard...unless we have a “trivial” system: 

























































nnn z

z

z

z

z

z











2

1

2

1

2

1

000

000

000

000







 

(17.1) 

which we would just write as: 

Λzz   (17.2) 

This is useful for the ZIR of a state-space representation where: 

Aqq   (17.3) 

We therefore seek a “similarity transform” to turn Aqq   into Λzz  . 
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When solving differential equations, we know we should get solutions 

containing exponentials. Let us therefore try one possible “exponential trial 

solution” in Eq. (17.3) by letting: 

  te0qq   (17.4) 

where  0q  is a constant vector determined by the initial conditions of the 

states. Then qq   and, substituting into Eq. (17.3), we get: 

qAq   (17.5) 

Therefore: 

  0qIA   (17.6) 

For a non-trivial solution (one where 0q  ), we need to have: 

0 IA   (17.7) 

This is called the characteristic equation of the system. The eigenvalues are 

the values of   which satisfy 0IA  . Once we have all the  ’s, each 

column vector  iq  which satisfies the original equation Eq. (17.5) is called a 

column eigenvector. 

      reigenvecto

eigenvalue0





iiii

i

qqAq

IA





 
(17.8) 

An eigenvector corresponding to an eigenvalue is not unique – an eigenvector 

can be multiplied by any non-zero arbitrary constant. We therefore tend to 

choose the simplest eigenvectors to make the mathematics easy. 

Characteristic 
equation 

Eigenvalues and 
eigenvectors 
defined 
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EXAMPLE 17.1 Eigenvalues and Eigenvectors 

Given a system’s A matrix, we want to find the eigenvalues and eigenvectors. 



















163

4310

232

A  

We find the eigenvalues first by solving: 

 
 

 
0

163

4310

232

















IA  

Evaluating the determinant, we get the characteristic equation: 

066496 23    

Factorising the characteristic equation, we get: 

    01132    

The solutions to the characteristic equation are: 

seigenvalue

11

3

2

3

2

1





















 

To find the eigenvectors, substitute each   into   0qIA   and solve for q. 

Take 21  : 
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0

0

363

4510

234

0

0

0

200

020

002

163

4310

232

3

2

1

3

2

1

q

q

q

q

q

q
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Solve to get: 

  2for 

5

2

1

11 



















 q  

The other eigenvectors are: 

  3for 

3

2

0

22 



















 q      and       11for 

3

4

2

33 

















 q  

 

 

17.2 Similarity Transform 

The eigenvalues and eigenvectors that arise from Eq. (17.5) are put to good use 

by transforming Aqq   into Λzz  . First, form the square nn  matrix: 
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n
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2

1

2

22

12

1

21

11

21 qqqU  (17.9) 

The columns of the U matrix are the column eigenvectors corresponding to 

each of the n eigenvalues. Then since the columns of U are solutions to: 

   iii qAq   (17.10) 

then by some simple matrix manipulation, we get: 

UΛAU   (17.11) 

where: 





















n





000

000

000

000

2

1


Λ  (17.12) 

Similarity transform 
defined 

Diagonal matrix  
defined 
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EXAMPLE 17.2 Relationship of Eigenvectors with Diagonal Matrix 

From the previous example, we can confirm the following relationship. 











































































1100

030

002

335

422

201

335

422

201

163

4310

232

UΛAU

 

 

 

(9B.1) 

Perform the multiplication shown to verify the result. 

The matrix U is called the right-hand eigenvector matrix. If, instead of 

Eq. (17.5), we were to solve the equation TT
qAq   we get the same 

eigenvalues but different eigenvectors. Also, we can form an nn  matrix V so 

that: 

ΛVVA   (17.13) 

where V is made up of rows of left-hand eigenvectors: 

 
 

 











































n
nnn

n
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nT
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qqq
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1
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q

q

q

V  (17.14) 

Since eigenvectors can be arbitrarily scaled by any non-zero constant, it can be 

shown that we can choose V such that: 

IVU   (17.15) 

which implies: 

1 UV  (17.16) 

 

Relationship 
between the two 
similarity transforms 
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Now, starting from Eq. (17.11), pre-multiply by V: 

VUΛVAU

UΛAU




 

(17.17) 

but using Eq. (17.16), this turns into: 

AUUΛ
1  (17.18) 

 

17.3 Solution of the State Equations for the ZIR 

Given: 

Aqq   (17.19) 

and  0q , we would like to determine the ZIR  tZIRq . 

First, put Uzq   and substitute into Eq. (17.17) to give: 

AUzzU   (17.20) 

Now pre-multiply by 1
U : 

AUzUz
1  (17.21) 

and using Eq. (17.18), the end result of the change of variable is: 

Λzz   (17.22) 

 

The similarity 
transform 
diagonalizes a 
matrix 

Diagonal form of 
state equations 
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Written explicitly, this is: 
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(17.23) 

This is just a set of n independent first-order differential equations: 

nnn zz

zz

zz





















222

111

 

(17.24) 

Consider the first equation: 

11
1 z

dt

dz


 
(17.25) 

The solution is easily seen to be: 

  t
ezz 1011


  (17.26) 

The solution to Eq. (17.24) is therefore just: 

 
 

  t

nn

t

t

nezz

ezz

ezz







0

0

0

2

1

22

11







  

(17.27) 
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or written using matrix notation: 

 0zz
Λte  (17.28) 

The matrix 
teΛ  is defined by: 

     

























t

t

t

t

ne

e

e

ttt
e







000

000

000

000

!3!2!1

2

1

3




ΛΛΛ

I

2

Λ

 

(17.29) 

We now revert back to our original variable: 

 

 0

0

1
qUU

zU

Uzq

Λ

Λ







t

t

e

e
 

(17.30) 

and since we know the ZIR is      0ZIR qφq tt   then the transition matrix is: 

  1 UUφ
Λtet  (17.31) 

This is a quick way to find the transition matrix  tφ  for high-order systems. 

The ZIR of the states is then just: 

     

 0

0

1
qUU

qφq

Λ 



te

tt

 
(17.32) 

 

Solution to the 
diagonal form of 
state equations 

The matrix 
teΛ  

defined 

Transition matrix 
written in terms of 
eigenvalues and 
eigenvectors 

The ZIR written in 
terms of 
eigenvalues and 
eigenvectors, and 
initial conditions 
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EXAMPLE 17.3 Zero Input Response Using Similarity Transform 

Given: 

     

     

  
































3

2
0

13

2

0

32

10

q

q

qq

tty

txtt

 

find the ZIR. 

We start by determining the eigenvalues: 

   021

023

0
32

1

0

2




















IA

 

2,1 21    

Next we find the right-hand eigenvectors: 

    


























21

11
,

2
1

,
1

1
21 UUU  

and the left-hand eigenvectors: 

        











11

12
,11,12 21

VVV  

As a check, we can see if IUV  . 

Forming Λ  is easy: 















20

01
Λ  
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The transition matrix is also easy: 
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0

21

11

UUφ
Λ

 

The ZIR of the states is now just: 

     















































tt

tt

tttt

tttt

ee

ee

eeee

eeee

tt

2

2

22

22

ZIR

107

57

3

2

222

2

0qφq

 

The ZIR of the output is then: 

     
tt ee

tty

2

ZIRZIR

514

13

 

 q
 

For higher-order systems and computer analysis, this method results in 

considerable time and computational savings. 
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17.4 Poles and Repeated Eigenvalues 

17.4.1 Poles 

We have seen before that the transfer function of a system using state-variables 

is given by: 

   

 

 
AI

bAIc

bAIc

bΦc












s

s

s

ssH

T

T

T

adj

1

 
(17.33) 

where we have used the formula for the inverse BBB  adj1  . We can see 

that the poles of the system are formed directly by the characteristic equation 

0AIs . Thus, the poles of a system are given by the eigenvalues of the 

matrix A . 

poles = eigenvalues of A (17.34) 

There is one qualifier to this statement: there could be a pole-zero cancellation, 

in which case the corresponding pole will “disappear”. These are special cases, 

and are termed uncontrollable and/or unobservable, depending on the state 

assignments. 

17.4.2 Repeated Eigenvalues 

When eigenvalues are repeated, we get repeated eigenvectors if we try to solve 

qAq  . In these cases, it is not possible to diagonalize the original matrix 

(because the similarity matrix will have two or more repeated columns, and 

will be singular – hence no inverse). 

In cases of repeated eigenvalues, the closest we can get to a diagonal form is a 

Jordan canonical form. Handling repeated eigenvalues and examining the 

Jordan form are topics for more advanced subjects in control theory. 

Poles of a system 
and eigenvalues of 
A are the same! 
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17.5 Discrete-time State-Variables 

The concepts of state, state vectors and state-variables can be extended to 

discrete-time systems. 

A discrete-time SISO system is described by the following equations: 

     

     ndxnny

nxnn

T 



qc

bAqq 1

 
(17.35) 

17.5.1 Converting a Difference Equation to State-Variable Form 

Given the following second-order linear difference equation: 

       nxnynyny  21  (9B.2) 

we select: 

   
   2

1

2

1





nynq

nynq
 

(9B.3) 

We now want to write the given difference equation as a set of equations in 

state-variable form. Now: 

   11  nynq  (9B.4) 

Therefore: 

   
     nxnyny

nynq





21

11
 

(9B.5) 

so that: 

       nxnqnqnq  211 1  (9B.6) 

 

State and output 
equations for a 
discrete-time system 
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Also: 

   22  nynq  (9B.7) 

Therefore: 

   112  nynq  (9B.8) 

so that, using Eq. (9B.4): 

   nqnq 12 1   (9B.9) 

From Eq. (9B.2), we also have: 

       nxnqnqny  21  (9B.10) 

The equations are now in state variable form, and we can write: 

     

         nxnny

nxnn

111

0

1

01

11
1






















q

qq
 

 

(9B.11) 

Thus, we can proceed as above to convert any given difference equation to 

state-variable form. 

17.5.2 Converting a Transfer Function to State-Variable Form 

If we are given the transfer function: 

 
N

N

N

N

zaza

zbzbb
zH













1

1

1

10

1
 

(9B.12) 

then: 

   
 zP

zaza

zX

zbzbb

zY
p

p

p

p





   1

1

1

10 1
 

(9B.13) 
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From the right-hand side, we have: 

         zXzPzazPzazPzazP N

N   2

2

1

1  (9B.14) 

Now select the state variables as: 

   

   

   zPzzQ

zPzzQ

zPzzQ

N

N















2

2

1

1

 

 

 

(9B.15) 

The state equations are then built up as follows. From the first equation in 

Eq. (9B.15): 

   

   

       

       zXzQazQazQa

zXzPzazPzazPza

zPzzQ

zPzzQ

NN

N

N

















2211

2

2

1

1

1

1

1

 

 

 

(9B.16) 

Taking the inverse z-transform, we get: 

         nxnqanqanqanq NN  22111 1  (9B.17) 

From the second equation in Eq. (9B.15), we have: 

   

 

 

   zQzzQ

zQz

zPzz

zPzzQ

12

1

1

11

2

2















 

 

 

(9B.18) 

Taking the inverse z-transform gives us: 

   nqnq 12 1   (9B.19) 
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Similarly: 

   nqnq NN 11   (9B.20) 

We now have all the state equations. Returning to Eq. (9B.13), we have: 

       zPzbzPzbzPbzY N

N

  1

10  (9B.21) 

Taking the inverse z-transform gives: 

         nqbnqbnqbnqbny NN 221110 1  (9B.22) 

Eliminating the  11 nq  term using Eq. (9B.17) and grouping like terms gives: 

         
     nxbnqbab

nqbabnqbabny

NNN 00

20221011






 

(9B.23) 

which is in the required form. 

Using matrix notation we therefore have: 

     

       
  Nibabc

nxbncccny

nxn

aaaa

n

iii

N

NN

 , ,2 ,1 where

0

0

0

1

0100

0010

0001

1

0

021

121

































































 





q

qq

 

 

 

 

(9B.24) 

Thus we can convert  zH  to state-variable form. 
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17.6 Discrete-time Response 

Once we have the equations in state-variable form we can then obtain the 

discrete-time response. 

For a SISO system we have: 

     

     ndxnny

nxnn

T 



qc

bAqq 1

 
(17.36) 

First establish the states for the first few values of n: 

     
     

      

     
     

       2100

223

100

100

112

001

23

2

xxx

x

xx

xx

x

x

bAbbAqA

bAqq

bAbqA

bbAqA

bAqq

bAqq













 

(17.37) 

The general formula can then be seen as: 

     
      ,2 ,112

00 1



 

nnxnx

xn nn

bAb

bAqAq

 

(17.38) 

We now define: 

  matrix lfundamenta nn Aφ  (17.39) 

 

Fundamental matrix 
defined 
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From Eq. (17.38) and the above definition, the response of the discrete-time 

system to any input is given by: 

         

     ndxnn

ixinnn

T

n

i



 




qcy

bφqφq
1

0

10

 
(17.40) 

This is the expected form of the output response. For the states, it can be seen 

that: 

   

   








1

0

ZSR

ZIR

1

0

n

i

ixin

n

bφq

qφq

 
(17.41) 

17.7 Discrete-time Transfer Function 

We can determine the transfer function from the state-variable representation in 

the same manner as we did for continuous-time systems. 

Take the z-transform of Eq. (17.36) to get: 

       
       zXzzz

zXzzzz

bqQAI

bAQqQ





0

0
 

(17.42) 

Therefore: 

         zXzzzz bAIqAIQ
11

0


  (17.43) 

 

Solution to the 
discrete-time state 
equations in terms 
of convolution 
summation 

The ZIR and ZSR 
for a discrete-time 
state-variable 
system 
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Similarly: 

     

    zXdz

zzzY

T

T









bAIc

qAIc

1

1
0

 
(17.44) 

For the transfer function, we put all initial conditions   0q 0 . Therefore, the 

transfer function is: 

    dzzH T 


bAIc
1

 (17.45) 

To get the unit-pulse response, we revert to Eq. (17.40), set the initial 

conditions to zero and apply a unit-pulse response: 

 
     ,2 ,11

0





nnnh

dh
T

bφc  
(17.46) 

Using Eq. (17.39), we get: 

 
   ,2 ,1

0
1 


 nnh

dh
nT

bAc  
(17.47) 

 

The discrete-time 
transfer function in 
terms of state-
variable quantities 

The unit-pulse 
response in terms of 
state-variable 
quantities 
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EXAMPLE 17.4 Complete Response of a Discrete-Time System 

A linear time-invariant discrete-time system is given by the figure shown: 

x  n[  ]

5/6

D

1/6

5

y n[  ]

1

D

q   n[  ]
1

q   n[  ]
2

q   n[    +1]
2

If 

We would like to find the output  ny  if the input is    nunx   and the initial 

conditions are   201 q  and   302 q . 

Recognizing that    112  nqnq , the state equations are: 

 
 

 
 

x
nq

nq

nq

nq















































1

0

6

5

6

1
10

1

1

2

1

2

1
 

and: 

   
 
 








nq

nq
ny

2

1
51  

To find the solution using time-domain techniques [Eq. (17.41)], we must 

determine   nn Aφ  . One way of finding this is to first determine a similarity 

transform to diagonalize A .  
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If such a transform can be found, then AUUΛ
1 . Rearranging we then have: 

1n

12112

1

 

   

 













UUΛA

UUΛUUΛUUΛAAA

UUΛA

n


 

 The characteristic equation of A  is: 

0
2

1

3

1

6

1

6

5

6

5

6

1
1

2 





















 




 AI  

Hence, 311   and 212   are the eigenvalues of A , and: 











210

031
Λ  

The associated eigenvectors are, for 311  : 































0

0

2161

131

2

1

x

x
 so choose   










1

3
1u  

and for 212  : 































0

0

3161

121

2

1

x

x
 so choose   










1

2
2u  

Therefore: 











11

23
U  

The inverse of U  is readily found to be: 















31

21adj1

U

U
U  
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Therefore   1  UUΛAφ
nnn , and: 
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n

2133122131

216316212313
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23
φ

 

To solve for the ZIR, we have, using Eq. (17.41): 
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T

ZIR nny
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217314
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To solve for the ZSR, we have, using Eq. (17.41): 

     





1

0

1
n

i

T

ZSR ixinny bφc  

We have: 
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so that: 
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2118

31

31
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for 0n . Therefore the total response is: 

         

    0,21331212

2118316122121318





n

ny

nn

nnnn

 

The solution using z-transforms follows directly from Eq. (17.44): 
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z
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Therefore: 

          02118316122121318

response state-zeroresponseinput -zero

 nny
nnnn

    
 

Obviously, the two solutions obtained using different techniques are in perfect 

agreement. 
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17.8 Summary 

 The similarity transform uses a knowledge of a system’s eigenvalues and 

eigenvectors to reduce a high-order coupled system to a simple diagonal 

form. 

 A diagonal form exists only when there are no repeated eigenvalues. 

 A system’s poles and eigenvalues are equal. 

 Discrete-time state-variable representation can be used to derive the 

complete response of a system, as well as the transfer function and unit-

pulse response. 
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Exercises 

1. 

Find Λ , U and V for the system described by: 

 q

xqq

100

520

72

10

6116

100

010











































y


 

Note: U and V should be found directly (i.e. Do not find V by taking the 

inverse of U). You can then verify your solution by: 

(i) checking that IVU   

(ii) checking that AVΛU   

2. 

Consider the system: 

xqqq

xqq





212

11

2


 

with: 

  











1

0
0q  

(a) Find the system eigenvalues and find the zero input response of the system. 

(b) If the system is given a unit-step input with the same initial conditions, find 

 tq . (Use the resolvent matrix to obtain the time solution). What do you 

notice about the output? 
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3. 

A system employing state-feedback is described by the following equations: 

 

 

     tr

q

q

q

kkktx

q

q

q

y

tx

q

q

q

q

q

q













































































































3

2

1

321

3

2

1

3

2

1

3

2

1

342

1

0

0

375

100

010







 

(i) Draw a block diagram of the state-feedback system. 

(ii) Find the poles of the system without state feedback. 

(iii) Obtain values for 1k , 2k  and 3k  to place the closed-loop system poles 

at -4, -4 and -5. 

(iv) Find the steady-state value of the output due to a unit-step input. 

(v) Comment upon the possible uses of this technique. 
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4. 

For the difference equation: 

             3
16

1
2

4

1
1

4

1
2

8

5
1

4

5
3  nynynynxnxnxny  

(a) Show that  
1614141

85453
23

23






zzz

zzz
zH  

(b) Form the state-variable description of the system. 

(c) Find the transfer function  zH  from your answer in (b). 

(d) Draw a block diagram of the state-variable description found in (b), and use 

block-diagram reduction to find  zH . 

5. 

Find  5y  and  10y  for the answer to Q4b given: 

   
 

























01

00
and

0

1

1

0
n

n
nx nq  

(a) by calculating  nq  and  ny  for 10 , ,1 ,0 n  directly from the state 

equations. 

(b) by using the fundamental matrix and finding  5y  and  10y  directly. 

6. 

A discrete-time system with: 

 
 

  czazz

bzk
zH




  

is to be controlled using unity feedback. Find a state-space representation of 

the resulting closed-loop system. 
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Appendix A -  The Fast Fourier Transform 
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Introduction 

Digital signal processing is becoming prevalent throughout engineering. We 

have digital audio equipment (CDs, MP3s), digital video (MPEG2 and 

MPEG4, DVD, digital TV), digital phones (fixed and mobile). An increasing 

number (billions!) of embedded systems exist that rely on a digital computer (a 

microcontroller normally). They take input signals from the real analog world, 

convert them to digital signals, process them digitally, and produce outputs that 

are again suitable for the real analog world. (Think of the computers 

controlling any modern form of transport – car, plane, boat – or those that 

control nearly all industrial processes). Our motivation is to extend our existing 

frequency-domain analytical techniques to the “digital world”. 

Our reason for hope that this can be accomplished is the fact that a signal’s 

samples can convey the complete information about a signal (if Nyquist’s 

criterion is met). We should be able to turn those troublesome continuous-time 

integrals into simple summations – a task easily carried out by a digital 

computer. 

The motivation 
behind developing 
the FFT 

Samples contain all 
the information of a 
signal 
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A.1 The Discrete-Time Fourier Transform (DTFT) 

To illustrate the derivation of the discrete-time Fourier Transform, we will 

consider the signal and it’s Fourier Transform below: 

 

(  )x  t
A

0 t

(   )X   f
C

0 fB B2-B-2 B  

 

Figure F.1 

Since the signal is strictly time-limited (it only exists for a finite amount of 

time), it’s spectrum must be infinite in extent. We therefore cannot choose a 

sample rate high enough to satisfy Nyquist’s criterion (and therefore prevent 

aliasing). However, in practice we normally find that the spectral content of 

signals drops off at high frequencies, so that the signal is essentially band-

limited to B: 

 

(  )x  t
A

0 t

(   )X   f
C

0 fB-B  

 

Figure F.2 

We will now assume that Nyquist’s criterion is met if we sample the time-

domain signal at a sample rate Bf s 2 . 

A strictly time-limited 
signal has an infinite 
bandwidth 

A time-limited signal 
which is also 
essentially band-
limited 
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If we ideally sample using a uniform train of impulses (with spacing 

ss fT 1 ), the mathematical expression for the sampled time-domain 

waveform is: 

     

   























k

s

k

ss

kTtkx

kTttxtx





 

(F.1) 

This corresponding operation in the frequency-domain gives: 

     

 














n

ss

n

sss

nffXf

nffffXfX 

 

(F.2) 

The sampled waveform and its spectrum are shown graphically below: 

 

(  )
A

0 t

(  )X  f

0 fB-B

Cfs

x   ts s

/2fs=

weights are
x  k[   ]x  kT(     )=



samples with spacingM sT

s

 

 

Figure F.3 

We are free to take as many samples as we like, so long as sMT . That is, 

we need to ensure that our samples will encompass the whole signal in the 

time-domain. For a one-off waveform, we can also sample past the extent of 

the signal – a process known as zero padding. 

A sampled signal 
and its spectrum 
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Substituting  txs  into the definition of the Fourier transform, we get: 

   

    





















dtekTtkx

dtetxfX

ftj

k

s

ftj

ss





 2

2

 

(F.3) 

Using the sifting property of the impulse function, this simplifies into the 

definition of the discrete-time Fourier transform (DTFT): 

   







k

fkTj

s
sekxfX

2

 
(F.4) 

The DTFT is a continuous function of f. It is discrete in the sense that it 

operates on a discrete-time signal (in this case, the discrete-time signal 

corresponds to the weights of the impulses of the sampled signal). 

As shown in Figure F.3, the DTFT is periodic with period Bf s 2 , i.e. the 

range of frequencies 22 ss fff   uniquely specifies it. 

 

A.2 The Discrete Fourier Transform (DFT) 

The DTFT is a continuous function of f, but we need a discrete function of f to 

be able to store it in a computer. Our reasoning now is that since samples of a 

time-domain waveform (taken at the right rate) uniquely determine the original 

waveform, then samples of a spectrum (taken at the right rate) uniquely 

determine the original spectrum. 

One way to discretize the DTFT is to ideally sample it in the frequency-

domain. Since the DTFT is periodic with period sf , then we choose N samples 

per period where N is an integer. This yields periodic spectrum samples and we 

only need to compute N of them (the rest will be the same)! 

The discrete-time 
Fourier transform 
defined 

The discrete Fourier 
transform is just 
samples of the 
DTFT 
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The spacing between samples is then: 

N

f
f s0  

(F.5) 

which gives a time-domain relationship: 

sNTT 0  (F.6) 

The ideally sampled spectrum  fX ss  is then: 
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(F.7) 

The ideally sampled spectrum is shown below: 
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Figure F.4 

The frequency 
spacing of a DFT 

The time-domain 
sample spacing of a 
DFT 

Ideal samples of a 
DTFT spectrum 
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What signal does this spectrum correspond to in the time-domain? The 

corresponding operation of Eq. (F.7) is shown below in the time-domain: 
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(F.8) 

This time-domain signal is shown below: 
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Figure F.5 

We see that sampling in the frequency-domain causes periodicy in the time-

domain. What we have created is a periodic extension of the original sampled 

signal, but scaled in amplitude. From Figure F.5, we can see that no time-

domain aliasing occurs (no overlap of repeats of the original sampled signal) if: 

sMTT 0  (F.9) 

Using Eq. (F.6), this means: 

ss MTNT   

or 

MN   (F.10) 

Periodic extension 
of the time-domain 
signal due to ideally 
sampling the DTFT 
spectrum 
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If the original time-domain waveform is periodic, and our samples represent 

one period in the time-domain, then we must choose the frequency sample 

spacing to be 00 1 Tf  , where 0T  is the period of the original waveform. The 

process of ideally sampling the spectrum at this spacing “creates” the original 

periodic waveform back in the time-domain. In this case, we must have 

sMTT 0 , and therefore ss MTNT   so that MN  . 

We choose the number of samples N in the frequency-domain so that 

Eq. (F.10) is satisfied, but we also choose N to handle the special case above. 

In any case, setting MN   minimises the DFT calculations, and we therefore 

choose: 

MN   

number of frequency-domain samples  

= number of time-domain samples 

(F.11) 

If we do this, then the reconstructed sampled waveform has its repeats next to 

each other: 
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Figure F.6 

Returning now to the spectrum in Figure F.4, we need to find the sampled 

spectrum impulse weights covering just one period, say from sff 0 . These 

are given by the weights of the impulses in Eq. (F.7) where 10  Nn . 

The FFT produces 
the same number of 
samples in the 
frequency-domain 
as there are in the 
time-domain 
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The DTFT evaluated at those frequencies is then obtained by substituting 

0nff   into Eq. (F.4): 
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(F.12) 

Notice how the infinite summation has turned into a finite summation over 

NM   samples of the waveform, since we know the waveform is zero for all 

the other values of k. 

Now using Eq. (F.5), we have NTf s 10  . We then have the definition of the 

discrete Fourier transform (DFT): 
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, 10  Nn  
(F.13) 

The DFT takes an input vector  kx  (time-spacing unknown – just a function 

of k) and produces an output vector  nX  (frequency-spacing unknown – just a 

function of n). It is up to us to interpret the input and output of the DFT. 

 

A.3 The Fast Fourier Transform (FFT) 

The Fast Fourier Transform is really a family of algorithms that are used to 

evaluate the DFT. They are optimised to take advantage of the periodicy 

inherent in the exponential term in the DFT definition. The roots of the FFT 

algorithm go back to the great German mathematician Gauss in the early 

1800’s, but was formally introduced by Cooley and Tukey in their paper “An 

Algorithm for the Machine Calculation of Complex Fourier Series,” Math. 

Comput. 19, no. 2, April 1965:297-301. Most FFTs are designed so that the 

number of sample points, N, is a power of 2. 

All we need to consider here is the creation and interpretation of FFT results, 

and not the algorithms behind them. 

The discrete Fourier 
transform defined 

The FFT is a 
computationally fast 
version of the DFT 
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A.4 Creating FFTs 

Knowing the background behind the DFT, we can now choose various 

parameters in the creation of the FFT to suit our purposes. For example, there 

may be a requirement for the FFT results to have a certain frequency 

resolution, or we may be restricted to a certain number of samples in the time-

domain and we wish to know the frequency range and spacing of the FFT 

output. 

The important relationships that combine all these parameters are: 

sNTT 0  

or 

0Nff s    

or 

sfTN 0  (F.14) 

 

EXAMPLE A.1 Determining Sampling Parameters 

An analog signal with a known bandwidth of 2000 Hz is to be sampled at the 

minimum possible frequency, and the frequency resolution is to be 5 Hz. We 

need to find the sample rate, the time-domain window size, and the number of 

samples. 

The minimum sampling frequency we can choose is the Nyquist rate of 

Sa/s 4000200022  Bf s . To achieve a frequency resolution of 5 Hz 

requires a window size of s 2.0511 00  fT . The resulting number of 

samples is then 80040002.00  sfTN  samples. 

The relationships 
between FFT 
sample parameters 
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EXAMPLE A.2 Determining Frequency Parameters 

An analog signal is viewed on a DSO with a window size of 1 ms. The DSO 

takes 1024 samples. What is the frequency resolution of the spectrum, and 

what is the folding frequency (half the sample rate)? 

The frequency resolution is kHz 1001.011 00  Tf . 

The sample rate is MHz 024.1100010240  Nff s . The folding frequency 

is therefore kHz 5122 sf , and this is the maximum frequency displayed on 

the DSO spectrum. 

 

EXAMPLE A.3 Simulation of a System in MATLAB
®
 

A simulation of a system and its signals is being performed using MATLAB
®
. 

The following code shows how to set up the appropriate time and frequency 

vectors if the sample rate and number of samples are specified: 

% Sample rate 

fs=1e6; 

Ts=1/fs; 

 

% Number of samples 

N=1000; 

 

% Time window 

T0=N*Ts; 

f0=1/T0; 

 

% Time vector of N time samples spaced Ts apart 

t=0:Ts:T0-Ts; 

 

% Frequency vector of N frequencies spaced f0 apart 

f=-fs/2:f0:fs/2-f0; 

The frequency vector is used to graph the shifted (double-sided) spectrum 

produced by the code below: 

G=fftshift(fft(g)); 

The frequency resolution of the FFT in this case will be kHz 10 f  and the 

output will range from –500 kHz to 499 kHz. Note carefully how the time and 

frequency vectors were specified so that the last value does not coincide with 

the first value of the second periodic extension or spectrum repeat. 
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A.5 Interpreting FFTs 

The output of the FFT can be interpreted in four ways, depending on how we 

interpret the time-domain values that we feed into it. 

A.5.1 Case 1 – Ideally sampled one-off waveform 

If the FFT input,  nx , is the weights of the impulses of an ideally sampled 

time-limited “one-off” waveform, then we know the FT is a periodic repeat of 

the original unsampled waveform. The DFT gives the value of the FT at 

frequencies 0nf  for the first spectral repeat. This interpretation comes directly 

from Eq. (F.12). 

With our example waveform, we would have: 
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Interpretation of FFT 
of ideally sampled 
one-off waveform 
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A.5.2 Case 2 – Ideally sampled periodic waveform 

Consider the case where the FFT input,  nx , is the weights of the impulses of 

an ideally sampled periodic waveform over one period with period 0T . 

According to Eq. (F.8), the DFT gives the FT impulse weights for the first 

spectral repeat, if the time-domain waveform were scaled by 0T . To get the FT, 

we therefore have to scale the DFT by 0f  and recognise that the spectrum is 

periodic. 

With our example waveform, we would have: 
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Interpretation of FFT 
of ideally sampled 
periodic waveform 
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A.5.3 Case 3 – Continuous time-limited waveform 

If we ideally sample the “one-off” waveform at intervals sT , we get a signal corresponding to Case 1. The sampling process 

creates periodic repeats of the original spectrum, scaled by sf . To undo the scaling and spectral repeats caused by sampling, we 

should multiply the Case 1 spectrum by sT  and filter out all periodic repeats except for the first. The DFT gives the value of the 

FT of the sampled waveform at frequencies 0nf  for the first spectral repeat. This interpretation comes directly from Eq. (F.12). All 

we have to do is scale the DFT output by sT  to obtain the true FT at frequencies 0nf . 
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Interpretation of FFT 
of one-off waveform 
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A.5.4 Case 4 – Continuous periodic waveform 

To create the FFT input for this case, we must ideally sample the continuous signal at intervals sT  to give  nx . The sampling 

process creates periodic repeats of the original spectrum, scaled by sf . We are now essentially equivalent to Case 2. To undo the 

scaling and spectral repeats caused by sampling, we should multiply the Case 2 spectrum by sT  and filter out all periodic repeats 

except for the first. According to Eq. (F.8), the DFT gives the FT impulse weights for the first spectral repeat. All we have to do is 

scale the DFT output by NTf s 10   to obtain the true FT impulse weights. 
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Introduction 

The phase-locked loop (PLL) is an important building block for many 

electronic systems. PLLs are used in frequency synthesisers, demodulators, 

clock multipliers and many other communications and electronic applications. 

Distortion in Synchronous AM Demodulation 

In suppressed carrier amplitude modulation schemes, the receiver requires a 

local carrier for synchronous demodulation. Ideally, the local carrier must be in 

frequency and phase synchronism with the incoming carrier. Any discrepancy 

in the frequency or phase of  the local carrier gives rise to distortion in the 

demodulator output. 

For DSB-SC modulation, a constant phase error will cause attenuation of the 

output signal. Unfortunately, the phase error may vary randomly with time. A 

frequency error will cause a “beating” effect (the output of the demodulator is 

the original message multiplied by a low-frequency sinusoid). This is a serious 

type of distortion. 

For SSB-SC modulation, a phase error in the local carrier gives rise to a phase 

distortion in the demodulator output. Phase distortion is generally not a 

problem with voice signals because the human ear is somewhat insensitive to 

phase distortion – it changes the quality of the speech but still remains 

intelligible. In video signals and  data transmission, phase distortion is usually 

intolerable. A frequency error causes the output to have a component which is 

slightly shifted in frequency. For voice signals, a frequency shift of 20 Hz is 

tolerable. 

Carrier Regeneration 

The human ear can tolerate a drift between the carriers of up to about 30 Hz. 

Quartz crystals can be cut for the same frequency at the transmitter and 

receiver, and are very stable. However, at high frequencies (> 1 MHz), even 

quartz-crystal performance may not be adequate. In such a case, a carrier, or 

pilot, is transmitted at a reduced level (usually about -20 dB) along with the 

sidebands. 

Frequency and 
phase errors cause 
distorted 
demodulator output 

A pilot is transmitted 
to enable the 
receiver to generate 
a local oscillator in 
frequency and 
phase synchronism 
with the transmitter 
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Figure P.1 

One conventional technique to generate the receiver’s local carrier is to 

separate the pilot at the receiver by a very narrowband filter tuned to the pilot 

frequency. The pilot is then amplified and used to synchronize the local 

oscillator. 

In demodulation applications, the PLL is primarily used in tracking the phase 

and frequency of the carrier of an incoming signal. It is therefore a useful 

device for synchronous demodulation of AM signals with a suppressed carrier 

or with a little carrier (the pilot). In the presence of strong noise, the PLL is 

more effective than conventional techniques. 

For this reason, the PLL is used in such applications as space-vehicle-to-earth 

data links, where there is a premium on transmitter weight; or where the loss 

along the transmission path is very large; and, since the introduction of CMOS 

circuits that have entire PLLs built-in, commercial FM receivers. 

A PLL is used to 
regenerate a local 
carrier 
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B.1 The Phase-Locked Loop (PLL) 

A block diagram of a PLL is shown below: 
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Figure P.2 

It can be seen that the PLL is a feedback system. In a typical feedback system, 

the signal fed back tends to follow the input signal. If the signal fed back is not 

equal to the input signal, the difference (the error) will change the signal fed 

back until it is close to the input signal. A PLL operates on a similar principle, 

expect that the quantity fed back and compared is not the amplitude, but the 

phase of a sinusoid. The voltage controlled oscillator (VCO) adjusts its 

frequency until its phase angle comes close to the angle of the incoming signal. 

At this point, the frequency and phase of the two signals are in synchronism 

(expect for a difference of 90°, as will be seen later). 

The three components of the PLL will now be examined in detail. 

A phase-locked loop 
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B.1.1 Voltage Controlled Oscillator (VCO) 

The voltage controlled oscillator (VCO) is a device that produces a constant 

amplitude sinusoid at a frequency determined by its input voltage. For a fixed 

DC input voltage, the VCO will produce a sinusoid of a fixed frequency. The 

purpose of the control system built around it is to change the input to the VCO 

so that its output tracks the incoming signal’s frequency and phase. 
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Figure P.3 

The characteristic of a VCO is shown below: 
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Figure P.4 

The horizontal axis is the applied input voltage, and the vertical axis is the 

frequency of the output sinusoid. The amplitude of the output sinusoid is fixed. 

We now seek a model of the VCO that treats the output as the phase of the 

sinusoid rather than the sinusoid itself. The frequency of  is the nominal 

frequency of the VCO (the frequency of the output for no applied input). 
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The instantaneous VCO frequency is given by: 

   tvkftf invoi   (P.1) 

To relate this to the phase of the sinusoid, we need to generalise our definition 

of phase. In general, the frequency of a sinusoid    tf12coscos    is 

proportional to the rate of change of the phase angle: 

dt

d
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f
dt
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(P.2) 

We are used to having a constant 1f  for a sinusoid’s frequency. The 

instantaneous phase of a sinusoid is given by: 
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(P.3) 

which reduces to: 

tf12   (P.4) 

for 1f  a constant.  For    tvkftf invoi  , the phase is: 
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Therefore, the VCO output is: 

  ttAv oooo   cos  (P.6) 

where: 

    


t

invo dvkt
 

 
2   

 

(P.7) 

This equation expresses the relationship between the input to the VCO and the 

phase of the resulting output sinusoid. 

EXAMPLE B.1 VCO Operation with a DC Input 

Suppose a DC voltage of V DCV  is applied to the VCO input. Then the output 

phase of the VCO is given by: 

  tVkdVkt DCv

t

DCvo  22
 

 
  

 

The resulting sinusoidal output of the VCO can then be written as: 

 

  

 tA

tVkA

tVktAv
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DCvoo
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1cos

2cos

2cos













 

In other words, a constant DC voltage applied to the input of the VCO will 

produce a sinusoid of fixed frequency, DCvVkff  01 . 

When used in a PLL, the VCO input should eventually be a constant voltage 

(the PLL has locked onto the phase, but the VCO needs a constant input 

voltage to output the tracked frequency). 
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B.1.2 Phase Detector 

The phase detector is a device that produces the phase difference between two 

input sinusoids: 
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Figure P.5 

A practical implementation of a phase detector is a four-quadrant multiplier: 
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Figure P.6 

To see why a multiplier can be used, let the incoming signal of the PLL, with 

constant frequency and phase, be: 

 iiii tAv   sin  (P.8) 

If we let: 

  ioii t    (P.9) 
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then we can write the input in terms of the nominal frequency of the VCO as: 

  ttAv ioii   sin  (P.10) 

Note that the incoming signal is in phase quadrature with the VCO output (i.e. 

one is a sine, the other a cosine). This comes about due to the way the 

multiplier works as a phase comparator, as will be shown shortly. 

Thus, the PLL will lock onto the incoming signal but it will have a 90° 

phase difference. 

The output of the multiplier is: 
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If we now look forward in the PLL block diagram, we can see that this signal 

passes through the “loop filter”. If we assume that the loop filter is a lowpass 

filter that adequately suppresses the high frequency term of the above equation 

(not necessarily true in all cases!), then the phase detector output can be written 

as: 

   oioi
oi K

AA
x   sinsin

2
0  

(P.12) 

where 20 oi AAK  . Thus, the multiplier used as a phase detector produces an 

output voltage that is proportional to the sine of the phase difference between 

the two input sinusoids. 
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B.2 PLL Model 

A model of the PLL, in terms of phase, rather than voltages, is shown below: 
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Figure P.7 

B.2.1 Linear PLL Model 

If the PLL is close to “lock”, i.e. its frequency and phase are close to that of the 

incoming signal, then we can linearize the model above by making the 

approximation ee  sin . With a linear model, we can convert to the s-domain 

and do our analysis with familiar block diagrams: 
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Figure P.8 

Note that the integrator in the VCO in the time-domain becomes s1  in the 

block diagram thanks to the integration property of the Laplace transform. 

A PLL model 

A linear PLL model 
in the s-domain 
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Reducing the block diagram gives: 
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Figure P.9 

This is the closed-loop transfer function relating the VCO output phase and the 

incoming signal’s phase. 

B.2.2 Loop Filter 

The loop filter is designed to meet certain control system performance 

requirements. Once of those requirements is for the PLL to track input 

sinusoids with constant frequency and phase errors. That is, if the input phase 

is given by: 

    ioii tt    (P.13) 

then we want: 

  0lim 


te
t

  (P.14) 

The analysis is best performed in the s-domain. The Laplace transform of the 

input signal is: 
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The Laplace transform of the error signal is: 
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The final value theorem then gives: 
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To satisfy Eq. (P.14) we must have: 

  


sH
s 0
lim  (P.18) 

We can therefore choose a simple PI loop filter to meet the steady-state 

constraints: 
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b
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(P.19) 

Obviously, the constants a  and b  must be chosen to meet other system 

requirements, such as overshoot and bandwidth. 
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FFT - Quick Reference Guide 

Definitions 

Symbol Description 

0T  time-window 

00 1 Tf   discrete frequency spacing 

sf  sample rate 

ss fT 1  sample period 

N  number of samples 

Creating FFTs 

Given Choose Then 

0T  - time-window sf - sample rate sfTN 0  

N  - number of samples 
0Nff s   

N  - number of samples 
sf  - sample rate sNTT 0  

0T  - time-window 0Nff s   

sf  - sample rate N  - number of samples 
sNTT 0  

0T  - time-window sfTN 0  

MATLAB
®
 Code 

Code Description 
% Sample rate 

fs=1e6; 

Ts=1/fs; 

 

% Number of samples 

N=1024; 

 

% Time window and 

fundamental 

T0=N*Ts; 

f0=1/T0; 

 

% Time vector for 

specified DSO 

parameters 

t=0:Ts:T0-Ts; 

 

% Frequency vector for 

specified DSO 

parameters 

f=-fs/2:f0:fs/2-f0; 

 

This code starts off with a given sample rate, and 

chooses to restrict the number of samples to 1024 for 

computational speed. 

 

 

 

 

The time window takes samples up to but not 

including the point at 0Tt   (since this sample will be 

the same as the one at 0t ). 

 

The corresponding frequency vector for the chosen 

sample rate and sample number. Note that because of 

the periodicy of the DFT, it does not produce a 

spectrum sample at 2sff   since this corresponds 

to the sample at 2sff  . 
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Interpreting FFTs 

Case Derivation 

of  nx  

Interpretation 

of  nX  

Action 

1. “one-off” ideally 

sampled waveform 

[   ]A

0
t

(  )x   ts
weights are

x  nx  nT(     )=



s

T
0  

Sample 

weights. 
 nX  gives 

values of one 

period of the 

true continuous 

FT at 

frequencies 0nf . 

     
















n

s nffnX
f

f
fX 0

0

sinc   

0
f

Cfs

/2fs- /2fs

(  )X   fs

samples are
[  ]X  n

 
2. periodic ideally 

sampled waveform 

(period 0T ) 

[   ]A

0
t

(  )x   ts
weights are

x  nx  nT(     )=



s

T
0  

Sample 

weights 
over one 

period. 

Multiply  nX  

by 0f  to give 

weights of 

impulses at 

frequencies 0nf  

in one period of 

true FT. 

0
f

/2fs- /2fs

(  )X   fs [  ]X  nf
0

weights are

 

3. “one-off” 

continuous waveform 

A

0
t

(  )x   t

T
0

  

Values of 

waveform 

at intervals 

sT . 

Multiply  nX  

by sT  to give 

values of true 

continuous FT 

at 0nf . 

     
















1

0

0

0

sinc
N

n

s nffnXT
f

f
fX   

0
f

/2fs- /2fs

(  )X   f

samples are

[  ]X  nTs

 
4. periodic continuous 

waveform (period 0T ) 

A

0
t

(  )x   t

T
0  

Values of 

waveform 

over one 

period at 

intervals 

sT . 

Multiply  nX  

by N1  to give 

weights of 

impulses at 

frequencies 0nf  

in true FT. 
0

f
/2fs- /2fs

(  )X   f

weights are

Cf0
[  ]X  n

N
Xn =

 

Note: Periodic waveforms should preferably be sampled so that an integral number of 

samples extend over an integral number of periods. If this condition is not met, then 

the periodic extension of the signal assumed by the DFT will have discontinuities and 

produce “spectral leakage”. In this case, the waveform is normally windowed to 

ensure it goes to zero at the ends of the period – this will create a smooth periodic 

extension, but give rise to windowing artefacts in the spectrum. 
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General 
Code Description 

Ts=0.256; Assigns the 1 x 1 matrix Ts with the value 0.256. 

The semicolon prevents the matrix being displayed 

after it is assigned. 

t=0:Ts:T; Assigns the vector t with values, starting from 0, 

incrementing by Ts, and stopping when T is reached 

or exceeded. 

N=length(t); N will equal the number of elements in the vector t. 

r=ones(1,N); r will be a 1 x N matrix filled with the value 1. 

Useful to make a step. 

n=45000*[1 18 900]; Creates a vector ([]) with elements 1, 18 and 900, 

then scales all elements by 45000. Useful for 

creating vectors of transfer function coefficients. 

wd=sqrt(1-zeta ^2)*wn; Typical formula, showing the use of sqrt; taking the 

square (^2); and multiplication with a scalar (*). 

gs=p.*g; Performs a vector multiplication (.*) on an element-

by-element basis. Note that p*g will be undefined. 

 

Graphing 

Code Description 

figure(1); Creates a new graph, titled “Figure 1”. 

plot(t,y); Graphs y vs. t on the current figure. 

subplot(211); Creates a 2 x 1 matrix of graphs in the current figure. 

Makes the current figure the top one. 

title('Complex poles'); Puts a title 'Complex poles' on the current figure. 

xlabel('Time (s)'); Puts the label 'Time (s)' on the x-axis. 

ylabel('y(t)'); Puts the label 'y(t)' on the y-axis. 

semilogx(w,H,'k:'); Makes a graph with a logarithmic x-axis, and uses a 

black dotted line ('k:'). 

plot(200,-2.38,'kx'); Plots a point (200,-2.38) on the current figure, 

using a black cross ('kx'). 

axis([1 1e5 -40 40]); Sets the range of the x-axis from 1 to 1e5, and the 

range of the y-axis from –40 to 40. Note all this 

information is stored in the vector [1 1e5 -40 40]. 

grid on; Displays a grid on the current graph. 

hold on; Next time you plot, it will appear on the current graph 

instead of a new graph. 
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Frequency-domain 

Code Description 

f=logspace(f1,f2,100); Creates a logarithmically spaced vector from f1 to 

f2 with 100 elements. 

H=freqs(n,d,w); H contains the frequency response of the transfer 

function defined by numerator vector n and 

denominator vector d, at frequency points w. 

Y=fft(y); Performs a fast Fourier transform (FFT) on y, and 

stores the result in Y. 

Hmag=abs(H); Takes the magnitude of a complex number. 

Hang=angle(H); Takes the angle of a complex number. 

X=fftshift(X); Swaps halves of the vector X - useful for displaying 

the spectrum with a negative frequency component. 

Time-domain 
Code Description 

step(Gcl); Calculates the step response of the system transfer 

function Gcl and plots it on the screen. 

S=stepinfo(Gcl); Computes the step-response characteristics of the 

system transfer function Gcl. 

y=conv(m2,Ts*h); Performs a convolution on m2 and Ts*h, with the 

result stored in y. 

y=y(1:length(t)); Reassigns the vector y by taking elements from 

position 1 to position length(t). Normally used 

after a convolution, since convolution produces end 

effects which we usually wish to ignore for steady-

state analysis. 

square(2*pi*fc*t,10) Creates a square wave from –1 to +1, of frequency 

fc, with a 10 percent duty cycle. Useful for 

generating a real sampling waveform. 

Control 
Code Description 

Gmrv=tf(Kr,[Tr 1]); Creates the transfer function 
r

r
mrv

sT

K
G




1
. 

I=tf(1,[1 0]); Creates the transfer function 
s

I
1

 , an integrator. 

Gcl=feedback(Gol,H); Creates the transfer function 
HG

G
G

ol

ol
cl




1
. 

rlocus(Gol); Makes a root locus using the system Gol. 

K=rlocfind(Gol); An interactive command that allows you to position 

the closed-loop poles on the root locus. It returns the 

value of K that puts the roots at the chosen location. 

Gd=c2d(G,Ts,'tustin'); Creates a discrete-time equivalent system Gd of the 

continuous-time system G, using a sample rate of Ts 

and the bilinear ('tustin') method of discretization. 

m=csvread(‘test.csv’); Read from a CSV file into a matrix. 
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Definitions 

Symbol Description 

ija  Element of a matrix. i is the row, j is the column. 

 ija

aaa

aaa

aaa





















333231

232221

131211

A  

A is the representation of the matrix with elements 

ija . 



















3

2

1

x

x

x

x  

x is a column vector with elements ix . 



















000

000

000

0  

Null matrix, every element is zero. 



















100

010

001

I  

Identity matrix, diagonal elements are one. 



























00

00

00

I  

Scalar matrix. 



















3

2

1

00

00

00







Λ  

Diagonal matrix,  jiaij   0 . 

Multiplication 

Multiplication Description 

YZ k  Multiplication by a scalar: ijij kyz   

Axz   Multiplication by a vector: 



n

k

kiki xaz
1

 

ABZ   Matrix multiplication: 



n

k

kjikij baz
1

. 

BAAB   In general, matrix multiplication is not commutative. 
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Operations 

Terminology Description 



















332313

322212

312111

aaa

aaa

aaa
t

A  

Transpose of A (interchange rows and columns): 

ji

t

ij aa  . 

333231

232221

131211

det

aaa

aaa

aaa

 AA  

Determinant of A. 

If 0A , then A is singular. 

If 0A , then A is non-singular. 

nnnjn

iniji

nj

ij

aaa

aaa

aaa







1

1

1111

.....

.....

a  

Minor of ija . Delete the row and column containing 

the element ija  and obtain a new determinant. 

  ij

ji

ijA a
 1  Cofactor of ija . 



















332313

322212

312111

adj

AAA

AAA

AAA

A  

Adjoint matrix of A. Replace every element ija  by its 

cofactor in A , and then transpose the resulting 

matrix. 

A

A
A

adj1   
Reciprocal of A: IAAAA   11 . 

Only exists if A is square and non-singular. 

Formula is only used for 3x3 matrices or smaller. 

Linear Equations 

Terminology Description 

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa







 

Set of linear equations written explicitly. 



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

 

Set of linear equations written using matrix elements. 

bAx   Set of linear equations written using matrix notation. 

bAx
1  Solution to set of linear equations. 

Eigenvalues 

Equations Description 

xAx     are the eigenvalues. x are the column 

eigenvectors. 

0 IA   Finding eigenvalues. 
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1.1 

(a)    











 


k

kt
ttg



 2
rectsin 2 , T0 2  , P  1

4
 

(b)    


 























 





























 












 


k

kktktkt
kttg

2
1

4
3

4
1

2
1

4
3

4
1

3t
rect

313
rect

31
3rect2 , 

T0 3 , 
9

16P  

(c)      





















 


k

kkt kt
etg

10

105
rect11010 , T0 20 ,  P e  1

2

21  

(d)    











 


k

kt
ttg

2

4
rect200cos2  , T0 4 , 1P  

1.2 

(a)  g t
t t t t t t t t




























 























 



























 

























2 1 1 2
1

10

7
4

1
2

1
10

3
4

3
2

1
10

3
4

3
2

1
10

7
4

1
2

rect rect rect rect , 

E  83 1
3

 

(b)    g t t
t










cos rect


, E  

2
 

(c)        g t t t t t    2 1
2

2 5
2

2rect rect , E  2
5

 

(d)    g t
t t

t










 











  rect rect rect

5
2

5
2 5

25 3
, E  19  

1.3 

(i) 0 (ii) 3e  (iii) 5 (iv)  f t t1 2  (v) 1 (vi)  0ttf   
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1.4 

Let t T  . Then: 

 

     

   

   

 

f t
t t

T
dt f T t T Td T

f T t T Td T

f T t T T d T

T f t

    

   

   









   

  

 



















 





0

0

0

0

0

0

0

     if 

or       if 

     all 

    (using the sifting property)

 

which is exactly the same result as if we started with  T t t  0 . 

1.5 

(a) X   27 15  (b) X   5 10  (c) X 

45°

100
 (d) 8 3 8,   

(e)    x t t  2915 2217. cos .  (f)    x t t  100 60cos   (g) X   5596 59 64. .   

(h) X X     1 30 1 30,  *     (i) -2.445       (j) X X     15 30 15 30. .*,   
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2.1 

a)  

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

Time (sec)

x
(t

)

(i)

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

Time (sec)

x
(t

)

(ii)

 

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

Time (sec)

x
(t

)

(iii)

 
0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

x
(t

)

(iv)

 

b)  

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(i)

 
0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(ii)

 

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(iii)

 
0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(iv)
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c)  

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(i)

 
0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(ii)

 

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(iii)

 
0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

x
(t

)

(iv)

 
Sampling becomes more accurate as the sample time becomes smaller. 

2.2 
a) 

0

1

n

2

3

1 2 3 4 5-1-2

-1

[  ]y  n
1

 

b) 

-1

0

1

n

2

3

1 2 3 4 5-1-2

[  ]y  n
2

-2

-3

-4  
2.3 

-1

0

1

n

2

3

1 2 3 4 5-1-2

[  ]a  n

-2

-3  
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2.4 

  


 


n

n
ny

other  all,0

5, 3, ,1,1 
 

2.5 

a)      21  nynyny  

2.6 

(i) 

D

y  n[  ]x  n[  ]

DD

 

(ii) 

D

y  n[  ]x  n[  ]
3

D

DDDD

2

 

2.7 

(i)        13221  nxnynyny  

(ii)   30 y ,   81 y ,   12 y ,   143 y  
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2.8 

(a) 

(i)  
2

0
T

h  ,   Tnh   for 3,... 2, ,1n  

(ii)   10 h ,     1
5.025.0




n
nh  for 3,... 2, ,1n  

(b)   11 y ,   75.00 y ,   375.11 y ,   0625.12 y ,   21875.13 y  

2.9 

(i) (a) 041  aa   (b) 05 a  

(ii) (a) 041  aa   (b) 05 a  

2.10 

  101 y ,   311 y ,   721 y ,   1531 y ,   3141 y ,   6351 y  

  40 y ,   121 y ,   262 y ,   563 y ,   1164 y ,   2365 y  

No, since they rely on superposition. 

2.11 

         64222  nnnnny   

2.12 

(i) 

0 1 2 n3 4 5-1

4

8

12
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(ii) 

0 1 2 3 4 5-1 6 7 8 n9 10 11

4

8

12

 

(iii) 

0 1 2 3 4-1 5 6 7 8 9 10 11

24

12 13 14 n15 16 17

16

4

8

12

20

 

2.14 

The describing differential equation is: 

io
oo v

LC
v

LCdt

dv

L

R

dt

vd 11
2

2

 . 

The resulting discrete-time approximation is: 

           22112 22  nxLCTnyLCTLRTnyLRTny  
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0 2 4 6 8 10 12 14 16 18 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

y
(t

)

 

Use 1.0T  so that the waveform appears smooth (any value smaller has a 

minimal effect in changing the solution). 

2.15 

(a) KxKy
dt

dy
  (b)    tuKeth Kt  

(c)       4175.0 45.0   tuety t  

(d) 

1-

t

(  )y  t

4

e

0 (min)

0.75

t-0.5(  -4)

 

(e) 

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

y
(t

)
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2.16 

The impulse response is    tuteth t . Using numerical convolution will only 

give the ZSR. The ZIR needs to be obtained using other methods and 

is  tue t . The code snippet below shows relevant MATLAB
®
 code: 

t=0:Ts:To-Ts; 

h=t.*exp(-t); 

x=sin(t); 

yc=conv(x,h*Ts);       % ZSR 

yc=yc(1:N)+exp(-t);    % total solution = ZSR + ZIR 

2.17 

3 t510 42-1

1

-0.5 4.5
 

2.18 

The output control signal is smoothed, since it is not changing as rapidly as the 

input control signal. It is also delayed in time. 

-1 -0.5 0 0.5 1 1.5
0

0.5

1

Time (sec)

x
(t

)

-1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

Time (sec)

h
(t

)

-1 -0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

Time (sec)

y
(t

)
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2.19 

0 2 4 6
-2

-1

0

1

2

t (s)

s
i[
n
T

]

0 2 4 6
-2

-1

0

1

2

t (s)

x
[n

T
]

0 2 4 6
-0.5

0

0.5

t (s)

h
[n

T
]

0 2 4 6
-2

-1

0

1

2

t (s)

y
[n

T
]

 

Note that the filter effectively removes the added noise; however, it also 

introduces a time delay of between three and four samples. 
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3.1 

(a) 50 f0 100

2

1

2.236
|G|

50 f0 100

90°

45°
26.57°

G

 

(b) 
-26.57°

50 f0 100

2

1 1.118

|G|

50 f0 100

90°

45°
26.57°

G

-50-100

1.118

-45°

-50-100

 

(c) -1/2

1

50 f0 100

1 1

50 f0 100

1

1/2

-50-100

GRe{ } GIm{ }

-50

-100

 

3.2 

G   4 45  

3.3 

   g t t 4 200cos   

3.4 

-0.5

0
1

0.5 1

G

t=0

G *

30°

-0.5

0
1

0.5 1 G

t=1

G *

27.3°

-0.5

0

1

0.5 1

G

t=2G *

84.59°

1

-1
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3.5 

(a)   














 







 


2

1
sinc

2

1
sinc

4

1 nn
jG

n

n  

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

-25 -20 -15 -10 -5 0 5 10 15 20 25
-2

-1

0

1

2

3

4

 

(b)    6sinc2sinc
2

1
nnGn   

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

1

2

3

4
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(c) 
    

jn

e
G

n

n







1.0

11

2

110





 

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

-25 -20 -15 -10 -5 0 5 10 15 20 25
-2

-1

0

1

2

 

(d) 
























 8

2
sinc8

2
sinc

4

1 nn
Gn  

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

1

2

3

4
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(e) 
  

nj

n
G

n

n
2

11sinc 
  and the special case of 0n  can be evaluated by 

applying l’Hospital’s Rule or from first principles: 
2

1
0 G . 

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
-2

-1

0

1

2

 

3.6 

P  4 294.  W  
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3.7 

(a) T0

2

3



:

6 0 12

0.5

|G|

-6-12

0.2387

-0.02653 , P  73%  

(b) T0 3



:
6 0 12

0.5

|G|

-6-12

0.1592

, P  60%  

(c) T0 6



:
6 0 12

0.5

|G|

-6-12
, P  50%  

3.8 

05 T   Note:  nA
n

AGn sinc
2

sinc2 
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4.1 

   x t t  4 2000 30cos  , P  8  

4.2 

 
   

fj

efef
fX

fjfj



 62sincsinc 
  

4.3 

(a) 
   

22

4cos53cos105

f

ff



 
 

(b)    
2
1

2
1 sinc

2
sinc

2
 ff 





 

(c) 
      

22

32cossinc1

f

effefj fjfj



   
 

(d)        fjefff 5sinc3sinc35sinc5   

4.4 

Hint:    tuetuee atatta 
  

4.5 

 fP 5.13   

4.6 

This follows directly from the time shift property. 

4.7 

 
fja

a
fG

2
1


 ,    f

fj
fG 

 2

1

2

1
2  ,        tuetgtg at 121  
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4.8 

f

G   f(  )

f
0

1
G   f(  )

2*

Ak

Ak2

2f
0

-2
 

4.9 

(a)   000 2sinc2 ttfAf   

(b)    tftfAf 000 sinsinc2   

4.10 

 
f

fTAj



2sin2
 

4.11 

    
fj

fA



4cos4fsinc 
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5.1 

0 2339 0.    

5.2 

   X f A f  sinc2  

5.3 

B 4  

5.4 

By passing the signal through a lowpass filter with 4 kHz cutoff - provided the 

original signal contained no spectral components above 4 kHz. 

5.5 

Periodicy. 

5.6 

(a) 20 Hz, 40 Hz, P  01325.  W  

(b) tjjtjj
eeeeG 


120120

3
33 5.05.0 

 , 0.9781 

(c)  

Harmonic # Amplitude Phase (°) 

0 1  

1 3 -66 

2 1 -102 

3 0.5 -168 

4 0.25 -234 

Yes. 
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5.7 

Yes. The flat topped sampling pulses would simply reduce the amplitudes of 

the “repeats” of the baseband spectrum as one moved along the frequency axis. 

For ideal sampling, with impulses, all “repeats” have the same amplitude. Note 

that after sampling the pulses have tops which follow the original waveform. 

5.8 

Truncating the 9.25 kHz sinusoid has the effect of convolving the impulse in 

the original transform with the transform of the window (a sinc function for a 

rectangular window). This introduces “leakage” which will give a spurious 

9 kHz component. 
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6.1 

f0 10-10
119-9-11

/2j - /2j

G  f(   )

- /4j- /4j/4j/4j

 

6.2 

A:
f0 1

G  f(   )

2-1-2 (kHz)

0.5

 

B: 

0

G  f(   )

38-38 f (kHz)
3937

4036

-37

-36

-39

-40

0.25

0.5

 

C: 

0

G  f(   )

38-38 f (kHz)
3937

4036

-37

-36

-39

-40

0.5

1 2-1-2

 

6.3 



cos(2       ) f
ct

C

L

R

lowpass
filter

lowpass
filter
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7.1 

a) 
RCs

RC

1

1


 b) 

  
  2121122211

2

2211

1111

11

CCRRsCRCRCRs

CRsCRs




 

c) 
 

LRs

LRs



21
 d) 

 
    112211112

2

1112

1

1

CLRRRsLRCRs

LRsCR




 

7.2 

a)      sELi
sC

RsLsI 







 0

1
 

b)         
2

2 3
0

0
0

s
Bx

dt

dx
sxMKBsMssX 








 


  

c)         
22

2 10
0

0
0



















 




s
B

dt

d
sJKBsJss  

7.3 

a)   

















 

3

9
tan3cos

2

7

4

5 1tetf t  

b)       tttf 2coscos
3

1
  

c)   

















2

15
7

2

15
8

40

1 22 tetttf t  

7.4 

a)   45f  b), c) The final value theorem does not apply. Why? 

7.5 

 
  2211

21

11

1

CRsCRs

sCR
sT
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7.6 

     tutety t   6.262cos5  

7.7 

a) (i) 
GH

G

1
 (ii) 

GH1

1
 (iii) 

GH

GH

1
 

b) All denominators are the same. 

7.8 

a) 
32323332123213122

332121323212213311

1 HHGGHGGGGHGGGGGHG

HGGGGGHHGGGHGGHGGG

R

Y




  

b) Y
acbd

ac
X

acbd

ab
X 

























1

1

1
15  

7.9 

a) 
34321232143

4321

1 HGGGGHGGHGG

GGGG

R

C


  

b) 
ABEFEFAB

ADCDCEAE

X

Y






1
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8.1 

Yes, by examining the pole locations for R, L, C > 0. 

8.2 

(i)      tuety t412   

(ii)      tuetty t4

2

1

2

12   

(iii)       tuetty t









  41

5

8
2tan2cos

5

8
  

(iv)    tuetty t

























  41

29

40

5

2
tan10cos

29

8
  

8.3 

(i) underdamped,       tutety t









  5.0cos32sin

3

4
2 12 , 

   teth t 32sin
3

16 2  

(ii) critically damped,       tuetty t44122  ,   tteth 432   

(iii) overdamped,      tueety tt 8

3
22

3
82   ,    tt eeth 82

3
16    

8.4 

(a)    tutyss   (b)    tuttyss 















 

13

1
tancos

17

17010 1  

9.1 

a) 2 kHz b) 2.5 Hz 

9.2 

a) 0 dB  b) 32 dB c) –6 dB 
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9.3 

a) 
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9.5 
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9.6 
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9.7 

a)  
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(i) +28 dB, -135° (ii) +5 dB, -105° (iii) –15 dB, -180° (iv) – 55 dB, -270° 
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(i) +35 dB, +180° (ii) –5 dB, +100° (iii) –8 dB, +55° (iv) –28 dB, +90° 
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9.8 
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9.9 

a)  
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Bandwidth is 0 to 0.2 rads
-1

. 

b)  
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Bandwidth is increased to 15 rads
-1

 but is now peakier. 
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9.10 

(i) –3.3 dB, 8° (ii) –17.4 dB, 121° 

9.11 
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10.1 

a) 12.3%  b) s 05.1pt  c) 555.0  d) -1rads 13n  

e) -1rads 3d  f) s 72.0rt  g) s 5.1st  h) s 95.1st  

10.2 

 
1966.19

196
2 


ss

sG   

10.3 

   



12

2
cos1sin

1
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 t
e

tc n

tn

 

10.4 

a) 
 

  22 ln4

ln

ba
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  b) 247.0 , -1rads 21.16n  

10.5 

(a) 

(i) 

j



-10  

(ii)  

j



-1  

(iii) 

j



-10 -1  
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(b) 

(i)  

t
0

100%

0.1

v

63.2%

 
(ii)  

t
0

100%

1

steady-state

v

63.2%

 
(iii)  

t
0

100%

1

different

v

63.2%

  

(c) The pole at -1. 
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10.6 
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Step response - First and Second-order systems

 

10.7 

a) 3n , 61  b) 58.8% c) 0 d) 91  

10.8 

a) 0 b) 3 

10.9 

a) 10T  sec  b)  (i) 09.9T  sec    (ii) 5T  sec   (iii) 91.0T  sec 

Feedback improves the time response. 

Second-order system 

First-order system 
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11.3 

a) 1
1
T

KS  b) 
1000

1000
22 


ss
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K  c) 
10002
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ss
S T

G  

11.4 

a) 

open-loop 1T

Ka
S  

open-loop 0
1
T

KS  

closed-loop 
  aa

T

K
KKsGKK

S
a

11 1

1

1

1





  for n   

closed-loop 1
1 1

1

1
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open-loop 
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 for n   

closed-loop 
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11 1

1
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 for n   

11.5 

a)  (i) 
11

1

KKP
 (ii)   (iii) 

1

1

1 KK

K

P


 (iv) 

1

1

1

1

KK

K

P


 

b)  (i) 0 (ii) 
1

1

KK I

 (iii) 0 (iv) 0 

c)  (i) 0 (ii) 
1

1

KKP

 (iii) 
PK

1
 (iv) 

PK

1
 

d)  (i) 0 (ii) 0 (iii) 0 (iv) 0 

The integral term in the compensator reduces the “order” of the error, 

i.e. infinite values turn into finite values, and finite values become zero. 
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12.1 

(i) 

z -1

y  n[  ]x  n[  ]

z -2

 

(ii) 

z -1

2

y  n[  ]x  n[  ]
z -43

z -1

 

12.2 

(iii)        13221  nxnynyny  

(iv)   30 y ,   81 y ,   12 y ,   143 y  

12.3 

(a)      nunh
n

31  

(b)          nununny
n

3127233    

or            131312123
1




nunununy
nn

 

or            231321313
2




nununy
nn

 

(the responses above are equivalent – to see this, graph them or rearrange 

terms) 
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12.4 

     nhnhnh 21   

12.5 
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12.6 
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  (iv)  
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(b)  
1

2
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z

z
zX  

12.7 

(a) zeros at 2- ,0z ; poles at 1- ,31z ; stable 

(b) fourth-order zero at 0z ; poles at 21 ,21 jjz  ; stable 

(c) zeros at 52jz  ; poles at 63z ; unstable 

12.8 

 
21
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23
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12.9 

  ... 9.125, 10.5, 14, ,0nx  
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12.10 

             nnunununx
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12.11 
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1 1

 for 2,... 1, ,0n  

(b)        46123  nnnnx   for 2,... 1, ,0n  

(c)   anTenx 1  for 2,... 1, ,0n  

(d)      nn
nnx 2162188   for 2,... 1, ,0n  
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212




n
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12.15 
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15.1 

(a)  
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(b) 60  K , 1rads 82.2   

(c) 206.0K  

(d) s 7.10st  

15.2 

(a) One pole is always in the right-half plane: 

For 0K : 
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(b)  

For 0K : 
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For 0K : 

-20 -15 -10 -5 0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
 A

x
is

Real Axis

Root Locus Editor (C)

 

 

The system is always unstable because the pole pair moves into the right-half 

plane ( 5.3js  ) at a lower gain ( 5.37K ) than that for which the right-

half plane pole enters the left-half plane ( 48K ). The principle is sound, 

however. A different choice of pole-zero locations for the feedback 

compensator is required in order to produce a stable feedback system. 

For 0K , the root in the right-half plane stays on the real-axis and moves to 

the right. Thus, negative values of K are not worth pursuing. 

For the given open-loop pole-zero pattern, there are two different feasible locus 

paths, one of which includes a nearly circular segment from the left-half 

s-plane to the right-half s-plane. The relative magnitude of the poles and zeros 

determines which of the two paths occurs. 
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(b) 2732a  

(c) 160  a  for stability. For 16a , the frequency of oscillation is 1rads 2  . 
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(b) 52K , -1rads 3n  

(c) Any value of 52K  gives zero steady-state error. [The system is type 1. 

Therefore any value of K will give zero steady-state error provided the 

system is stable.] 

(d) 1952.0K , s 06.1rt  
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11  , 22  , 33   

17.2 

(a) 1, 2 (b)   
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(ii) –1, 21 j  (iii) 751 k , 492 k , 103 k  (iv)   401tyss  

(v) State feedback can place the poles of any system arbitrarily (if the system is 

controllable). 
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